Topology optimization and minimal partitions using a gradient-free perimeter approximation

Samuel Amstutz
LMA

Joint work with A.A. Novotny, N. Van Goethem and M. Zabiba

From open to closed loop control Graz
June 22-26, 2015

Perimeter penalization in topology optimization: why?

Why is it useful?

- To control the complexity of domains
- To enforce the existence of optimal shapes Math. argument: $B V(D) \hookrightarrow L^{1}(D)$ is compact

Why is it difficult?

- The perimeter is differentiable w.r.t. smooth shape variations (shape derivative).
- For a topology perturbation of form $\Omega_{\varepsilon}=\Omega \backslash \overline{B(z, \varepsilon)}$, $\Omega \subset \mathbb{R}^{d}$, the perimeter varies like ε^{d-1}, while usual cost functions vary like ε^{d} (no topological derivative).

Shape vs topology perturbation

Perimeter in the sense of geometric measure theory

Let $D \subset \mathbb{R}^{d}$ open and bounded.

Definition
Let $\Omega \subset D$ measurable. The relative perimeter of Ω is defined by
$\operatorname{Per}_{D}(\Omega):=\int_{D}\left|D \chi_{\Omega}\right|=\sup \left\{\int_{D} \chi_{\Omega} \operatorname{div} \varphi, \varphi \in \mathcal{C}_{c}\left(D, \mathbb{R}^{d}\right),\|\varphi\|_{\infty} \leq 1\right\}$.

Theorem (De Giorgi, Federer)
If $\operatorname{Per}_{D}(\Omega)<\infty$ (i.e. $\chi_{\Omega} \in B V(D)$), then

$$
\operatorname{Per}_{D}(\Omega)=\mathcal{H}^{d-1}\left(\partial^{*} \Omega \cap D\right)
$$

where $\partial^{*} \Omega$ is the essential boundary of Ω (points of density different from 0 and 1).

Perimeter approximation by Г-convergence

「-convergence (De Giorgi-Franzoni, 1975)

Definition

Let $F_{n}, F: X \rightarrow \mathbb{R}, X$ metric space.
One says that $F_{n} \xrightarrow{\Gamma} F$ at $x \in X$ iif

1. $\forall x_{n} \rightarrow x, F(x) \leq \liminf F_{n}(x)$,
2. $\exists y_{n} \rightarrow x, F(x) \geq \limsup F_{n}(y)$.

Theorem
Suppose that

1. $F_{n} \xrightarrow{\Gamma} F$ in X,
2. $F_{n}\left(x_{n}\right) \leq \inf _{X} F_{n}+\varepsilon_{n}, \varepsilon_{n} \rightarrow 0$,
3. $x_{n} \rightarrow x$.

Then x is a minimizer of F and $\lim F_{n}\left(x_{n}\right)=F(x)$.

Remarks

- The convergence of $\left(x_{n}\right)$ is usually obtained from an equicoercivity argument:

$$
\sup F_{n}\left(x_{n}\right)<\infty \Rightarrow\left(x_{n}\right) \text { is compact. }
$$

This property may be as difficult to prove as the Γ-convergence.

- If $F_{n} \xrightarrow{\Gamma} F$ and G is continuous then

$$
F_{n}+G \xrightarrow{\ulcorner } F+G .
$$

- The Γ-convergence does not imply the pointwise convergence $F_{n}(x) \rightarrow F(x)$.

A classical perimeter approximation: the Van Der Waals-Cahn-Hiliard functional
For a potential W with wells 0 and 1 define
$F_{\varepsilon}(u)=\int_{D} \varepsilon|\nabla u|^{2}+\frac{1}{\varepsilon} W(u)$.

Theorem (Modica-Mortola, 1977)
When $\varepsilon \rightarrow 0$,

$$
F_{\varepsilon}(u) \stackrel{\Gamma}{\hookrightarrow} \begin{cases}c \operatorname{Per}_{D}(\Omega) & \text { if } u=\chi_{\Omega} \in B V(D,\{0,1\}) \\ +\infty & \text { otherwise }\end{cases}
$$

in $L^{1}(D)$, with $c=\int_{0}^{1} \sqrt{W(t)} d t$.

Advantages

- Approximation of the perimeter in the appropriate sense for optimization
- Intermediate values of u are penalized \rightsquigarrow possible combination with relaxation methods

Drawbacks

- The functional does not accept characteristic functions.
- The derivative w.r.t. u involves $-\Delta u$. Hence optimization by an explicit method may be very slow for fine grids (CFL condition).
These drawbacks stem from the term ∇u.

A gradient-free perimeter approximation

For all $u \in L^{2}(D)$ consider $L_{\varepsilon} u:=v_{\varepsilon}$ the smoothed version of u by

$$
\begin{cases}-\varepsilon^{2} \Delta v_{\varepsilon}+v_{\varepsilon}=u & \text { in } D, \\ \partial_{n} v_{\varepsilon}=0 & \text { on } \partial D,\end{cases}
$$

and define

$$
F_{\varepsilon}(\Omega)=\frac{1}{\varepsilon}\left\langle L_{\varepsilon} \chi_{\Omega}, \chi_{D \backslash \Omega}\right\rangle=: \frac{1}{\varepsilon} \int_{D}\left(L_{\varepsilon} \chi_{\Omega}\right) \chi_{D \backslash \Omega} .
$$

Example in 1d
$D=(-1,1), \Omega=(0,1)$
One finds
$\lim _{\varepsilon \rightarrow 0} F_{\varepsilon}(\Omega)=\frac{1}{2}=\frac{1}{2} \operatorname{Per}_{D}(\Omega)$.

More generally, for any $u \in L^{\infty}(D,[0,1])$, define

$$
\tilde{F}_{\varepsilon}(u):=\frac{1}{\varepsilon}\left\langle L_{\varepsilon} u, 1-u\right\rangle=\frac{1}{\varepsilon}\left\langle 1-L_{\varepsilon} u, u\right\rangle .
$$

Theorem
When $\varepsilon \rightarrow 0$ one has in $L^{1}(D)$

$$
\tilde{F}_{\varepsilon}(u) \stackrel{\Gamma}{\longrightarrow} \begin{cases}\frac{1}{2} \operatorname{Per}_{D}(\Omega) & \text { if } u=\chi_{\Omega} \in B V(D,\{0,1\}) \\ +\infty & \text { otherwise }\end{cases}
$$

Remarks

- By Legendre-Fenchel transform one obtains

$$
\tilde{F}_{\varepsilon}(u)=\inf _{v \in H^{1}(D)}\left\{\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right\} .
$$

- In both expressions there is no ∇u.
- \tilde{F}_{ε} is weakly-* continuous in $L^{\infty}(D,[0,1])$.
- One also has the pointwise convergence $\tilde{F}_{\varepsilon}\left(\chi_{\Omega}\right) \rightarrow \operatorname{Per}_{D}(\Omega)$.

Solution of topology optimization problems with perimeter penalization

Let $\tilde{J}: L^{1}(D,[0,1]) \rightarrow \mathbb{R}$ be continuous,

$$
\begin{aligned}
\tilde{l}_{\varepsilon} & :=\inf _{u \in L^{\infty}(D,[0,1])}\left\{\tilde{J}(u)+\alpha \tilde{F}_{\varepsilon}(u)\right\}, \\
I & :=\inf _{\Omega \subset D}\left\{\tilde{J}\left(\chi_{\Omega}\right)+\frac{\alpha}{2} \operatorname{Per}_{D}(\Omega)\right\} .
\end{aligned}
$$

Proposition (equicoercivity)
If $\sup _{\varepsilon>0} \tilde{F}_{\varepsilon}\left(u_{\varepsilon}\right)<\infty$ then $\left(u_{\varepsilon}\right)$ is compact in $L^{1}(D,[0,1])$.
Theorem
Let u_{ε} be an approximate minimizer of l_{ε}, i.e.

$$
\tilde{J}\left(u_{\varepsilon}\right)+\alpha \tilde{F}_{\epsilon}\left(u_{\varepsilon}\right) \leq \tilde{I}_{\varepsilon}+\lambda_{\varepsilon}, \quad \lambda_{\varepsilon} \rightarrow 0
$$

Then $\tilde{J}\left(u_{\varepsilon}\right)+\alpha \tilde{F}_{\varepsilon}\left(u_{\varepsilon}\right) \rightarrow I$.
Moreover, $\left(u_{\varepsilon}\right)$ admits cluster points, and if u is a cluster point then $u=\chi_{\Omega}$ where Ω is a minimizer of I.

Algorithms

Objective

Given $J: L^{\infty}(D,\{0,1\}) \rightarrow \mathbb{R}$ solve

$$
I=\inf _{\Omega \subset D}\left\{J\left(\chi_{\Omega}\right)+\frac{\alpha}{2} \operatorname{Per}_{D}(\Omega)\right\} .
$$

Let a sequence $\varepsilon_{k} \searrow 0$.
At ε_{k} fixed: two approches

- Consider a continuous extension $\tilde{J}: L^{1}(D,[0,1]) \rightarrow \mathbb{R}$ of J and find a (approximate) minimizer of

$$
\tilde{l}_{\varepsilon_{k}}=\inf _{u \in L^{\infty}(D,[0,1])}\left\{\tilde{J}(u)+\alpha \tilde{F}_{\varepsilon_{k}}(u)\right\} .
$$

- Find an approximate minimizer of

$$
I_{\varepsilon_{k}}=\inf _{\Omega \subset D}\left\{J\left(\chi_{\Omega}\right)+\alpha \tilde{F}_{\varepsilon_{k}}\left(\chi_{\Omega}\right)\right\} .
$$

In practice...

The convexification (of the admissible set) approach The extension \tilde{J} can be constructed by relaxation (e.g. homogenization), if available.
To minimize one can use:

- general methods for nonlinear optimization with box constraints,
- an alternating algorithm based on

$$
\begin{aligned}
& \tilde{I}_{\varepsilon}=\inf _{u \in L^{\infty}(D,[0,1])} \inf _{v \in H^{1}(D)}\left\{\tilde{J}(u)+\alpha\left[\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\right.\right. \\
& \left.\left.\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right]\right\} .
\end{aligned}
$$

Interest of the latter: if \tilde{J} is linear or can be written as an inf (like the homogenized compliance, through the dual energy). Minimization w.r.t. v amounts to solving $v=L_{\varepsilon} u$.

The direct approach

Relies on the concepts of shape and topological derivatives (both exist for \tilde{F}_{ε}).

Examples

Conductivity maximization

$$
J\left(\chi_{\Omega}\right)=\int_{\Gamma_{N}} g y+\ell|\Omega|, \quad \begin{cases}-\operatorname{div}\left(\left(\gamma_{0} \chi_{D \backslash \Omega}+\gamma_{1} \chi_{\Omega}\right) \nabla y\right)=0 & \text { in } D \\ \left(\gamma_{0} \chi_{D \backslash \Omega}+\gamma_{1} \chi_{\Omega}\right) \nabla y . n=g & \text { on } \Gamma_{N}\end{cases}
$$

The dual energy is

$$
\int_{\Gamma_{N}} g y=\inf _{\substack{-\operatorname{div} \tau=0 \\ \tau . n=g}} \int_{D}\left(\gamma_{0} \chi_{D \backslash \Omega}+\gamma_{1} \chi_{\Omega}\right)^{-1}|\tau|^{2}
$$

Method: relaxation (in the weak-* topology) + alternating algorithm based on

$$
\begin{aligned}
\tilde{I}_{\varepsilon} & =\inf _{u \in L^{\infty}(D,[0,1])} \inf _{v \in H^{1}(D)} \inf _{\substack{\operatorname{div} \tau=0 \\
\tau . n=g}}\left\{\int_{D}\left(\gamma_{0}(1-u)+\gamma_{1} u\right)^{-1}|\tau|^{2}\right. \\
& \left.+\ell \int_{D} u+\alpha\left[\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right]\right\} .
\end{aligned}
$$

Minimization w.r.t. u is given by

$$
u=\left\{\begin{array}{l}
1 \text { if } \ell+\frac{\alpha}{2 \varepsilon}(1-2 v) \leq 0, \\
P_{[0,1]}\left(\sqrt{\frac{|\tau|^{2}}{\left(\gamma_{1}-\gamma_{0}\right)\left(\ell+\frac{\alpha}{2 \varepsilon}(1-2 v)\right)}}-\frac{\gamma_{0}}{\gamma_{1}-\gamma_{0}}\right) \text { else. }
\end{array}\right.
$$

Optimal heater for $\alpha=0.1,0.5,2$, respectively

$$
\left(\gamma_{1}=1, \gamma_{0}=10^{-3}\right)
$$

Compliance minimization in linear elasticity
Method: homogenization (rank 2 laminates, cf. Allaire) + alternating algorithm (minimization w.r.t. u is again explicit)

Cantilever for $\alpha=0.1,2,20,50$, respectively.

Optimal design of microstructures

Goal: optimize the Representative Volume Element to obtain desired homogenized properties (periodic model) Method: topological derivative + level set representation (homogenization is unknown)

Bulk modulus maximization for $\alpha=0, \alpha=0.1, \alpha=0.5$.
Optimized RVE and associated periodic microstructure.

三 ゆดल $16 / 31$

Poisson ratio minimization for $\alpha=0, \alpha=0.01$ and $\alpha=0.02$. Corresponding Poisson: $-0.345,-0.319$ and -0.260 , respectively.

Poisson ratio maximization for $\alpha=0$ and $\alpha=0.1$.
Corresponding Poisson ratios: 0.871 and 0.831 , respectively.

Extension to the multiphase case: minimal partitions

Typical problem: find a partition $\left(\Omega_{1}, \ldots, \Omega_{N}\right)$ of D which minimizes

$$
\mathcal{J}\left(\Omega_{1}, \ldots, \Omega_{N}\right)=\sum_{i=1}^{N} \int_{\Omega_{i}} g_{i}+\frac{\alpha}{2} \operatorname{Per}_{D}\left(\Omega_{i}\right)
$$

The objective

$$
J\left(\chi_{\Omega_{1}}, \ldots, \chi_{\Omega_{N}}\right)=\sum_{i=1}^{N} \int_{D} \chi_{\Omega_{i}} g_{i}
$$

is relaxed (in the weak-* topology) by

$$
\tilde{J}\left(u_{1}, \ldots, u_{N}\right)=\sum_{i=1}^{N} \int_{D} u_{i} g_{i}
$$

over

$$
X=\left\{\left(u_{1}, \ldots, u_{N}\right) \in L^{\infty}(D,[0,1])^{N}, \sum_{i} u_{i}=1\right\}
$$

For Γ-convergence issues, X is endowed with the $L \frac{1}{2}$ distance-

Mathematical issues

We want to approximate

$$
\frac{1}{2} \sum_{i=1}^{N} \operatorname{Per}_{D}\left(\Omega_{i}\right) \quad \text { by } \quad \sum_{i=1}^{N} \tilde{F}_{\varepsilon}\left(\chi_{\Omega_{i}}\right)
$$

But the Γ-convergence is not stable upon addition (lim sup inequality), as a collection of recovery sequences (u_{i}^{ε}) does not necessarily belong to X. However, the pointwise convergence of \tilde{F}_{ε} allows to choose constant recovery sequences.

Theorem
Let $\left(u_{1}^{\varepsilon}, \ldots, u_{N}^{\varepsilon}\right)$ be an approximate minimizer of

$$
\inf _{\left(u_{1}, \ldots, u_{N}\right) \in X} \mathcal{J}_{\varepsilon}\left(u_{1}, \ldots, u_{N}\right):=\tilde{J}\left(u_{1}, \ldots, u_{N}\right)+\frac{\alpha}{2} \sum_{i} \tilde{F}_{\varepsilon}\left(u_{i}\right) .
$$

Then $\mathcal{J}\left(u_{1}^{\varepsilon}, \ldots, u_{N}^{\varepsilon}\right) \rightarrow I:=\inf \mathcal{J}\left(\Omega_{1}, \ldots, \Omega_{N}\right)$.
Moreover, $\left(u_{1}^{\varepsilon}, \ldots, u_{N}^{\varepsilon}\right)$ admits cluster points, and if $\left(u_{1}, \ldots, u_{N}\right)$ is a cluster point then $u_{i}=\chi_{\Omega_{i}}$ where $\left(\Omega_{1}, \ldots, \Omega_{N}\right)$ is a minimizer of $I_{\bar{\equiv}}$.

Algorithmic issues

At ε fixed, the problem admits the formulation:

$$
\begin{aligned}
\inf _{\left(u_{1}, \ldots, u_{N}\right) \in X} \inf _{v_{1}, \ldots, v_{N} \in H^{1}(D)} \sum_{i=1}^{N}\{ & \left\langle g_{i}, u_{i}\right\rangle+\alpha\left[\varepsilon\left\|\nabla v_{i}\right\|_{L^{2}(D)}^{2}+\right. \\
& \left.\left.\frac{1}{\varepsilon}\left(\left\|v_{i}\right\|_{L^{2}(D)}^{2}+\left\langle u_{i}, 1-2 v_{i}\right\rangle\right)\right]\right\} .
\end{aligned}
$$

We use an alternating algorithm.

- Minimizing w.r.t. $\left(v_{1}, \ldots, v_{N}\right)$ is achieved by setting $v_{i}=L_{\varepsilon} u_{i}$.
- Minimizing w.r.t. $\left(u_{1}, \ldots, u_{N}\right)$ is linear and spatially uncoupled, while X is a convex polyhedron: setting $\zeta_{i}=g_{i}+\frac{\alpha}{\varepsilon}\left(1-2 v_{i}\right)$, put $u_{i}=1$ on the smallest ζ_{i}.
Remark: the u_{i} 's are characteristic functions of a partition at every iteration.

Example: triple and quadruple points

Given a partition $\left(E_{0}, E_{1}, \ldots, E_{N}\right)$ of D, define $g_{i}=-\chi_{E_{i}}$ in order to favor the phase Ω_{i} in the set E_{i}. In the "ocluded part" E_{0} no phase is favored.

Triple and quadruple points problems:
g_{i} 's (left) and inpainted image (right).

Application: image classification

Given an image f we search for a partition $\left\{\Omega_{i}\right\}$ of D and an image w constant on each Ω_{i} which minimize (usually for $p=1$ or $p=2$)

$$
\mathcal{J}\left(\left\{\Omega_{i}\right\}, w\right)=\|w-f\|_{L^{p}}^{p}+\frac{\alpha}{2} \sum_{i=1}^{N} \operatorname{Per}_{D}\left(\Omega_{i}\right)
$$

For $w=\sum_{i} u_{i} c_{i}, u_{i}=\chi_{\Omega_{i}}$ it reads

$$
\mathcal{J}\left(\Omega_{1}, \ldots, \Omega_{N}\right)=\sum_{i=1}^{N} \int_{\Omega_{i}} \underbrace{\left|c_{i}-f\right|^{p}}_{g_{i}}+\frac{\alpha}{2} \operatorname{Per}_{D}\left(\Omega_{i}\right)
$$

Unsupervised classification: the c_{i} 's are updated at each iteration by inserting a $3^{r d}$ minimization in the alternating algorithm.

- $p=2: c_{i}$ is the mean of f over Ω_{i}
- $p=1: c_{i}$ is the median of f over Ω_{i}

Color images: $g_{i}=\sum_{j=1}^{3}\left|c_{i j}-f_{j}\right|^{p}$

Examples (greylevel)

Unsupervised classification with 3 labels $(p=2)$.

Unsupervised classification with 2 or 3 labels $(p=1)$.

Examples (color)

Unsupervised classification with 2 labels $(p=1)$.

Unsupervised classification with 2 or 5 labels $(p=1)$.

Anisotropy-based classification

The fidelity term $\left|c_{i}-f\right|^{p}$ is replaced by

$$
g_{i}=-\left(\nabla \phi \cdot \xi_{i}\right)^{2}
$$

where ϕ is a smoothed version of the original image and ξ_{i} are prescribed unit vectors (basic texture identification model).

Supervised classification of anisotropic textures.

Deblurring (binary case)

Model: minimize

$$
\mathcal{J}(\Omega)=\Phi\left(\chi_{\Omega}\right)+\frac{\alpha}{2} \operatorname{Per}_{D}(\Omega)
$$

with

$$
\Phi(u)=\left\|A\left(u c_{1}+(1-u) c_{2}\right)-f\right\|_{L^{2}(D)}^{2}
$$

$A \in \mathcal{L}\left(L^{2}(D)\right), c_{1}, c_{2} \in \mathbb{R}$ known.
Due to the spatial coupling, minimization w.r.t. u is not explicit. Using that $\nabla \Phi$ is λ-Lipschitz in $L^{2}, \lambda=2\left(c_{1}-c_{2}\right)^{2}\left\|A^{*} A\right\|$, we have

$$
\left.\Phi(u)=\inf _{\hat{u} \in L^{2}(D)} \Phi(\hat{u})+\langle\nabla \Phi(\hat{u}), u-\hat{u})\right\rangle+\frac{\lambda}{2}\|u-\hat{u}\|^{2} .
$$

We obtain the formulation at ε fixed

$$
\begin{aligned}
& \inf _{u \in L^{\infty}(D,[0,1])} \inf _{\hat{u} \in L^{2}(D)} \inf _{v \in H^{1}(D)}\{\Phi(\hat{u})+\langle\nabla \Phi(\hat{u}), u-\hat{u})\rangle+\frac{\lambda}{2}\|u-\hat{u}\|^{2} \\
& \left.+\alpha\left[\varepsilon\|\nabla v\|_{L^{2}(D)}^{2}+\frac{1}{\varepsilon}\left(\|v\|_{L^{2}(D)}^{2}+\langle u, 1-2 v\rangle\right)\right]\right\} .
\end{aligned}
$$

- Minimization w.r.t. $v: v=L_{\varepsilon} u$
- Minimization w.r.t. $\hat{u}: \hat{u}=u$
- Minimization w.r.t. u:

$$
u=P_{[0,1]}\left(\hat{u}-\frac{1}{\lambda}\left(\nabla \Phi(\hat{u})+\frac{\alpha}{\varepsilon}(1-2 v)\right)\right)
$$

Remark: u is no longer a characteristic function during the iterations.

Examples

Deblurring and denoising: original image, damaged image with blur and noise effects (middle), reconstructed image (right).

Deblurring: original image (left), blurred image (middle), and restored image (right).

Extension: interface energies (ongoing)

$$
\Gamma_{i j}=\partial^{*} \Omega_{i} \cap \partial^{*} \Omega_{j}
$$

Goal: minimize

$$
\sum_{i} \int_{\Omega_{i}} g_{i}+\sum_{i<j} \alpha_{i j} \mathcal{H}^{1}\left(\Gamma_{i j}\right)
$$

We have

$$
\begin{aligned}
\mathcal{H}^{1}\left(\Gamma_{i j}\right) & =\frac{1}{2}\left[\mathcal{H}^{1}\left(\partial^{*} \Omega_{i}\right)+\mathcal{H}^{1}\left(\partial^{*} \Omega_{j}\right)-\mathcal{H}^{1}\left(\partial^{*} \Omega_{i} \cup \partial^{*} \Omega_{j}\right)\right] \\
& =\lim _{\varepsilon \rightarrow 0}\left[\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{i}}\right)+\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{j}}\right)-\tilde{F}_{\varepsilon}\left(\chi_{\Omega_{i}}+\chi_{\Omega_{j}}\right)\right] \\
& =\cdots \\
& =\lim _{\varepsilon \rightarrow 0} \frac{2}{\varepsilon}\left\langle L_{\varepsilon} \chi_{\Omega_{i}}, \chi_{\Omega_{j}}\right\rangle .
\end{aligned}
$$

Open questions: 「-convergence? equicoercivity?

One can still use an alternating algorithm thanks to the formulation

$$
2\left\langle L_{\varepsilon} u_{i}, u_{j}\right\rangle=\underbrace{\left\langle L_{\varepsilon}\left(u_{i}+u_{j}\right), u_{i}+u_{j}\right\rangle}_{\text {dual }}-\underbrace{\left\langle L_{\varepsilon} u_{i}, u_{i}\right\rangle}_{\text {primal }}-\underbrace{\left\langle L_{\varepsilon} u_{j}, u_{j}\right\rangle}_{\text {primal }}
$$

combined with

$$
\begin{aligned}
\left\langle L_{\varepsilon} u, u\right\rangle & =\sup _{v \in H^{1}(D)} 2\langle u, v\rangle-\varepsilon^{2}\|\nabla v\|^{2}-\|v\|^{2} \quad \text { (primal) } \\
& =\inf _{p \in H_{0}^{d i v}(D)}\|u+\varepsilon \operatorname{div} p\|^{2}+\|p\|^{2} \quad \text { (dual). }
\end{aligned}
$$

The solutions of the latter problems are $v=L_{\varepsilon} u, p=\varepsilon \nabla v$. The minimization in u is quadratic and spatially uncoupled.

Example

> Data (left), initialisation (middle) and result (right) for $\alpha_{\text {red } / \text { green }}=100, \alpha_{\text {red/blue }}=\alpha_{\text {green/blue }}=0$

THANK YOU!

