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Perimeter penalization in topology optimization: why?

Why is it useful?
» To control the complexity of domains

» To enforce the existence of optimal shapes
Math. argument: BV(D) < L}(D) is
compact

Why is it difficult?
» The perimeter is differentiable w.r.t. smooth shape variations
(shape derivative).
» For a topology perturbation of form Q. = Q\ B(z, ¢),
Q C RY, the perimeter varies like €971, while usual cost
functions vary like €9 (no topological derivative).

Shape vs topology perturbation

N
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Perimeter in the sense of geometric measure theory

Let D c RY open and Q —0enD

bounded.

Definition
Let Q C D measurable. The relative perimeter of Q is defined by

Perp(Q) := /D |IDxq| = sup {/DXQ divip, p € CC(D,RC’), lolloo < 1}.

Theorem (De Giorgi, Federer)
If Perp(2) < oo (i.e. xq € BV(D)), then

Perp(Q) = H1(0*Q N D),

where 0*Q is the essential boundary of Q (points of density
different from 0 and 1).



Perimeter approximation by [-convergence

[-convergence (De Giorgi-Franzoni, 1975)
Definition
Let F,, F: X = R, X metric space.
One says that F, L> F at x € X iif
1. Vxp = x, F(x) <liminf Fp(x),
2. 3yp — x, F(x) > limsup Fy(y).

Theorem
Suppose that

1. F, S FinXx,
2. Fo(xn) <infx Fy+¢e,, en — 0,

3. Xp — X.

Then x is a minimizer of F and lim F,(x,) = F(x).
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Remarks

» The convergence of (x,) is usually obtained from an
equicoercivity argument:

sup Fn(xn) < 0o = (xp) is compact.

This property may be as difficult to prove as the
-convergence.

» If F, L> F and G is continuous then

Fot+ G- F+G.

» The -convergence does not imply the pointwise convergence
Fn(x) — F(x).



A classical perimeter approximation: the Van Der
Waals-Cahn-Hiliard functional

For a potential W with wells 0 w

and 1 define

Fg(u):/ IVl + S W(u).
D €
Theorem (Modica-Mortola, 1977)

When ¢ — 0,

cPerp() ifu= xq € BV(D,{0,1})
+o0 otherwise

Fo(u) {

in LY(D), with ¢ = [} \/W(t)d.

6
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Advantages
» Approximation of the perimeter in the appropriate sense for
optimization
» Intermediate values of u are penalized
~~ possible combination with relaxation methods
Drawbacks
» The functional does not accept characteristic functions.

» The derivative w.r.t. u involves —Au. Hence optimization by
an explicit method may be very slow for fine grids (CFL
condition).

These drawbacks stem from the term Vu.

~
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A gradient-free perimeter approximation

For all u € L?(D) consider L.u := v. the smoothed version of u by

—2Av.+v. =u inD,
Onve =0 on 0D,

and define

1 1
Fo(Q) = Z(Lexa, xpva) = - /D(LEXQ)XD\Q-

Example in 1d
D=(-1,1), Q= (0,1) XD\a Lexo

One finds f
lim F.(Q) = % _ %PerD(Q). -/

e—0 ) 0 1




More generally, for any u € L>(D, [0, 1]), define

F(u) L~ L, ).

1
<L5U,1 — U) = g

"¢

Theorem
When & — 0 one has in L1(D)

F (1) T, { $Perp(Q) if u=xq € BV(D,{0,1})

+o00 otherwise.

Remarks

» By Legendre-Fenchel transform one obtains

. , 1
Fw = o eIVl + 2 (M) + 1 -20) }.

veHI(

> In both expressions there is no Vu.
» F. is weakly-x continuous in L*°(D, [0,1]).

» One also has the pointwise convergence F.(xq) — Perp(Q).
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Solution of topology optimization problems with perimeter

penalization
Let J: LY(D,[0,1]) — R be continuous,

I, = ueLool(an,[o,l]) {J(u) + aFa(u)} ,

/= inf {Jxa) + %PerD(Q)} .
Proposition (equicoercivity)
If sup.~g F-(u.) < oo then (u.) is compact in LY(D, [0,1]).
Theorem
Let u. be an approximate minimizer of I, i.e.

.Nl(ug) + alz_e(ue) <L+, Ae — 0.

Then J(u.) + aFo(u.) — 1.
Moreover, (u:) admits cluster points, and if u is a cluster point
then u = xq where Q is a minimizer of |.
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Algorithms
Objective
Given J: L*°(D,{0,1}) — R solve

= inf {J(XQ)+%PerD(Q)}.

Let a sequence €, \, 0.
At ¢, fixed: two approches

» Consider a continuous extension J : L1(D,[0,1]) — R of J
and find a (approximate) minimizer of

I, = ueLOOI(an,[O,l]) {J(u) + ank(u)} .

» Find an approximate minimizer of

L = inf {J(xa) +aFe,(x) |

In practice...
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The convexification (of the admissible set) approach
The extension J can be constructed by relaxation (e.g.
homogenization), if available.
To minimize one can use:
» general methods for nonlinear optimization with box
constraints,
> an alternating algorithm based on

L= inf inf ){j(u) +a [EHVVH%z(D)—i-

ueL>=(D,[0,1]) veH!(D
1
(M) + w1 -20) |}

Interest of the latter: if J is linear or can be written as an inf (like
the homogenized compliance, through the dual energy).
Minimization w.r.t. v amounts to solving v = L.u.

The direct approach
Relies on the concepts of shape and topological derivatives (both
exist for F.).



Examples
Conductivity maximization

—div((voxp\@ + 11xQ)Vy) =0 in D
J = +4)Q],
(xa) /FN &y+4e { (’YOXD\Q +v1xq)Vy.n=g on Ny

The dual energy is
/ gy= inf /(7OXD\Q+’71XQ)1’T‘2‘
M —dvr=0Jp

Method: relaxation (in the weak-* topology) + alternating
algorithm based on

L= inf inf inf 1— 1712
B ueLool(r]D,[o,l])vewl(D)dlig_r=0{/o(70( u) +y1u)" 7|

—i—ﬁ/u—i—o{aHVvHLQ o)+ < (HVHB(D <u,1—2v>)”.
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Minimization w.r.t. u is given by

o
1if —(1-2v) <
|E—|—2€( v) <0,

p — else.
[0,1] (\/(71 — ) (g + 5= (1 — 2v)) 71— 0

A'AAl
[ n A

Optimal heater for « = 0.1, 0.5, 2, respectively
(1 =17=1073).
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Compliance minimization in linear elasticity

Method: homogenization (rank 2 laminates, cf. Allaire)
+ alternating algorithm (minimization w.r.t. u is again explicit)

.

O
2> X>

Cantilever for a = 0.1, 2, 20, 50, respectively.
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Optimal design of microstructures

Goal: optimize the Representative Volume Element to obtain
desired homogenized properties (periodic model)

Method: topological derivative 4 level set representation
(homogenization is unknown)

Bulk modulus maximization for « =0, a« = 0.1, o = 0.5.
Optimized RVE and associated periodic microstructure.

16
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A
1

Poisson ratio minimization for « = 0, & = 0.01 and o = 0.02.

Corresponding Poisson: —0.345, —0.319 and —0.260, respectively.

Poisson ratio maximization for & = 0 and o = 0.1.
Corresponding Poisson ratios: 0.871 and 0.831, respectively.
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Extension to the multiphase case: minimal partitions
Typical problem: find a partition (1, ..., Qn) of D which minimizes

N
(0%
T(Q1, ..., Q) = Z/Q g + 5 Perp(Q)).
i=1 i

The objective

N
J(xay, -+ Xay) :Z/DXQ,-gi
i=1

is relaxed (in the weak-* topology) by

U1,..., Z/ u;gi

X = {(ul, o ty) € L2(D, 0, 1N, Ty = 1} :

For I'-convergence issues, X is endowed with the L1 distance.
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Mathematical issues
We want to approximate

1 N N .
EZPEI’D(Q,') by ZF XQ
i=1 i=1

But the I'-convergence is not stable upon addition (limsup
inequality), as a collection of recovery sequences (u?) does not
necessarily belong to X. However, the pointwise convergence of F.
allows to choose constant recovery sequences.

Theorem
Let (ui, ..., uy) be an approximate minimizer of

(u1,...,un)eX

. ~ (6% ~
inf  Jo(ur,...,uy) = J(ul,...,uN)—l—EZFs(u;).

Then J(u5,...,uy) = | :==inf T(Q1, ..., Q).
Moreover, (ui, ..., uy) admits cluster points, and if (uy, ..., un) is a
cluster point then u; = xq, where (1, ...,Qn) is a minimizer of I.
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Algorithmic issues
At ¢ fixed, the problem admits the formulation:

N
inf inf Z{(gi,ui> +04[€”VV:‘H%2(D)+

(uty...,un)EX va,...,yyEHL(D)
1 2
2 (Wl + (w1~ 2) |}

We use an alternating algorithm.

=

» Minimizing w.r.t. (vi,..., vy) is achieved by setting v; = L.u;.

» Minimizing w.r.t. (u1, ..., un) is linear and spatially uncoupled,
while X is a convex polyhedron: setting (; = gi + £(1 — 2v;),
put u; =1 on the smallest ;.

Remark: the u;'s are characteristic functions of a partition at every
iteration.
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Example: triple and quadruple points

Given a partition (Ep, E1, ..., Ey) of D, define g = —xE; in order
to favor the phase €; in the set E;. In the “ocluded part” Ey no
phase is favored.

Triple and quadruple points problems:
gi's (left) and inpainted image (right).
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Application: image classification

Given an image f we search for a partition {Q;} of D and an image
w constant on each Q; which minimize (usually for p =1 or p = 2)

N
T4}, w) = lw = Ay +5 3 Pero(@).

For w = )", ujci, uj = xq, it reads

N
j(Ql, ...,QN) = Z/ ‘C,' — f\p+%PerD(Q;).
i=1 Q;T

Unsupervised classification: the ¢;'s are updated at each iteration
by inserting a 3" minimization in the alternating algorithm.

» p = 2: ¢; is the mean of f over €;
» p=1: ¢ is the median of f over €;

Color images: g = Z?Zl \cij — £;|P



Examples (greylevel)

Unsupervised classification with 2 or 3 labels (p = 1).
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Examples (color)

Unsupervised classification with 2 or 5 labels (p = 1).
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Anisotropy-based classification
The fidelity term |¢; — f|P is replaced by
g =—(Vo.6)°

where ¢ is a smoothed version of the original image and &; are
prescribed unit vectors (basic texture identification model).

Supervised classification of anisotropic textures.
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Deblurring (binary case)

Model: minimize
«
J(2) = &(xa) + EPGFD(Q)
with
(1) = [|A(ue + (1 — u)e2) = FlI22(p)-
A € L(L2(D)), c1, ¢ € R known.

Due to the spatial coupling, minimization w.r.t. u is not explicit.
Using that V& is A-Lipschitz in L2, A\ = 2(c1 — ¢2)?||A*Al|, we have

d(u) = ﬁeiLry(:D) S(a) + (VO(a), u — 1)) + %Hu — o).

26
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We obtain the formulation at ¢ fixed

A
inf inf inf {d(@ O(0), u—0))+ = |lu—12?
ueLOOI(nD,[O,l])aell_r;(D)vell’-?l(D){ (@) + (Ve (@), u u)>+2”u ol

1
+ [l + 3 (o) + (01 - 20)) |}

» Minimization w.r.t. v: v = L.u
» Minimization w.r.t. o U= u

» Minimization w.r.t.

u= Py (u— (1—2\/)))

Remark: v is no longer a characteristic function during the

iterations.
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Examples

Deblurring and denoising: original image, damaged image with blur
and noise effects (middle), reconstructed image (right).

[r— p—

] ‘ [} — ——

Deblurring: original image (left), blurred image (middle), and
restored image (right).
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Extension: interface energies (ongoing)

I',-J- =0*Q; N 8*QJ

Goal: minimize

Z/Q.gf + Y aHN ()

i<j
We have
1
HATy) = 5 [HH(07Q) + M (0" Q) — HI(97Q; U 0" Q)]
= lim [ﬁs(xn,-) + Fe(xa) — Felxa, + Xﬂj)}

2
= lim Z(Loxa, xa.)-
im —(Lexa;, xg)

3

Open questions: -convergence? equicoercivity?
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One can still use an alternating algorithm thanks to the formulation

2<L€u,-, uj> = <La(ui + Uj), uj + UJ'> — <Laui, u,-) — <L€uj, UJ'>
dual primal primal

combined with
(Leuyu) = sup 2{(u,v) — 2||Vv|? — |v|? (primal)
veH1(D)

= inf |u+edivp|?+|p|>  (dual).
peHgv (D)

The solutions of the latter problems are v = L.u, p=¢eVv.
The minimization in u is quadratic and spatially uncoupled.

30/31



Example

Data (left), initialisation (middle) and result (right) for
Qred /green = 100, CQred/blue = Agreen/blue = 0

THANK YOU!
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