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Perimeter penalization in topology optimization: why?

Why is it useful?

I To control the complexity of domains

I To enforce the existence of optimal shapes
Math. argument: BV (D) ↪→ L1(D) is
compact

Why is it difficult?
I The perimeter is differentiable w.r.t. smooth shape variations

(shape derivative).
I For a topology perturbation of form Ωε = Ω \ B(z , ε),

Ω ⊂ Rd , the perimeter varies like εd−1, while usual cost
functions vary like εd (no topological derivative).
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Perimeter in the sense of geometric measure theory

Let D ⊂ Rd open and
bounded.

Ω
∂∗Ω ∩D

Definition
Let Ω ⊂ D measurable. The relative perimeter of Ω is defined by

PerD(Ω) :=

ˆ
D
|DχΩ| = sup

{ˆ
D
χΩ divϕ,ϕ ∈ Cc(D,Rd), ‖ϕ‖∞ ≤ 1

}
.

Theorem (De Giorgi, Federer)

If PerD(Ω) <∞ (i.e. χΩ ∈ BV (D)), then

PerD(Ω) = Hd−1(∂∗Ω ∩ D),

where ∂∗Ω is the essential boundary of Ω (points of density
different from 0 and 1).

3 / 31



Perimeter approximation by Γ-convergence

Γ-convergence (De Giorgi-Franzoni, 1975)

Definition
Let Fn,F : X → R, X metric space.

One says that Fn
Γ−→ F at x ∈ X iif

1. ∀xn → x , F (x) ≤ lim inf Fn(x),

2. ∃yn → x , F (x) ≥ lim sup Fn(y).

Theorem
Suppose that

1. Fn
Γ−→ F in X ,

2. Fn(xn) ≤ infX Fn + εn, εn → 0,

3. xn → x.

Then x is a minimizer of F and lim Fn(xn) = F (x).
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Remarks

I The convergence of (xn) is usually obtained from an
equicoercivity argument:

sup Fn(xn) <∞⇒ (xn) is compact.

This property may be as difficult to prove as the
Γ-convergence.

I If Fn
Γ−→ F and G is continuous then

Fn + G
Γ−→ F + G .

I The Γ-convergence does not imply the pointwise convergence
Fn(x)→ F (x).
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A classical perimeter approximation: the Van Der
Waals-Cahn-Hiliard functional

For a potential W with wells 0
and 1 define

Fε(u) =

ˆ
D
ε|∇u|2 +

1

ε
W (u).

0 1

W

Theorem (Modica-Mortola, 1977)

When ε→ 0,

Fε(u)
Γ−→
{

cPerD(Ω) if u = χΩ ∈ BV (D, {0, 1})
+∞ otherwise

in L1(D), with c =
´ 1

0

√
W (t)dt.
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Advantages

I Approximation of the perimeter in the appropriate sense for
optimization

I Intermediate values of u are penalized
 possible combination with relaxation methods

Drawbacks

I The functional does not accept characteristic functions.

I The derivative w.r.t. u involves −∆u. Hence optimization by
an explicit method may be very slow for fine grids (CFL
condition).

These drawbacks stem from the term ∇u.
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A gradient-free perimeter approximation

For all u ∈ L2(D) consider Lεu := vε the smoothed version of u by{
−ε2∆vε + vε = u in D,
∂nvε = 0 on ∂D,

and define

Fε(Ω) =
1

ε
〈LεχΩ, χD\Ω〉 =:

1

ε

ˆ
D

(LεχΩ)χD\Ω.

Example in 1d

D = (−1, 1), Ω = (0, 1)
One finds

lim
ε→0

Fε(Ω) =
1

2
=

1

2
PerD(Ω).

χD\Ω LεχΩ

−1 0 1
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More generally, for any u ∈ L∞(D, [0, 1]), define

F̃ε(u) :=
1

ε
〈Lεu, 1− u〉 =

1

ε
〈1− Lεu, u〉.

Theorem
When ε→ 0 one has in L1(D)

F̃ε(u)
Γ−→
{

1
2 PerD(Ω) if u = χΩ ∈ BV (D, {0, 1})
+∞ otherwise.

Remarks

I By Legendre-Fenchel transform one obtains

F̃ε(u) = inf
v∈H1(D)

{
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)}

.

I In both expressions there is no ∇u.

I F̃ε is weakly-∗ continuous in L∞(D, [0, 1]).

I One also has the pointwise convergence F̃ε(χΩ)→ PerD(Ω).
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Solution of topology optimization problems with perimeter
penalization

Let J̃ : L1(D, [0, 1])→ R be continuous,

Ĩε := inf
u∈L∞(D,[0,1])

{
J̃(u) + αF̃ε(u)

}
,

I := inf
Ω⊂D

{
J̃(χΩ) +

α

2
PerD(Ω)

}
.

Proposition (equicoercivity)

If supε>0 F̃ε(uε) <∞ then (uε) is compact in L1(D, [0, 1]).

Theorem
Let uε be an approximate minimizer of Iε, i.e.

J̃(uε) + αF̃ε(uε) ≤ Ĩε + λε, λε → 0.

Then J̃(uε) + αF̃ε(uε)→ I .
Moreover, (uε) admits cluster points, and if u is a cluster point
then u = χΩ where Ω is a minimizer of I .
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Algorithms
Objective
Given J : L∞(D, {0, 1})→ R solve

I = inf
Ω⊂D

{
J(χΩ) +

α

2
PerD(Ω)

}
.

Let a sequence εk ↘ 0.

At εk fixed: two approches

I Consider a continuous extension J̃ : L1(D, [0, 1])→ R of J
and find a (approximate) minimizer of

Ĩεk = inf
u∈L∞(D,[0,1])

{
J̃(u) + αF̃εk (u)

}
.

I Find an approximate minimizer of

Iεk = inf
Ω⊂D

{
J(χΩ) + αF̃εk (χΩ)

}
.

In practice...
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The convexification (of the admissible set) approach
The extension J̃ can be constructed by relaxation (e.g.
homogenization), if available.
To minimize one can use:
I general methods for nonlinear optimization with box

constraints,
I an alternating algorithm based on

Ĩε = inf
u∈L∞(D,[0,1])

inf
v∈H1(D)

{
J̃(u) + α

[
ε‖∇v‖2

L2(D)+

1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)]}

.

Interest of the latter: if J̃ is linear or can be written as an inf (like
the homogenized compliance, through the dual energy).
Minimization w.r.t. v amounts to solving v = Lεu.

The direct approach
Relies on the concepts of shape and topological derivatives (both
exist for F̃ε).
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Examples
Conductivity maximization

J(χΩ) =

ˆ
ΓN

gy+`|Ω|,
{ −div((γ0χD\Ω + γ1χΩ)∇y) = 0 in D

(γ0χD\Ω + γ1χΩ)∇y .n = g on ΓN

The dual energy is
ˆ

ΓN

gy = inf
− divτ=0
τ.n=g

ˆ
D

(γ0χD\Ω + γ1χΩ)−1|τ |2.

Method: relaxation (in the weak-∗ topology) + alternating
algorithm based on

Ĩε = inf
u∈L∞(D,[0,1])

inf
v∈H1(D)

inf
− divτ=0
τ.n=g

{ˆ
D

(γ0(1− u) + γ1u)−1|τ |2

+ `

ˆ
D

u + α

[
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)]}

.
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Minimization w.r.t. u is given by

u =


1 if `+

α

2ε
(1− 2v) ≤ 0,

P[0,1]

(√
|τ |2

(γ1 − γ0)
(
`+ α

2ε(1− 2v)
) − γ0

γ1 − γ0

)
else.

Optimal heater for α = 0.1, 0.5, 2, respectively
(γ1 = 1, γ0 = 10−3).
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Compliance minimization in linear elasticity

Method: homogenization (rank 2 laminates, cf. Allaire)
+ alternating algorithm (minimization w.r.t. u is again explicit)

Cantilever for α = 0.1, 2, 20, 50, respectively.
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Optimal design of microstructures

Goal: optimize the Representative Volume Element to obtain
desired homogenized properties (periodic model)
Method: topological derivative + level set representation
(homogenization is unknown)

Bulk modulus maximization for α = 0, α = 0.1, α = 0.5.
Optimized RVE and associated periodic microstructure. 16 / 31



Poisson ratio minimization for α = 0, α = 0.01 and α = 0.02.
Corresponding Poisson: −0.345, −0.319 and −0.260, respectively.

Poisson ratio maximization for α = 0 and α = 0.1.
Corresponding Poisson ratios: 0.871 and 0.831, respectively.
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Extension to the multiphase case: minimal partitions
Typical problem: find a partition (Ω1, ...,ΩN) of D which minimizes

J (Ω1, ...,ΩN) =
N∑
i=1

ˆ
Ωi

gi +
α

2
PerD(Ωi ).

The objective

J(χΩ1 , ..., χΩN
) =

N∑
i=1

ˆ
D
χΩi

gi

is relaxed (in the weak-∗ topology) by

J̃(u1, ..., uN) =
N∑
i=1

ˆ
D

uigi

over

X =

{
(u1, ..., uN) ∈ L∞(D, [0, 1])N ,

∑
i

ui = 1

}
.

For Γ-convergence issues, X is endowed with the L1 distance.
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Mathematical issues
We want to approximate

1

2

N∑
i=1

PerD(Ωi ) by
N∑
i=1

F̃ε(χΩi
).

But the Γ-convergence is not stable upon addition (lim sup
inequality), as a collection of recovery sequences (uεi ) does not
necessarily belong to X . However, the pointwise convergence of F̃ε
allows to choose constant recovery sequences.

Theorem
Let (uε1, ..., u

ε
N) be an approximate minimizer of

inf
(u1,...,uN)∈X

Jε(u1, ..., uN) := J̃(u1, ..., uN) +
α

2

∑
i

F̃ε(ui ).

Then J (uε1, ..., u
ε
N)→ I := inf J (Ω1, ...,ΩN).

Moreover, (uε1, ..., u
ε
N) admits cluster points, and if (u1, ..., uN) is a

cluster point then ui = χΩi
where (Ω1, ...,ΩN) is a minimizer of I .
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Algorithmic issues
At ε fixed, the problem admits the formulation:

inf
(u1,...,uN)∈X

inf
v1,...,vN∈H1(D)

N∑
i=1

{
〈gi , ui 〉+ α

[
ε‖∇vi‖2

L2(D)+

1

ε

(
‖vi‖2

L2(D) + 〈ui , 1− 2vi 〉
)]}

.

We use an alternating algorithm.

I Minimizing w.r.t. (v1, ..., vN) is achieved by setting vi = Lεui .

I Minimizing w.r.t. (u1, ..., uN) is linear and spatially uncoupled,
while X is a convex polyhedron: setting ζi = gi + α

ε (1− 2vi ),
put ui = 1 on the smallest ζi .

Remark: the ui ’s are characteristic functions of a partition at every
iteration.
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Example: triple and quadruple points
Given a partition (E0,E1, ...,EN) of D, define gi = −χEi

in order
to favor the phase Ωi in the set Ei . In the “ocluded part” E0 no
phase is favored.

Triple and quadruple points problems:
gi ’s (left) and inpainted image (right).
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Application: image classification
Given an image f we search for a partition {Ωi} of D and an image
w constant on each Ωi which minimize (usually for p = 1 or p = 2)

J ({Ωi},w) = ‖w − f ‖pLp +
α

2

N∑
i=1

PerD(Ωi ).

For w =
∑

i uici , ui = χΩi
it reads

J (Ω1, ...,ΩN) =
N∑
i=1

ˆ
Ωi

|ci − f |p︸ ︷︷ ︸
gi

+
α

2
PerD(Ωi ).

Unsupervised classification: the ci ’s are updated at each iteration
by inserting a 3rd minimization in the alternating algorithm.

I p = 2: ci is the mean of f over Ωi

I p = 1: ci is the median of f over Ωi

Color images: gi =
∑3

j=1 |cij − fj |p
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Examples (greylevel)

Unsupervised classification with 3 labels (p = 2).

Unsupervised classification with 2 or 3 labels (p = 1).
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Examples (color)

Unsupervised classification with 2 labels (p = 1).

Unsupervised classification with 2 or 5 labels (p = 1).
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Anisotropy-based classification
The fidelity term |ci − f |p is replaced by

gi = −(∇φ.ξi )2

where φ is a smoothed version of the original image and ξi are
prescribed unit vectors (basic texture identification model).

Supervised classification of anisotropic textures.
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Deblurring (binary case)

Model: minimize

J (Ω) = Φ(χΩ) +
α

2
PerD(Ω)

with
Φ(u) = ‖A(uc1 + (1− u)c2)− f ‖2

L2(D),

A ∈ L(L2(D)), c1, c2 ∈ R known.

Due to the spatial coupling, minimization w.r.t. u is not explicit.
Using that ∇Φ is λ-Lipschitz in L2, λ = 2(c1− c2)2‖A∗A‖, we have

Φ(u) = inf
û∈L2(D)

Φ(û) + 〈∇Φ(û), u − û)〉+
λ

2
‖u − û‖2.

26 / 31



We obtain the formulation at ε fixed

inf
u∈L∞(D,[0,1])

inf
û∈L2(D)

inf
v∈H1(D)

{
Φ(û)+〈∇Φ(û), u− û)〉+ λ

2
‖u− û‖2

+ α

[
ε‖∇v‖2

L2(D) +
1

ε

(
‖v‖2

L2(D) + 〈u, 1− 2v〉
)]}

.

I Minimization w.r.t. v : v = Lεu

I Minimization w.r.t. û: û = u

I Minimization w.r.t. u:

u = P[0,1]

(
û − 1

λ

(
∇Φ(û) +

α

ε
(1− 2v)

))
Remark: u is no longer a characteristic function during the
iterations.
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Examples

Deblurring and denoising: original image, damaged image with blur
and noise effects (middle), reconstructed image (right).

Deblurring: original image (left), blurred image (middle), and
restored image (right).
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Extension: interface energies (ongoing)

Γij = ∂∗Ωi ∩ ∂∗Ωj

Goal: minimize∑
i

ˆ
Ωi

gi +
∑
i<j

αijH1(Γij)

Γij

Ωi

Ωj

We have

H1(Γij) =
1

2

[
H1(∂∗Ωi ) +H1(∂∗Ωj)−H1(∂∗Ωi ∪ ∂∗Ωj)

]
= lim

ε→0

[
F̃ε(χΩi

) + F̃ε(χΩj
)− F̃ε(χΩi

+ χΩj
)
]

= ...

= lim
ε→0

2

ε
〈LεχΩi

, χΩj
〉.

Open questions: Γ-convergence? equicoercivity?
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One can still use an alternating algorithm thanks to the formulation

2〈Lεui , uj〉 = 〈Lε(ui + uj), ui + uj〉︸ ︷︷ ︸
dual

−〈Lεui , ui 〉︸ ︷︷ ︸
primal

−〈Lεuj , uj〉︸ ︷︷ ︸
primal

combined with

〈Lεu, u〉 = sup
v∈H1(D)

2〈u, v〉 − ε2‖∇v‖2 − ‖v‖2 (primal)

= inf
p∈Hdiv

0 (D)
‖u + εdivp‖2 + ‖p‖2 (dual).

The solutions of the latter problems are v = Lεu, p = ε∇v .
The minimization in u is quadratic and spatially uncoupled.
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Example

Data (left), initialisation (middle) and result (right) for
αred/green = 100, αred/blue = αgreen/blue = 0

THANK YOU!
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