Interface operators, domain decomposition and applications

Marco Discacciati

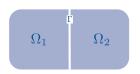
Workshop on Efficient Solvers in Biomedical Applications

Mariatrost, July 3, 2012

INTRODUCTION AND MOTIVATION

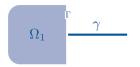
DOMAIN DECOMPOSITION WITHOUT OVERLAP

Original problem:



$$\begin{split} Lu_1 &= \mathit{f}_1 \text{ in } \Omega_1 \\ Lu_2 &= \mathit{f}_2 \text{ in } \Omega_2 \\ &+ \text{ coupling conditions on } \Gamma \end{split}$$

Geometrical multiscale:



DOMAIN DECOMPOSITION WITHOUT OVERLAP

Multiphysics:

$$egin{aligned} L_1 u_1 &= f_1 \ \mbox{in} \ \Omega_1 \ L_2 u_2 &= f_2 \ \mbox{in} \ \Omega_2 \ + \ \mbox{coupling conditions on} \ \Gamma \end{aligned}$$

AIM

- Write the problem as an equation on a suitable interface
- Set up effective solution techniques

APPLICATIONS

- Multiscale modeling of the circulatory system.
- Blood filtration through tissues (and also hemofiltration devices, blood oxygenators, ...).
- Fluid structure interaction → talk of Ulrich Langer on Monday

DD FOR GEOMETRICAL MULTISCALE MODELS

Joint work with P.J. Blanco (LNCC, Brazil)

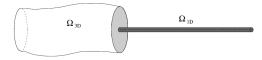
and A. Quarteroni (EPFL and MOX-Milano)

MOTIVATION

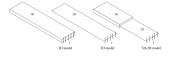
Geometrical multiscale modeling

Examples

• 3D-1D-0D models for the cardiovascular system



• 3D-2D-1D couplings in structural mechanics



• ...

[Blanco, Discacciati, Quarteroni (2011)]

BASIC ASSUMPTIONS

 A given physical system is split into two parts: one of them can be represented using a dimensionally reduced model
 ⇒ we have two kinds of models:

```
a complex dimensional or CD-model and a simple dimensional or SD-model.
```

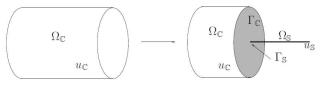
- We consider $\mathbb{C}=1,2,3$ and $\mathbb{S}=0,1,2$ with $\mathbb{C}>\mathbb{S}$: 3D-2D, 3D-1D, 2D-1D, 2D-0D, ...
- For the moment, we consider a system of two dimensionally-heterogeneous models with one coupling interface.

VARIATIONAL FORM

Consider the \mathbb{C} -problem in $\Omega_{\mathbb{C}}$:

$$\text{find } u_{\mathbb{C}} \in U_{\mathbb{C}}: \quad a_{\mathbb{C}}(u_{\mathbb{C}}, \hat{u}_{\mathbb{C}}) = f_{\mathbb{C}}(\hat{u}_{\mathbb{C}}) \qquad \forall \hat{u}_{\mathbb{C}} \in U_{\mathbb{C}}$$

We reduce part of $\Omega_{\mathbb{C}}$ to $\Omega_{\mathbb{S}}$:

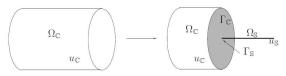


where we have the S-problem:

find
$$u_{\mathbb{S}} \in U_{\mathbb{S}}$$
: $a_{\mathbb{S}}(u_{\mathbb{S}}, \hat{u}_{\mathbb{S}}) = f_{\mathbb{S}}(\hat{u}_{\mathbb{S}}) \quad \forall \hat{u}_{\mathbb{S}} \in U_{\mathbb{S}}$

Both bilinear forms $a_{\mathbb{C}}(\cdot,\cdot)$ and $a_{\mathbb{S}}(\cdot,\cdot)$ are continuous and coercive.

VARIATIONAL FORM: COUPLING ISSUES



We have two interfaces:

- ullet $\Gamma_{\mathbb C}$ $(({\mathbb C}-1)\text{-dimensional}) o {\sf trace space } \Lambda_{\mathbb C}$ and $\Lambda'_{\mathbb C}$
- \bullet $\Gamma_{\mathbb{S}}$ $((\mathbb{S}-1)\text{-dimensional})\to \mathsf{trace}$ space $\Lambda_{\mathbb{S}}$ and $\Lambda_{\mathbb{S}}'$

We consider the linear and continuous

restriction operator

$$\mathcal{R}_{\mathbb{S}}: \Lambda_{\mathbb{C}} \to \Lambda_{\mathbb{S}}, \quad u_{\mathbb{C}|\Gamma_{\mathbb{C}}} \mapsto \mathcal{R}_{\mathbb{S}}u_{\mathbb{C}|\Gamma_{\mathbb{C}}}$$

surjective, but not necessarily injective;

extension operator

$$\mathcal{E}_{\mathbb{C}}: \Lambda_{\mathbb{S}} \to \Lambda_{\mathbb{C}}, \quad u_{\mathbb{S}|\Gamma_{\mathbb{S}}} \mapsto \mathcal{E}_{\mathbb{C}}u_{\mathbb{S}|\Gamma_{\mathbb{S}}}$$

injective, but not necessarily surjective.

THE AUGMENTED VARIATIONAL FORMULATION

- Let $\alpha \in \{0,1\}$ be a parameter a priori defined.
- We can write the augmented variational formulation:

$$\begin{split} & \text{find } \big(u_{\mathbb{C}}, u_{\mathbb{S}}, \lambda_{\mathbb{C}}, \lambda_{\mathbb{S}}\big) \in U_{\mathbb{C}} \times U_{\mathbb{S}} \times \Lambda'_{\mathbb{C}} \times \Lambda'_{\mathbb{S}} \text{ such that} \\ & a_{\mathbb{C}}\big(u_{\mathbb{C}}, \hat{u}_{\mathbb{C}}\big) + a_{\mathbb{S}}\big(u_{\mathbb{S}}, \hat{u}_{\mathbb{S}}\big) \\ & + (1 - \alpha)\langle\lambda_{\mathbb{C}}, \hat{u}_{\mathbb{C}} - \mathcal{E}_{\mathbb{C}}\hat{u}_{\mathbb{S}}\rangle_{\mathbb{C}} + (1 - \alpha)\langle\hat{\lambda}_{\mathbb{C}}, u_{\mathbb{C}} - \mathcal{E}_{\mathbb{C}}u_{\mathbb{S}}\rangle_{\mathbb{C}} \\ & + \alpha\langle\lambda_{\mathbb{S}}, \hat{u}_{\mathbb{S}} - \mathcal{R}_{\mathbb{S}}\hat{u}_{\mathbb{C}}\rangle_{\mathbb{S}} + \alpha\langle\hat{\lambda}_{\mathbb{S}}, u_{\mathbb{S}} - \mathcal{R}_{\mathbb{S}}u_{\mathbb{C}}\rangle_{\mathbb{S}} \\ & = f_{\mathbb{C}}(\hat{u}_{\mathbb{C}}) + f_{\mathbb{S}}(\hat{u}_{\mathbb{S}}) \\ & \text{for all } (\hat{u}_{\mathbb{C}}, \hat{u}_{\mathbb{S}}, \hat{\lambda}_{\mathbb{C}}, \hat{\lambda}_{\mathbb{S}}) \in U_{\mathbb{C}} \times U_{\mathbb{S}} \times \Lambda'_{\mathbb{C}} \times \Lambda'_{\mathbb{S}}. \end{split}$$

We have introduced the duality pairings:

$$\langle \cdot, \cdot \rangle_{\mathbb{C}} : \Lambda'_{\mathbb{C}} \times \Lambda_{\mathbb{C}} \to \mathbb{R} \quad \text{and} \quad \langle \cdot, \cdot \rangle_{\mathbb{S}} : \Lambda'_{\mathbb{S}} \times \Lambda_{\mathbb{S}} \to \mathbb{R}.$$

VARIATIONAL FORM: ROLE OF α

- $oldsymbol{lpha}$ defines how the model represents the physical phenomenon we want to address:
 - $\alpha=1$: the field u is continuous via the pairing $\langle\cdot,\cdot\rangle_{\mathbb{S}}$ and it can be shown that the dual variable is continuous in $\Lambda'_{\mathbb{C}}$

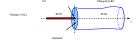
$$+\alpha\langle\lambda_{\mathbb{S}},\hat{u}_{\mathbb{S}}-\mathcal{R}_{\mathbb{S}}\hat{u}_{\mathbb{C}}\rangle_{\mathbb{S}}+\alpha\langle\hat{\lambda}_{\mathbb{S}},u_{\mathbb{S}}-\mathcal{R}_{\mathbb{S}}u_{\mathbb{C}}\rangle_{\mathbb{S}}$$

• $\alpha=0$: the field u is continuous via $\langle\cdot,\cdot\rangle_{\mathbb{C}}$, while the flux is continuous in $\Lambda'_{\mathbb{S}}$

$$+(1-\alpha)\langle\lambda_{\mathbb{C}},\hat{\textit{u}}_{\mathbb{C}}-\mathcal{E}_{\mathbb{C}}\hat{\textit{u}}_{\mathbb{S}}\rangle_{\mathbb{C}}+(1-\alpha)\langle\hat{\lambda}_{\mathbb{C}},\textit{u}_{\mathbb{C}}-\mathcal{E}_{\mathbb{C}}\textit{u}_{\mathbb{S}}\rangle_{\mathbb{C}}$$

- ullet α is chosen a priori depending upon the problem.
- If the heterogeneous model is a good approximation of the original homogeneous problem, the solution does not depend too much on α .
- We set $\alpha = 1$.

EXAMPLE: 3D-1D LAPLACE COUPLING



Bilinear forms

$$a_{\mathbb{C}}(u_{\mathbb{C}}, \hat{u}_{\mathbb{C}}) = \int_{\Omega_{\mathbb{C}}} k \nabla u_{\mathbb{C}} \cdot \nabla \hat{u}_{\mathbb{C}} \qquad a_{\mathbb{S}}(u_{\mathbb{S}}, \hat{u}_{\mathbb{S}}) = \int_{\Omega_{\mathbb{S}}} Ak \frac{du_{\mathbb{S}}}{d\xi} \frac{d\hat{u}_{\mathbb{S}}}{d\xi}$$

Spaces

$$\begin{array}{ll} U_{\mathbb{C}} = H^{1}(\Omega_{\mathbb{C}}) & \Lambda_{\mathbb{C}} = H^{1/2}(\Gamma) & \Lambda'_{\mathbb{C}} = H^{-1/2}(\Gamma) \\ U_{\mathbb{S}} = H^{1}(\Omega_{\mathbb{S}}) & \Lambda_{\mathbb{S}} = \mathbb{R} & \Lambda'_{\mathbb{S}} = \mathbb{R} \end{array}$$

• Restriction operator $\mathcal{R}_{\mathbb{S}}$

$$\mathcal{R}_{\mathbb{S}}: H^{1/2}(\Gamma_{\mathbb{C}}) o \mathbb{R}, \quad u_{\mathbb{C}|\Gamma_{\mathbb{C}}} \mapsto u_{\mathbb{C},\mathbb{S}|\Gamma_{\mathbb{S}}} = rac{1}{|\Gamma_{\mathbb{C}}|} \int_{\Gamma_{\mathbb{C}}} u_{\mathbb{C}}$$

ullet Extension operator $\mathcal{E}_{\mathbb{C}}$

$$\mathcal{E}_{\mathbb{C}}: \mathbb{R}: \to H^{1/2}(\Gamma_{\mathbb{C}}), \quad u_{\mathbb{S}|\Gamma_{\mathbb{S}}} \mapsto u_{\mathbb{S},\mathbb{C}|\Gamma_{\mathbb{C}}} = u_{\mathbb{S}|\Gamma_{\mathbb{S}}}$$

Duality pairings

$$\begin{split} &\langle \lambda_{\mathbb{C}}, \hat{u}_{\mathbb{C}} - \mathcal{E}_{\mathbb{C}} \hat{u}_{\mathbb{S}} \rangle_{\mathbb{C}} = \int_{\Gamma_{\mathbb{C}}} \lambda_{\mathbb{C}} (\hat{u}_{\mathbb{C}} - \hat{u}_{\mathbb{S},\mathbb{C}}), \qquad \lambda_{\mathbb{C}} \in H^{-1/2}(\Gamma_{\mathbb{C}}) \quad (\alpha = 0) \\ &\langle \lambda_{\mathbb{S}}, \hat{u}_{\mathbb{S}} - \mathcal{R}_{\mathbb{S}} \hat{u}_{\mathbb{C}} \rangle_{\mathbb{S}} = |\Gamma_{\mathbb{C}}|\lambda_{\mathbb{S}} (\hat{u}_{\mathbb{S}} - \hat{u}_{\mathbb{C},\mathbb{S}})_{|\Gamma_{\mathbb{S}}}, \quad \lambda_{\mathbb{S}} \in \mathbb{R} \\ &(\alpha = 1) \end{split}$$

Coupling conditions

$$\begin{split} &\text{if }\alpha=1 &\text{if }\alpha=0 \\ \\ u_{\mathbb{S}} &= \frac{1}{|\Gamma_{\mathbb{C}}|} \int_{\Gamma_{\mathbb{C}}} u_{\mathbb{C}} \text{ on } \Gamma_{\mathbb{S}} & u_{\mathbb{S}} = u_{\mathbb{C}} \text{ on } \Gamma_{\mathbb{C}} \\ k \frac{du_{\mathbb{S}}}{d\xi} &= k \nabla u_{\mathbb{C}} \cdot \mathbf{n} \text{ on } \Gamma_{\mathbb{C}} & Ak \frac{du_{\mathbb{S}}}{d\xi} = \int_{\Gamma_{\mathbb{C}}} k \nabla u_{\mathbb{C}} \cdot \mathbf{n} \text{ on } \Gamma_{\mathbb{S}} \end{split}$$

• For a 3D-2D coupling we would have $\Lambda_{\mathbb{S}} = H^{1/2}(\Gamma_{\mathbb{S}})$ instead of being $\Lambda_{\mathbb{S}}$ the finite-dimensional space \mathbb{R} of the 1D case.

EXTENSION OPERATORS FOR INTERFACE DATA

- We want to write interface problems associated to the augmented variational formulation.
- We need to characterize Dirichlet-to-Neumann and Neumann-to-Dirichlet maps for the CD and the SD models.
- According to our choice $\alpha=1$, we impose the interface conditions only on $\Gamma_{\mathbb{S}} \Rightarrow$ we work in the trace space $\Lambda_{\mathbb{S}}$.

EXTENSION OPERATORS FOR THE SD MODEL

For the SD model we consider the following operators:

• Extension of Dirichlet data on $\Gamma_{\mathbb{S}}$, $\mathcal{D}_{\mathbb{S}}: \Lambda_{\mathbb{S}} \to \hat{U}_{\mathbb{S}}$ Given $\mu_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$, find $\mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}} \in \hat{U}_{\mathbb{S}}$ such that

$$\mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}}=\mu_{\mathbb{S}}$$
 on $\Gamma_{\mathbb{S}}$ and $a_{\mathbb{S}}(\mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}},\hat{u}_{\mathbb{S}}^{I})=0$ $\forall \hat{u}_{\mathbb{S}}^{I}\in U_{\mathbb{S}}^{0}$

② Extension of Neumann data on $\Gamma_{\mathbb{S}}$, $\mathcal{N}_{\mathbb{S}}:\Lambda_{\mathbb{S}}\to\hat{U}_{\mathbb{S}}$ Given $\lambda_{\mathbb{S}}\in\Lambda_{\mathbb{S}}'$, find $\mathcal{N}_{\mathbb{S}}\lambda_{\mathbb{S}}\in\hat{U}_{\mathbb{S}}$ such that

$$a_{\mathbb{S}}(\mathcal{N}_{\mathbb{S}}\lambda_{\mathbb{S}},\hat{u}_{\mathbb{S}}^{J}) = -\langle \lambda_{\mathbb{S}},\hat{u}_{\mathbb{S}}^{J} \rangle_{\mathbb{S}} \qquad \forall \hat{u}_{\mathbb{S}}^{J} \in U_{\mathbb{S}}.$$

Existence and uniqueness are guaranteed by the Lax-Milgram Lemma.

EXTENSION OPERATORS FOR THE CD MODEL

Let us define the adjoint operator $\mathcal{R}_{\mathbb{S}}^*$ as:

$$\langle \lambda_{\mathbb{S}}, \mathcal{R}_{\mathbb{S}} u_{\mathbb{C}} \rangle_{\mathbb{S}} = \langle \mathcal{R}_{\mathbb{S}}^* \lambda_{\mathbb{S}}, u_{\mathbb{C}} \rangle_{\mathbb{C}} \qquad \forall (u_{\mathbb{C}}, \lambda_{\mathbb{S}}) \in \Lambda_{\mathbb{C}} \times \Lambda_{\mathbb{S}}'$$

1 Extension of Dirichlet data on $\Gamma_{\mathbb{S}}$

Given $\mu_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$, we have to impose that the mean value of a suitable function in $\Omega_{\mathbb{C}}$ is equal to $\mu_{\mathbb{S}}$ on $\Gamma_{\mathbb{S}}$:

$$\begin{aligned} \mathsf{a}_{\mathbb{C}}(\mathcal{D}_{\mathbb{C}}\mu_{\mathbb{S}},\hat{u}_{\mathbb{C}}) + \langle \mathcal{R}_{\mathbb{S}}^*\lambda_{\mathbb{S}},\hat{u}_{\mathbb{C}}\rangle_{\mathbb{C}} &= 0 \qquad \forall \hat{u}_{\mathbb{C}} \in U_{\mathbb{C}} \\ \langle \mathcal{R}_{\mathbb{S}}^*\hat{\lambda}_{\mathbb{S}}, \mathcal{D}_{\mathbb{C}}\mu_{\mathbb{S}}\rangle_{\mathbb{C}} &= \langle \hat{\lambda}_{\mathbb{S}}, \mu_{\mathbb{S}}\rangle_{\mathbb{S}} \qquad \forall \hat{\lambda}_{\mathbb{S}} \in \mathsf{\Lambda}_{\mathbb{S}}' \end{aligned}$$

2 Extension of Neumann data on $\Gamma_{\mathbb{S}}$

Given $\lambda_{\mathbb{S}} \in \Lambda'_{\mathbb{S}}$, find $\mathcal{N}_{\mathbb{C}}\lambda_{\mathbb{S}} \in U_{\mathbb{C}}$ such that

$$a_{\mathbb{C}}(\mathcal{N}_{\mathbb{C}}\lambda_{\mathbb{S}},\hat{u}_{\mathbb{C}}^{J}) = \langle \mathcal{R}_{\mathbb{S}}^{*}\lambda_{\mathbb{S}},\hat{u}_{\mathbb{C}}\rangle_{\mathbb{C}} \qquad \forall \hat{u}_{\mathbb{C}} \in U_{\mathbb{C}}$$

INTERFACE VARIATIONAL FORMULATIONS

- We follow the classical approach to derive the Steklov-Poincaré equation [Quarteroni, Valli (1999); Toselli, Widlund (2005)]
- ullet We decompose the unknowns $u_{\mathbb{S}}$ and $u_{\mathbb{C}}$ as

$$u_{\mathbb{S}} = u_{\mathbb{S}}^I + \mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}}$$
 and $u_{\mathbb{C}} = u_{\mathbb{C}}^I + \mathcal{D}_{\mathbb{C}}\mu_{\mathbb{S}}$

where $\mu_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$, while $u_{\mathbb{S}}^{I}$ and $u_{\mathbb{C}}^{I}$ satisfy problems with homogeneous Dirichlet data on $\Gamma_{\mathbb{S}}$ and depend on the forces and remaining boundary conditions.

We split the admissible variations as

$$\hat{u}_\mathbb{S} = \hat{u}_\mathbb{S}^I + \mathcal{D}_\mathbb{S} \hat{\mu}_\mathbb{S}$$
 and $\hat{u}_\mathbb{C} = \hat{u}_\mathbb{C}^I + \mathcal{D}_\mathbb{C} \hat{\mu}_\mathbb{S}$

 We insert the splitting in the augmented variational formulation and we obtain:

find
$$\mu_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$$
 such that
$$a_{\mathbb{S}}(\mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}}, \mathcal{D}_{\mathbb{S}}\hat{\mu}_{\mathbb{S}}) + a_{\mathbb{C}}(\mathcal{D}_{\mathbb{C}}\mu_{\mathbb{S}}, \mathcal{D}_{\mathbb{C}}\hat{\mu}_{\mathbb{S}})$$
$$= f_{\mathbb{S}}(\mathcal{D}_{\mathbb{S}}\hat{\mu}_{\mathbb{S}}) - a_{\mathbb{S}}(u_{\mathbb{S}}^{I}, \mathcal{D}_{\mathbb{S}}\hat{\mu}_{\mathbb{S}}) + f_{\mathbb{C}}(\mathcal{D}_{\mathbb{C}}\hat{\mu}_{\mathbb{S}}) - a_{\mathbb{C}}(u_{\mathbb{C}}^{I}, \mathcal{D}_{\mathbb{C}}\hat{\mu}_{\mathbb{S}})$$
for all $\hat{\mu}_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$

or, in operator form:

find
$$\mu_\mathbb{S} \in \Lambda_\mathbb{S}$$
 : $\mathcal{S}_{\Gamma_\mathbb{S}} \mu_\mathbb{S} = g_{\Gamma_\mathbb{S}}$ in $\Lambda'_\mathbb{S}$

AUGMENTED DIRICHLET-DIRICHLET METHOD

Idea

• Instead of writing an interface equation only for $\mu_{\mathbb{S}}$, we write interface problems for both variables $\mu_{\mathbb{S}}$ and $\lambda_{\mathbb{S}}$ (primal and dual variables).

Derivation

- Consider again the same decomposition of $u_{\mathbb{S}}$ and $u_{\mathbb{C}}$ through contributions defined via Dirichlet sub-problems for the $\mathbb{S}D$ -model and the $\mathbb{C}D$ -model.
- Consider the admissible variations as

$$\hat{u}_{\mathbb{S}} = \hat{u}_{\mathbb{S}}^I + \mathcal{D}_{\mathbb{S}} \hat{\mu}_{\mathbb{S}}^1$$
 and $\hat{u}_{\mathbb{C}} = \hat{u}_{\mathbb{C}}^I + \mathcal{D}_{\mathbb{C}} \hat{\mu}_{\mathbb{S}}^2$

where $\hat{\mu}_{\mathbb{S}}^1 \neq \hat{\mu}_{\mathbb{S}}^2$.

Substituting in the augmented variational formulation we get

find
$$(\mu_{\mathbb{S}}, \lambda_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda'_{\mathbb{S}}$$
 such that
$$a_{\mathbb{S}}(\mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}}, \mathcal{D}_{\mathbb{S}}\hat{\mu}^{1}_{\mathbb{S}}) + a_{\mathbb{C}}(\mathcal{D}_{\mathbb{C}}\mu_{\mathbb{S}}, \mathcal{D}_{\mathbb{C}}\hat{\mu}^{2}_{\mathbb{S}}) + \langle \lambda_{\mathbb{S}}, \hat{\mu}^{1}_{\mathbb{S}} - \hat{\mu}^{2}_{\mathbb{S}} \rangle_{\mathbb{S}}$$

$$= f_{\mathbb{S}}(\mathcal{D}_{\mathbb{S}}\hat{\mu}^{1}_{\mathbb{S}}) - a_{\mathbb{S}}(u^{I}_{\mathbb{S}}, \mathcal{D}_{\mathbb{S}}\hat{\mu}^{1}_{\mathbb{S}})$$

$$+ f_{\mathbb{C}}(\mathcal{D}_{\mathbb{C}}\hat{\mu}^{2}_{\mathbb{S}}) - a_{\mathbb{C}}(u^{I}_{\mathbb{C}}, \mathcal{D}_{\mathbb{C}}\hat{\mu}^{2}_{\mathbb{S}}) \qquad \forall (\hat{\mu}^{1}_{\mathbb{S}}, \hat{\mu}^{2}_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda_{\mathbb{S}}$$

or, equivalently,

find
$$(\mu_{\mathbb{S}}, \lambda_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda'_{\mathbb{S}}$$
 such that
$$s_{\Gamma_{\mathbb{S}}, \mathbb{S}}(\mu_{\mathbb{S}}, \hat{\mu}^{1}_{\mathbb{S}}) + \langle \lambda_{\mathbb{S}}, \hat{\mu}^{1}_{\mathbb{S}} \rangle_{\mathbb{S}} = g_{\Gamma_{\mathbb{S}}, \mathbb{S}}(\hat{\mu}^{1}_{\mathbb{S}}) \qquad \forall \hat{\mu}^{1}_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$$

$$s_{\Gamma_{\mathbb{S}}, \mathbb{C}}(\mu_{\mathbb{S}}, \hat{\mu}^{2}_{\mathbb{S}}) - \langle \lambda_{\mathbb{S}}, \hat{\mu}^{2}_{\mathbb{S}} \rangle_{\mathbb{S}} = g_{\Gamma_{\mathbb{S}}, \mathbb{C}}(\hat{\mu}^{2}_{\mathbb{S}}) \qquad \forall \hat{\mu}^{2}_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$$

This corresponds to the Dirichlet-Dirichlet augmented system

$$\begin{pmatrix} \mathcal{S}_{\Gamma_{\mathbb{S}},\mathbb{S}} & \mathcal{I}_{\lambda} \\ \mathcal{S}_{\Gamma_{\mathbb{S}},\mathbb{C}} & -\mathcal{I}_{\lambda} \end{pmatrix} \begin{pmatrix} \mu_{\mathbb{S}} \\ \lambda_{\mathbb{S}} \end{pmatrix} = \begin{pmatrix} \mathbf{g}_{\Gamma_{\mathbb{S}},\mathbb{S}} \\ \mathbf{g}_{\Gamma_{\mathbb{S}},\mathbb{C}} \end{pmatrix}$$

where \mathcal{I}_{λ} is the identity operator in $\Lambda'_{\mathbb{S}}$.

The following result holds.

Proposition

There exists a unique solution $(\mu_{\mathbb{S}}, \lambda_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda_{\mathbb{S}}'$ such that

$$\|\mu_{\mathbb{S}}\|_{\Lambda_{\mathbb{S}}} + \|\lambda_{\mathbb{S}}\|_{\Lambda_{\mathbb{S}}'} \leq C(\|g_{\Gamma_{\mathbb{S}},\mathbb{S}}\|_{\Lambda_{\mathbb{S}}'} + \|g_{\Gamma_{\mathbb{S}},\mathbb{C}}\|_{\Lambda_{\mathbb{S}}'}) \qquad C > 0.$$

AUGMENTED DIRICHLET-NEUMANN METHOD

• We change the splitting of $u_{\mathbb{S}}$ and $u_{\mathbb{C}}$ considering a Dirichlet problem for the $\mathbb{S}D$ -model and a Neumann problem for the $\mathbb{C}D$ -model:

$$u_{\mathbb{S}} = u_{\mathbb{S}}^{I} + \mathcal{D}_{\mathbb{S}}\mu_{\mathbb{S}}$$
 and $u_{\mathbb{C}} = u_{\mathbb{C}}^{J} + \mathcal{N}_{\mathbb{C}}\lambda_{\mathbb{S}}$

where $\mu_{\mathbb{S}} \in \Lambda_{\mathbb{S}}$ and $\lambda_{\mathbb{S}} \in \Lambda'_{\mathbb{S}}$.

• The admissible variations in this case are

$$\hat{\textit{\textit{u}}}_{\mathbb{S}} = \hat{\textit{\textit{u}}}_{\mathbb{S}}^{\textit{\textit{I}}} + \mathcal{D}_{\mathbb{S}} \hat{\mu}_{\mathbb{S}} \quad \text{and} \quad \hat{\textit{\textit{u}}}_{\mathbb{C}} = \hat{\textit{\textit{u}}}_{\mathbb{C}}^{\textit{\textit{\textit{J}}}} + \mathcal{N}_{\mathbb{C}} \hat{\lambda}_{\mathbb{S}}.$$

Substituting in the augmented variational formulation we obtain

$$\begin{split} \mathsf{a}_{\mathbb{S}} (\mathcal{D}_{\mathbb{S}} \mu_{\mathbb{S}}, \mathcal{D}_{\mathbb{S}} \hat{\mu}_{\mathbb{S}}) + \langle \lambda_{\mathbb{S}}, \hat{\mu}_{\mathbb{S}} \rangle_{\mathbb{S}} + \langle \hat{\lambda}_{\mathbb{S}}, \mu_{\mathbb{S}} - \mathcal{R}_{\mathbb{S}} (u_{\mathbb{C}}^{J} + \mathcal{N}_{\mathbb{C}} \lambda_{\mathbb{S}}) \rangle_{\mathbb{S}} \\ &= \mathit{f}_{\mathbb{S}} (\mathcal{D}_{\mathbb{S}} \hat{\mu}_{\mathbb{S}}) - \mathsf{a}_{\mathbb{S}} (u_{\mathbb{S}}^{I}, \mathcal{D}_{\mathbb{S}} \hat{\mu}_{\mathbb{S}}) \quad \forall (\hat{\mu}_{\mathbb{S}}, \hat{\lambda}_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda_{\mathbb{S}}^{\prime}. \end{split}$$

• This corresponds to the interface problem:

$$\begin{split} & \text{find } (\mu_{\mathbb{S}}, \lambda_{\mathbb{S}}) \in \Lambda_{\mathbb{S}} \times \Lambda_{\mathbb{S}}' \text{ such that} \\ & s_{\Gamma_{\mathbb{S}}, \mathbb{S}}(\mu_{\mathbb{S}}, \hat{\mu}_{\mathbb{S}}) + \langle \lambda_{\mathbb{S}}, \hat{\mu}_{\mathbb{S}} \rangle_{\mathbb{S}} = g_{\Gamma_{\mathbb{S}}, \mathbb{S}}(\hat{\mu}_{\mathbb{S}}) & \forall \hat{\mu}_{\mathbb{S}} \in \Lambda_{\mathbb{S}} \\ & \langle \hat{\lambda}_{\mathbb{S}}, \mu_{\mathbb{S}} \rangle_{\mathbb{S}} - \langle \hat{\lambda}_{\mathbb{S}}, \mathcal{R}_{\mathbb{S}}(\mathcal{N}_{\mathbb{C}}\lambda_{\mathbb{S}}) \rangle_{\mathbb{S}} = \langle \hat{\lambda}_{\mathbb{S}}, \mathcal{R}_{\mathbb{S}} u_{\mathbb{C}}^{J} \rangle_{\mathbb{S}} & \forall \hat{\lambda}_{\mathbb{S}} \in \Lambda_{\mathbb{S}}' \end{split}$$

or to the augmented Dirichlet-Neumann system

$$\begin{array}{|c|c|} \hline \begin{pmatrix} \mathcal{S}_{\Gamma_{\mathbb{S}},\mathbb{S}} & \mathcal{I}_{\lambda} \\ \mathcal{I}_{\mu} & -\mathcal{T}_{\Gamma_{\mathbb{S}},\mathbb{C}} \end{pmatrix} \begin{pmatrix} \mu_{\mathbb{S}} \\ \lambda_{\mathbb{S}} \end{pmatrix} = \begin{pmatrix} \mathbf{g}_{\Gamma_{\mathbb{S}},\mathbb{S}} \\ \mathcal{R}_{\mathbb{S}} \mathbf{u}_{\mathbb{C}}^{J} \end{pmatrix} \\ \hline \end{array}$$

where \mathcal{I}_{λ} and \mathcal{I}_{μ} are the identity operators in $\Lambda'_{\mathbb{S}}$ and $\Lambda_{\mathbb{S}}$.

FEW COMMENTS

- At the continuous level these formulations are equivalent.
- The augmented approach permits to impose conditions of different type on the coupling interfaces.
- We compute at once both the primal and the dual variables.
- This framework can be extended easily to the case of multi-component systems: in case of $N_{\mathbb{C}}$ $\mathbb{C}D$ models and $N_{\mathbb{S}}$ $\mathbb{S}D$ models with M interfaces, the Dirichlet-Dirichlet augmented method would become:

find
$$(\mu_\mathbb{S}, \lambda_\mathbb{S}) \in oldsymbol{\Lambda}_\mathbb{S} imes oldsymbol{\Lambda}'_\mathbb{S}$$
 such that

$$\begin{pmatrix} \boldsymbol{\mathcal{S}}_{\Gamma_{\mathbb{S}},\mathbb{S}} & \boldsymbol{\mathcal{I}}_{\boldsymbol{\lambda}} \\ \boldsymbol{\mathcal{S}}_{\Gamma_{\mathbb{S}},\mathbb{C}} & -\boldsymbol{\mathcal{I}}_{\boldsymbol{\lambda}} \end{pmatrix} \begin{pmatrix} \boldsymbol{\mu}_{\mathbb{S}} \\ \boldsymbol{\lambda}_{\mathbb{S}} \end{pmatrix} = \begin{pmatrix} \mathbf{g}_{\Gamma_{\mathbb{S}},\mathbb{S}} \\ \mathbf{g}_{\Gamma_{\mathbb{S}},\mathbb{C}} \end{pmatrix}$$

GALERKIN APPROXIMATION & DIRICHLET-DIRICHLET METHOD

- We introduce Galerkin finite element approximations for all the components in the system.
- Let $h = (h_{\mathbb{C}}, h_{\mathbb{S}})$ with $h_{\mathbb{C}}$ and $h_{\mathbb{S}}$ be the discretization parameters for the $\mathbb{C}D$ and the $\mathbb{S}D$ systems.
- In the Dirichlet-Dirichlet case, we formally obtain the problem

$$\begin{split} & \text{find } (\mu_{\mathbb{S},h},\lambda_{\mathbb{S},h}) \in \Lambda_{\mathbb{S},h} \times \Lambda_{\mathbb{S},h}' \text{ such that} \\ & s_{\Gamma_{\mathbb{S}},\mathbb{S}}(\mu_{\mathbb{S},h},\hat{\mu}_{\mathbb{S},h}^1) + \langle \lambda_{\mathbb{S},h},\hat{\mu}_{\mathbb{S},h}^1 \rangle_{\mathbb{S}} = g_{\Gamma_{\mathbb{S}},\mathbb{S}}(\hat{\mu}_{\mathbb{S},h}^1) \qquad \forall \hat{\mu}_{\mathbb{S},h}^1 \in \Lambda_{\mathbb{S},h} \\ & s_{\Gamma_{\mathbb{S}},\mathbb{C}}(\mu_{\mathbb{S},h},\hat{\mu}_{\mathbb{S},h}^2) - \langle \lambda_{\mathbb{S},h},\hat{\mu}_{\mathbb{S},h}^2 \rangle_{\mathbb{S}} = g_{\Gamma_{\mathbb{S}},\mathbb{C}}(\hat{\mu}_{\mathbb{S},h}^2) \qquad \forall \hat{\mu}_{\mathbb{S},h}^2 \in \Lambda_{\mathbb{S},h}. \end{split}$$

CASE $\mathbb{S} = 0, 1$

• In the case $\mathbb{S} = 0, 1$, then $\Lambda_{\mathbb{S}} = \Lambda_{\mathbb{S},h} = \mathbb{R}$ and, for M interfaces, we have the problem

find
$$(\mu_{\mathbb{S},h}, \lambda_{\mathbb{S},h}) \in \mathbb{R}^M \times \mathbb{R}^M$$
 such that

$$\begin{pmatrix} \mathsf{S}_{\mathsf{\Gamma}_{\mathbb{S}},\mathbb{S},h} & \mathsf{1} \\ \mathsf{S}_{\mathsf{\Gamma}_{\mathbb{S}},\mathbb{C},h} & -\mathsf{1} \end{pmatrix} \begin{pmatrix} \mu_{\mathbb{S},h} \\ \lambda_{\mathbb{S},h} \end{pmatrix} = \begin{pmatrix} \mathsf{g}_{\mathsf{\Gamma}_{\mathbb{S}},\mathbb{S},h} \\ \mathsf{g}_{\mathsf{\Gamma}_{\mathbb{S}},\mathbb{C},h} \end{pmatrix}$$

Proposition

The condition number of the matrix

$$\begin{pmatrix} \mathbf{S}_{\Gamma_{\mathbb{S}},\mathbb{S},h} & \mathbf{1} \\ \mathbf{S}_{\Gamma_{\mathbb{S}},\mathbb{C},h} & -\mathbf{1} \end{pmatrix}$$

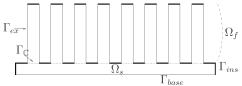
is independent of $h = (h_{\mathbb{C}}, h_{\mathbb{S}})$.

Analogous results hold for the Dirichlet-Neumann and for the Neumann-Neumann formulations.

NUMERICAL EXPERIMENTS

2D-1D COUPLED HEAT TRANSFER SYSTEM

We consider a 2D heat sink for the thermal management of high-density electronic components:



The system is described by the following equations:

$$\begin{split} -\text{div} & \left(k \nabla u_2 \right) = 0 & \text{in } \Omega_s \cup \Omega_f \\ k \frac{\partial u_2}{\partial n} = 0 & \text{on } \Gamma_{ins} \\ u_2 &= u_2^* & \text{on } \Gamma_{base} \\ k \frac{\partial u_2}{\partial n} + \text{Bi } u_2 = 0 & \text{on } \Gamma_{ex} \end{split}$$

To reduce the computational cost, we replace the fins by 1D rods.

- Functional spaces: $U_2 = H^1(\Omega_2) + \text{b.c.}$ and $U_1 = H^1(\Omega_1) + \text{b.c.}$, $\Lambda_2 = H^{1/2}(\Gamma_2)$, $\Lambda'_2 = H^{-1/2}(\Gamma_2)$, $\Lambda_1 = \Lambda'_1 = \mathbb{R}$.
- Bilinear forms:

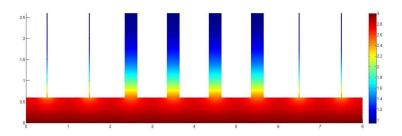
$$\begin{aligned} &a_2(u_2,\hat{u}_2) = \int_{\Omega_2} k \nabla u_2 \cdot \nabla \hat{u}_2 + \int_{\Gamma_{\text{ex}}} \text{Bi } u_2 \hat{u}_2 \\ &a_1(u_1,\hat{u}_1) = \int_{\Omega_1} k \delta \frac{\mathsf{d} u_1}{\mathsf{d} \xi} \frac{\mathsf{d} \hat{u}_1}{\mathsf{d} \xi} + \int_{\Omega_1} \text{Bi' } u_1 \hat{u}_1 \end{aligned}$$

Operators:

$$\mathcal{R}_1(u_{2|\Gamma_2}) = u_{2,1|\Gamma_1} = \frac{1}{|\Gamma_2|} \int_{\Gamma_2} u_2$$
 and $\mathcal{R}_1^*(\lambda_1) = \lambda_{1|\Gamma_2}$

Condition number Augm. Dirichlet-Neumann method

	2 1D fins	4 1D fins	6 1D fins	8 1D fins
grid 1	3.1095 (4)	3.1615 (4)	3.1799 (6)	3.1994 (5)
grid 2	3.0685 (4)	3.1123 (4)	3.1282 (5)	3.1437 (4)
grid 3	3.0549 (4)	3.0970 (4)	3.1121 (5)	3.1264 (4)
grid 4	3.0506 (4)	3.0923 (4)	3.1072 (5)	3.1211 (4)
grid 5	3.0493 (3)	3.0909 (4)	3.1058 (5)	3.1195 (4)



AN APPLICATION TO HEMODYNAMICS

- Coupling of 3D-0D domains in blood-flow simulations: Navier-Stokes equations with algebraic models.
- Arbitrary number of $\mathbb{S}(0)$ -dimensional interfaces with coupling quantities
 - volumetric flow rate

$$Q_{\mathbb{S}} = \int_{\Gamma_{\mathbb{C}}} \mathbf{u}_f \cdot \mathbf{n}$$
 $(\mu_{\mathbb{S}})$

 coupling stress (average of the normal component of the traction vector)

$$\Sigma_{\mathbb{S}} = \frac{1}{|\Gamma_{\mathbb{C}}|} \int_{\Gamma_{\mathbb{C}}} (\boldsymbol{\sigma} \cdot \mathbf{n}) \cdot \mathbf{n}$$
 $(\lambda_{\mathbb{S}})$

Global nonlinear interface system

$$\mathcal{S}_{\mathit{NS}}(\mathit{Q}_{\mathbb{S}},\Sigma_{\mathbb{S}})=0$$

solved with the Newton method.

[Malossi et al. (2011)]

MODELING FILTRATION OF INCOMPRESSIBLE FLOWS THROUGH POROUS MEDIA

THE DARCY-STOKES PROBLEM

• Fluid flow: Stokes equations

$$-\operatorname{div} \mathsf{T}(\mathbf{u}_f, p_f) = \mathbf{f} \\ \operatorname{div} \mathbf{u}_f = 0 \quad \text{in } \Omega_f$$

where $T(\mathbf{u}_f, p_f) = \nu(\nabla \mathbf{u}_f + \nabla^T \mathbf{u}_f) - p_f I$ is the Cauchy stress tensor.

• Fluid through porous medium: Darcy's equations

$$\mathbf{u}_d = -\frac{k}{\nu} \nabla p_d$$
 in Ω_d \Rightarrow $-\mathrm{div}\left(\frac{k}{\nu} \nabla p_d\right) = 0$ in Ω_d

$$\Omega_f$$
 Free-fluid domain Γ Ω_d Porous media domain

COUPLING (INTERFACE) CONDITIONS

The solution must satisfy three regularity conditions across Γ :

• the continuity of the normal velocities

$$\mathbf{u}_f \cdot \mathbf{n} = \mathbf{u}_d \cdot \mathbf{n} \iff \mathbf{u}_f \cdot \mathbf{n} = -\frac{k}{\nu} \nabla p_d \cdot \mathbf{n}$$

a consequence of the incompressibility;

the continuity of the normal stresses

$$-\mathbf{n}\cdot\mathsf{T}(\mathbf{u}_f,p_f)\cdot\mathbf{n}=p_d$$

(pressures can be discontinuous across Γ);

• a condition on the tangential component of the normal stress: Beavers–Joseph–Saffman equation

$$-\boldsymbol{\tau}\cdot\mathsf{T}(\mathbf{u}_f,p_f)\cdot\mathbf{n}=\frac{\nu\alpha}{\sqrt{k}}\mathbf{u}_f\cdot\boldsymbol{\tau}$$

[Jäger, Mikelić (1996); Miglio, Discacciati, Quarteroni (2002); Layton, Schieweck, Yotov (2003)]

WEAK FORM OF THE COUPLED DARCY-STOKES PROBLEM

Find
$$\mathbf{u}_f \in H^1(\Omega_f)$$
, $p_f \in L^2(\Omega_f)$, $p_d \in H^1(\Omega_p)$:
$$\int_{\Omega_f} \nu \nabla \mathbf{u}_f : \nabla \mathbf{v} + \int_{\Gamma} \frac{\nu \alpha}{\sqrt{k}} (\mathbf{u}_f \cdot \boldsymbol{\tau}) (\mathbf{v} \cdot \boldsymbol{\tau})$$

$$- \int_{\Omega_f} p_f \text{div} \mathbf{v} + \int_{\Gamma} p_d (\mathbf{v} \cdot \mathbf{n}) = \int_{\Omega_f} \mathbf{f} \cdot \mathbf{v}$$

$$\int_{\Omega_f} q \text{div} \mathbf{u}_f = 0$$

$$\int_{\Omega_d} \frac{k}{\nu} \nabla p_d \cdot \nabla \psi - \int_{\Gamma} \psi (\mathbf{u}_f \cdot \mathbf{n}) = 0$$

INTERFACE EQUATION FOR THE DARCY-STOKES PROBLEM

We can express the Darcy-Stokes problem in terms of the solution λ (normal velocity across Γ) of the interface problem

$$S_s\lambda + S_d\lambda = \chi$$
 on Γ

• S_s fluid operator:

$$S_s: \lambda \text{ (normal velocities on } \Gamma) \xrightarrow[Stokes]{solve} -\mathbf{n} \cdot \mathsf{T}(\mathbf{u}_f, p_f) \cdot \mathbf{n} \text{ (normal stresses on } \Gamma).$$

• S_d porous media operator:

$$S_d: \lambda \ (ext{normal velocities on } \Gamma) \xrightarrow[Darcy]{\textit{solve}} p_{d|\Gamma} \ (ext{pressure } p_d \ ext{on } \Gamma) \ .$$

[Discacciati, Quarteroni (2003)]

ALGEBRAIC FORM

 Considering a suitable conforming finite element approximation of the coupled problem leads to the linear system:

$$\begin{pmatrix}
(\mathbf{A}_f + \bar{\alpha} \mathbf{M}_{\Gamma})_{\tau} & 0 & \mathbf{D}_{\tau}^{T} & 0 \\
0 & (\mathbf{A}_f)_n & \mathbf{D}_n^{T} & \mathbf{C}_{\Gamma}^{T} \\
\mathbf{D}_{\tau} & \mathbf{D}_n & 0 & 0 \\
0 & -\mathbf{C}_{\Gamma} & 0 & \mathbf{A}_d
\end{pmatrix}
\begin{pmatrix}
(\mathbf{u}_f)_{\tau} \\
(\mathbf{u}_f)_n \\
\rho_f \\
\rho_d
\end{pmatrix} = \begin{pmatrix}
\mathbf{b}_{\tau} \\
\mathbf{b}_n \\
\mathbf{b}_p \\
\mathbf{b}_d
\end{pmatrix}$$

with $(\mathbf{u}_f)_n$ vector of the nodal values of $\mathbf{u}_{f,h} \cdot \mathbf{n}$ on Γ

Discrete interface equation for the normal velocity:

$$(\mathbf{\Sigma}_s + \mathbf{\Sigma}_d)(\mathbf{u}_f)_n = \chi_s + \chi_d$$

PRECONDITIONING TECHNIQUES (I)

• S_s is spectrally equivalent to $S_s + S_d$: there exist two positive constants c and C (independent of η) such that

$$c\langle S_s \eta, \eta \rangle \leq \langle (S_s + S_d) \eta, \eta \rangle \leq C\langle S_s \eta, \eta \rangle \quad \forall \eta$$

• At the discrete level, c and C are also independent of h, so we could use Σ_s as an optimal preconditioner for $(\Sigma_s + \Sigma_d)$

	PCG iterations with $P = \Sigma_s$									
ν	K	h=1/7	h=1/14	h=1/28	h=1/56					
1	1	5	5	5	5					
10^{-3}	10^{-2}	20	54	73	56					
10^{-4}	10^{-3}	20	59	#	#					
10^{-6}	10^{-4}	20	59	148	#					

[Discacciati, Quarteroni (2003,2004)]

PRECONDITIONING TECHNIQUES (II)

• We introduced a *Robin-Robin* method associated to a preconditioner:

$$P = (\gamma_f I + S_s)(\gamma_d I + S_d)$$

Paran	neters		Iterations for						
ν	K	h=1/7	h=1/14	h=1/28	h=1/56				
10^{-4}	10^{-3}	19	19	19	19				
10^{-6}	10^{-4}	20	20	20	20				
10^{-6}	10^{-7}	20	20	20	20				

[Discacciati, Quarteroni, Valli (2007)]

PRECONDITIONING TECHNIQUES (II)

This preconditioner can be characterized from a purely algebraic point of view following the *generalized Hermitian and skew-Hermitian splitting method* proposed by Golub and Benzi:

$$P_{GHSS} = (\mathbf{\Sigma}_s + \alpha I)(\mathbf{\Sigma}_d + \alpha I)$$
 $\alpha \simeq \sqrt{\nu}$

These preconditioners

- have a multiplicative structure;
- can be used within GMRES iterations.

[Benzi (2009), Bai et al. (2003), Discacciati (2011, submitted)]

NUMERICAL RESULTS (II)

Comparison between CG iterations without preconditioner and GMRES iterations with preconditioner P_{GHSS}

-	$\nu =$	10^{-4} , K = 10^{-3}	ν =	10^{-6} , K $= 10^{-5}$	$ u = 10^{-6}, \ K = 10^{-8}$		
_	CG	GMRES + P_{GHSS}	CG	$GMRES + P_{\mathit{GHSS}}$	CG	$GMRES + P_{\mathit{GHSS}}$	
h_1	9	5 $(\alpha = 10^{-2})$	9	4 $(\alpha = 10^{-3})$	9	4 $(\alpha = 10^{-3})$	
h_2	20	7 $(\alpha = 10^{-2})$	20	4 $(\alpha = 10^{-3})$	20	4 $(\alpha = 10^{-3})$	
h_3	42	9 $(\alpha = 10^{-3})$	42	4 $(\alpha = 10^{-3})$	42	4 $(\alpha = 10^{-3})$	
h_4	64	9 $(\alpha = 10^{-3})$	66	4 $(\alpha = 10^{-3})$	66	4 $(\alpha = 10^{-3})$	

PRECONDITIONING TECHNIQUES (III)

Effective preconditioners with additive structure can be characterized as well, considering the following *augmented interface systems*:

• Discrete augmented Dirichlet-Dirichlet (aDD) problem:

$$\begin{bmatrix} \mathbf{\Sigma}_{s} & \mathbf{C}_{\Gamma}^{T} \\ -\mathbf{C}_{\Gamma} & \mathbf{\Sigma}_{p} \end{bmatrix} \begin{pmatrix} (\mathbf{u}_{f})_{n} \\ p_{d|\Gamma} \end{pmatrix} = \begin{pmatrix} \chi_{s} \\ \chi_{p} \end{pmatrix}$$

with $\mathbf{\Sigma}_p pprox \mathbf{\Sigma}_d^{-1}$

• Discrete augmented Neumann-Neumann (aNN) problem:

$$\begin{pmatrix} \mathbf{\Sigma}_d & -\mathbf{C}_{\Gamma}^T \\ \mathbf{C}_{\Gamma} & \mathbf{\Sigma}_f \end{pmatrix} \begin{pmatrix} (\mathbf{u}_f)_n \\ p_{d|\Gamma} \end{pmatrix} = \begin{pmatrix} \chi_d \\ \chi_f \end{pmatrix}$$

with
$$\mathbf{\Sigma}_f pprox \mathbf{\Sigma}_s^{-1}$$

In this case, we can characterize the preconditioners

• for the aDD problem

$$P_{aDD} = \begin{pmatrix} \mathbf{\Sigma}_s + \alpha_{aDD}I & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_p + \alpha_{aDD}I \end{pmatrix} \begin{pmatrix} \alpha_{aDD}I & \mathbf{C}_{\Gamma}^T \\ -\mathbf{C}_{\Gamma} & \alpha_{aDD}I \end{pmatrix}$$

• for the aNN problem

$$P_{\mathsf{aNN}} = \begin{pmatrix} \mathbf{\Sigma}_d + \alpha_{\mathsf{aNN}} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{\Sigma}_f + \alpha_{\mathsf{aNN}} \mathbf{I} \end{pmatrix} \begin{pmatrix} \alpha_{\mathsf{aNN}} \mathbf{I} & -\mathbf{C}_{\Gamma}^T \\ \mathbf{C}_{\Gamma} & \alpha_{\mathsf{aNN}} \mathbf{I} \end{pmatrix}$$

These preconditioners

- allow solving the fluid and the porous-media subproblems independently in a parallel fashion;
- can be used within GMRES iterations.

NUMERICAL RESULTS (III)

Comparison between GMRES iterations without preconditioner for the augmented systems:

• with preconditioner P_{aDD} for the aDD problem

•	$\nu =$	10^{-4} , K = 10^{-3}	$\nu =$	10^{-6} , K = 10^{-5}	$ u = 10^{-6}, \; K = 10^{-8}$		
	GMRES	GMRES + P_{aDD}	GMRES	$GMRES + P_{aDD}$	GMRES	GMRES + P_{aDD}	
h_1	17	14 $(\alpha_{aDD} = 10^{-3})$	17	7 $(\alpha_{aDD} = 10^{-3})$	17	8 $(\alpha_{aDD} = 10^{-3})$	
h_2	33	17 $(\alpha_{aDD} = 10^{-3})$	33	8 $(\alpha_{aDD} = 10^{-3})$	33	10 $(\alpha_{aDD} = 10^{-3})$	
h_3	63	22 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	65	8 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	65	10 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	
h ₄	67	23 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	79	9 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	101	11 $(\alpha_{aDD} = 5 \cdot 10^{-4})$	

• with preconditioner P_{aNN} for the aNN problem

_							
_	$\nu =$	10^{-4} , K = 10^{-3}	$\nu = 10$	0^{-6} , K = 10^{-5}	$ u = 10^{-6}, \ K = 10^{-6} $		
_	GMRES	$GMRES + P_{aNN}$	GMRES	GMRES + P_{aNN}	GMRES	$GMRES + P_{aNN}$	
h_1	17	16 $(\alpha_{aNN} = 0.1)$	16	9 $(\alpha_{aNN} = 0.5)$	9	8 $(\alpha_{aNN} = 1)$	
h_2	32	18 $(\alpha_{aNN} = 0.1)$	32	8 $(\alpha_{aNN} = 0.5)$	16	7 $(\alpha_{aNN} = 0.5)$	
h_3	59	20 $(\alpha_{aNN} = 5 \cdot 10^{-2})$	58	10 $(\alpha_{aNN} = 0.1)$	30	5 $(\alpha_{aNN} = 0.8)$	
h ₄	82	27 $(\alpha_{aNN} = 5 \cdot 10^{-2})$	81	8 $(\alpha_{aNN} = 0.1)$	44	5 $(\alpha_{aNN} = 0.8)$	

[Discacciati (2011, submitted)]

DIMENSIONLESS FORM OF THE DARCY-STOKES PROBLEM

• We define the dimensionless numbers:

$$\begin{aligned} & \text{Re}_f = \frac{U_f X_f}{\nu} & \text{(Reynolds number)} & \text{N}_k = \frac{k}{X_f^2} \end{aligned}$$

$$& \text{E}_f = \frac{\Pi_f}{\rho U_f^2} & \text{(Euler number)} & \text{N}_{BJS} = \alpha (\text{N}_k^{\frac{1}{2}} \text{Re}_f)^{-1} \end{aligned}$$

• We characterize the Darcy-Stokes problem using three (independent) dimensionless numbers: Re_f , N_k , E_f and the dimensionless coefficient α .

ALGEBRAIC (DIMENSIONLESS) FORM

- We assume that the physical quantities are constant in the domain.
- Using a conforming finite element approximation we get a linear system with matrix:

$$\begin{pmatrix} (\mathsf{Re}_f \mathsf{E}_f)^{-1} (\mathsf{A}_f + \alpha \mathsf{N}_k^{-\frac{1}{2}} \mathsf{M}_\Gamma)_\tau & 0 & \mathsf{D}_\tau^T & 0 \\ 0 & (\mathsf{Re}_f \mathsf{E}_f)^{-1} (\mathsf{A}_f)_n & \mathsf{D}_n^T & \mathsf{C}_\Gamma^T \\ \mathsf{D}_\tau & \mathsf{D}_n & 0 & 0 \\ 0 & -\mathsf{C}_\Gamma & 0 & (\mathsf{Re}_f \mathsf{E}_f \mathsf{N}_k) \mathsf{A}_d \end{pmatrix} \begin{pmatrix} (\mathsf{u}_f)_\tau \\ (\mathsf{u}_f)_n \\ p_f \\ p_d \end{pmatrix}$$

DIMENSIONLESS SCHUR COMPLEMENT SYSTEM

• We consider now the Schur complement system with respect to the variable $(\mathbf{u}_f)_n$:

$$(\mathbf{\Sigma}_s + \mathbf{\Sigma}_d)(\mathbf{u}_f)_n = \chi_s + \chi_d$$

where

$$\Sigma_{s} = (\operatorname{Re}_{f} \mathsf{E}_{f})^{-1} ((\mathbf{A}_{f})_{n} + \mathbf{D}_{n}^{T} (\mathbf{D}_{\tau} (\mathbf{A}_{f} + \alpha \mathsf{N}_{k}^{-\frac{1}{2}} \mathbf{M}_{\Gamma})_{\tau}^{-1} \mathbf{D}_{\tau}^{T})^{-1} \mathbf{D}_{n})$$

$$\Sigma_{d} = (\operatorname{Re}_{f} \mathsf{E}_{f} \mathsf{N}_{k})^{-1} \mathbf{C}_{\Gamma}^{T} \mathbf{A}_{d}^{-1} \mathbf{C}_{\Gamma}$$

• We introduce the notations:

$$\Sigma_s = (\text{Re}_f E_f)^{-1} \hat{\Sigma}_s
\Sigma_d = (\text{Re}_f E_f N_k)^{-1} \widetilde{\Sigma}_d$$

• The Schur complement system then reads:

$$(\mathsf{Re}_f \mathsf{E}_f)^{-1} \hat{\mathbf{\Sigma}}_s (\mathsf{u}_f)_n + (\mathsf{Re}_f \mathsf{E}_f \mathsf{N}_k)^{-1} \widetilde{\mathbf{\Sigma}}_d (\mathsf{u}_f)_n = \chi_s + \chi_d$$

• If we multiply $(Re_f E_f N_k)$, we obtain:

$$(N_k \hat{\mathbf{\Sigma}}_s + \widetilde{\mathbf{\Sigma}}_d)(\mathbf{u}_f)_n = \widetilde{\chi}_s + \widetilde{\chi}_d$$

or, equivalently,

$$(\widetilde{\mathbf{\Sigma}}_s + \widetilde{\mathbf{\Sigma}}_d)(\mathbf{u}_f)_n = \widetilde{\chi}_s + \widetilde{\chi}_d$$

Remark that we have independence of Re_f.

SPECTRAL EQUIVALENCE AND PRECONDITIONERS

 We can prove the following results about the corresponding discrete Steklov-Poincaré operators:

$$c_s \mathsf{N}_k \|\eta_h\|_{\mathsf{\Lambda}}^2 \le \langle \widetilde{S}_{s,h} \eta_h, \eta_h \rangle \le C_s \mathsf{N}_k \|\eta_h\|_{\mathsf{\Lambda}}^2$$

$$c_d h^2 \|\eta_h\|_{\Lambda}^2 \le c_d' \|\eta_h\|_{\Lambda'}^2 \le \langle \widetilde{S}_{d,h} \eta_h, \eta_h \rangle \le C_d \|\eta_h\|_{\Lambda}^2$$

Using these estimates, at the algebraic level we can prove that

$$ch(N_k + c_{ds}h^2)[\eta, \eta] \leq [(\widetilde{\Sigma}_s + \widetilde{\Sigma}_d)\eta, \eta] \leq C(N_k + C_{ds})[\eta, \eta]$$

so that

$$cond((\widetilde{oldsymbol{\Sigma}}_s + \widetilde{oldsymbol{\Sigma}}_d)) \leq C' rac{oldsymbol{\mathsf{N}}_k + oldsymbol{\mathsf{C}}_{ds}}{h(oldsymbol{\mathsf{N}}_k + oldsymbol{\mathsf{C}}_{ds} h^2)}$$

DIRICHLET-NEUMANN TYPE PRECONDITIONER (I)

Consider the operator $\widetilde{\Sigma}_s$.

We can prove the following equivalence:

$$c\left(1+\frac{h^2}{\mathsf{N}_k}\right)[\widetilde{\boldsymbol{\Sigma}}_s\boldsymbol{\eta},\boldsymbol{\eta}] \leq [(\widetilde{\boldsymbol{\Sigma}}_s+\widetilde{\boldsymbol{\Sigma}}_d)\boldsymbol{\eta},\boldsymbol{\eta}] \leq C\left(1+\frac{1}{\mathsf{N}_k}\right)[\widetilde{\boldsymbol{\Sigma}}_s\boldsymbol{\eta},\boldsymbol{\eta}]$$

so that

$$cond(\widetilde{oldsymbol{\Sigma}}_s^{-1}(\widetilde{oldsymbol{\Sigma}}_s+\widetilde{oldsymbol{\Sigma}}_d)) \leq rac{oldsymbol{\mathsf{N}}_k+\mathcal{C}_1}{oldsymbol{\mathsf{N}}_k+\mathcal{C}_2h^2}$$

We can see that

- if $N_k \gg h^2$, then $cond(\widetilde{\boldsymbol{\Sigma}}_s^{-1}(\widetilde{\boldsymbol{\Sigma}}_s + \widetilde{\boldsymbol{\Sigma}}_d)) \sim 1$
- ullet if $N_k \ll h^2$, then $cond(\widetilde{oldsymbol{\Sigma}}_s^{-1}(\widetilde{oldsymbol{\Sigma}}_s + \widetilde{oldsymbol{\Sigma}}_d)) \sim h^{-2}$

DIRICHLET-NEUMANN TYPE PRECONDITIONER (II)

Consider the operator $\widetilde{\Sigma}_d$.

We can prove the following equivalence:

$$c\left(1+\mathsf{N}_{k}
ight)[\widetilde{oldsymbol{\Sigma}}_{d}oldsymbol{\eta},oldsymbol{\eta}]\leq\left[\left(\widetilde{oldsymbol{\Sigma}}_{s}+\widetilde{oldsymbol{\Sigma}}_{d}
ight)oldsymbol{\eta},oldsymbol{\eta}
ight]\leq\mathcal{C}\left(1+rac{\mathsf{N}_{k}}{h^{2}}
ight)\left[\widetilde{oldsymbol{\Sigma}}_{d}oldsymbol{\eta},oldsymbol{\eta}
ight]$$

so that

$$cond(\widetilde{oldsymbol{\Sigma}}_d^{-1}(\widetilde{oldsymbol{\Sigma}}_s + \widetilde{oldsymbol{\Sigma}}_d)) \leq C \cdot rac{1}{h^2} \cdot rac{oldsymbol{\mathsf{N}}_k + C_1 h^2}{oldsymbol{\mathsf{N}}_k + C_2}$$

We can see that

- if $N_k \gg h^2$, then $cond(\widetilde{\boldsymbol{\Sigma}}_d^{-1}(\widetilde{\boldsymbol{\Sigma}}_s + \widetilde{\boldsymbol{\Sigma}}_d)) \sim h^{-2}$
- ullet if $\mathbb{N}_k \ll h^2$, then $cond(\widetilde{oldsymbol{\Sigma}}_d^{-1}(\widetilde{oldsymbol{\Sigma}}_s + \widetilde{oldsymbol{\Sigma}}_d)) \sim 1$

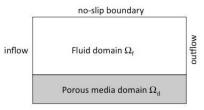
NUMERICAL RESULTS (I)

PCG iterations at $Re_f = 1$, Ω_f and Ω_d unit square domains:

Uf Xf	1		tol=1.e-10 Nk>h2								
alfa	0		THE TIE								
v	1.00E+00		1.00E-02		1.00E-02		1.00E-03		1.00E-06		
K	1.00E+00		1.00E-03		1.00E-05		1.00E-06		1.00E-09		
Nk	1.00E+00		1.00E-05		1.00E-07		1.00E-09		1.00E-15		
Iterations no prec											
0.25	8		9		9		9		9		0.0625
0.125	16	2.00	20	2.22	20	2.22	20	2.22	20	2.22	0.015625
0.0625	29	1.81	41	2.05	47	2.35	48	2.40	49	2.45	0.00390625
0.03125	42	1.45	42	1.02	75	1.60	77	1.60	77	1.57	0.00097656
DN I											
0.25	5		10		10		10		10		0.0625
0.125		1.00	24	2.40	24	2.40	24	2.40	24	2.40	0.015625
0.0625		1.00	51	2.13	61	2.54	63	2.63	63	2.63	0.00390625
0.03125	5	1.00	73	1.43	120	1.97	130	2.06	132	2.10	0.00097656
DN II											
0.25	10		4		3		2		1		0.0625
0.125	24	2.40	6	1.50	3	1.00	2 2	1.00	2	2.00	0.015625
0.0625	62	2.58	9	1.50	3	1.00	2	1.00	2	1.00	0.00390625
0.03125	160	2.58	15	1.67	3	1.00	2	1.00	2	1.00	0.00097656

NUMERICAL RESULTS (II)

We consider the following setting:



- $\Omega_f = 0.015 \times 0.005 \text{ m}$
- $\Omega_d=0.015 imes 0.0025$ m
- Inflow: parabolic profile with max horizontal velocity $0.1\ m/s$
- We impose $p_d=0~{
 m kg/(ms^2)}$ on the bottom of the domain Ω_d
- Permeability k varies between 10^{-6} and 10^{-14} m²
- Characteristic quantities: $X_f = 0.005$ m, $U_f = 0.1$ m/s

PCG iterations taking the fluid as water:

Uf Xf alfa	0.1 0.005 0.5	tol=1.e-10 Nk>h2									
Water	dyn. Visc. 1.00E-03	density 1000	kin. Visc. 0.000001	Re 500							
permeab. (k)	1.00E-06		1.00E-08		1.00E-10		1.00E-12		1.00E-14		
Nk	4.00E-02		4.00E-04		4.00E-06		4.00E-08		4.00E-10		
Nbjs	5.00E-03		5.00E-02		5.00E-01		5.00E+00		5.00E+01		
Iterations no prec	16		28		32		32		32		0.0625
0.125		1.44	36	1.29	32 74	2.31	76	2.38	76	2.38	0.015625
0.0625		1.48	32	0.89	116	1.57	150	1.97	150	1.97	0.00390625
0.03125		1.41	32	1.00	122	1.05	224	1.49	224	1.49	0.00097656
DN I		22	32	1.00		1.05		1.15		1.75	0.00037030
0.25	12		33		35		36		35		0.0625
0.125	12	1.00	45	1.36	98	2.80	103	2.86	104	2.97	0.015625
0.0625	12	1.00	49	1.09	206	2.10	250	2.43	244	2.35	0.00390625
0.03125	12	1.00	50	1.02	-		-		-		0.00097656
DN II											
0.25			13		5		3		2		0.0625
0.125		2.83	27	2.08	6	1.20	3	1.00	2	1.00	0.015625
0.0625		2.53	63	2.33	10	1.67	3	1.00	2	1.00	0.00390625
0.03125	-		150	2.38	18	1.80	3	1.00	2	1.00	0.00097656

PCG iterations taking the fluid as oil:

Uf Xf alfa	0.1 0.005 0.5	tol=1.e-10 Nk>h2									
	dyn. Visc.	density	kin. Visc.	Re							
Olive oil	0.1	900	0.000111	4.5							
permeab. (k)	1.00E-06		1.00E-08		1.00E-10		1.00E-12		1.00E-14		
Nk	4.00E-02		4.00E-04		4.00E-06		4.00E-08		4.00E-10		
Nbjs	5.56E-01		5.56E+00		5.56E+01		5.56E+02		5.56E+03		
Iterations											
no prec	16		28		32		32		32		0.0625
0.125		1.44	36	1.29	74	2.31	76	2.38	76	2.38	0.015625
0.0625		1.48	32	0.89	115	1.55	146	1.92	149	1.96	0.00390625
0.03125		1.41	32	1.00	120	1.04	224	1.53	226	1.52	0.00097656
DN I	40	1.41	32	1.00	120	1.04	224	1.33	220	1.32	0.00097030
0.25	12		33		35		35		35		0.0625
0.125		1.00	44	1.33	98	2.80	106	3.03	103	2.94	0.015625
0.0625		1.00	50	1.14	202	2.06	250	2.36	250	2.43	0.00390625
0.03125		1.00	50	1.00	-		-		-		0.00097656
DN II		1.00	-	2,00							0.00037.000
0.25	34		13		5		3		2		0.0625
0.125		2.76	27	2.08	6	1.20	3	1.00	2	1.00	0.015625
0.0625		2.66	61	2.26	10	1.67	3	1.00	2	1.00	0.00390625
0.03125		-	146	2.39	19	1.90	4	1.33	2	1.00	0.00097656

[Discacciati (2012, in preparation)]

AN EXAMPLE IN HEMODYNAMICS

Take a generic artery with parameters [Zunino (2002)]

- radius = 0.3 cm
- wall thickness = 0.03 cm
- blood density $\rho_b = 1.04 \text{ g/cm}^3$
- blood viscosity $\nu_b = 0.033 \text{ cm}^2/\text{s}$
- wall permeability $k = 2 \cdot 10^{-14} \text{ cm}^2$

This corresponds to

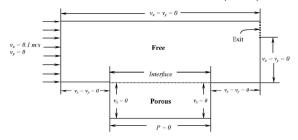
- $Re_f = 272.73$
- $-N_k = 2.78 \cdot 10^{-14}$

We solve the coupled problem using the preconditioner $\widetilde{\Sigma}_d$ and we obtain

$Dofs\left(\mathbf{u}_f + p_f + p_d\right)$	h	No prec.	PCG with Σ_d
259 + 73 + 138	0.25	32	1
973 + 259 + 495	0.125	76	1
3769 + 973 + 1869	0.0625	147	2
14833 + 3769 + 7257	0.03125	226	2

APPLICATION TO A TIME DEPENDENT CASE

We consider the setting proposed in Hanspal (2009):



The permeability k varies with time.

We perform time-discretization with a backward Euler method and at each time-step we solve the preconditioned Schur complement system with preconditioner either $\widetilde{\Sigma}_s$ or $\widetilde{\Sigma}_d$.

[Ahmed, master thesis (2012)]

COMMENTS

• When using $\widetilde{\Sigma}_d$, we precondition the Schur complement system by a Laplace problem:

$$\mathbf{y} = \widetilde{\mathbf{\Sigma}}_d^{-1} \mathbf{w} \Leftrightarrow y = -\frac{k}{\nu} \partial_n \psi \text{ on } \Gamma \text{ where}$$

$$-\operatorname{div}(\frac{k}{\nu} \nabla \psi) = 0 \quad \text{in } \Omega_d$$

$$\psi = w \quad \text{on } \Gamma$$

• When using Σ_s , we precondition the Schur complement system by a Stokes problem:

$$\mathbf{y} = \widetilde{\mathbf{\Sigma}}_s^{-1} \mathbf{w} \Leftrightarrow y = \mathbf{u}_f \cdot \mathbf{n} \text{ on } \Gamma \text{ where}$$

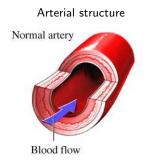
$$Stokes(\mathbf{u}_f, p_f) = 0 \text{ in } \Omega_f$$

$$-\mathbf{n} \cdot \mathsf{T}(\mathbf{u}_f, p_f) \cdot \mathbf{n} = \mathbf{w} \text{ on } \Gamma$$

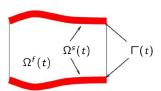
MODELING FSI IN LARGE VESSELS

Joint work with S. Deparis (EPFL), G. Fourestey (CSCS) and A. Quarteroni (EPFL and MOX-Milano)

FLUID-VESSEL INTERACTION - PHYSICAL SETTING



Schematic representation



Blood flow equations (ALE formulation):

$$\rho_f \left(\partial_t \mathbf{u}_f + (\mathbf{u}_f \cdot \nabla) \mathbf{u}_f \right) - \nabla \cdot \mathsf{T}(\mathbf{u}_f, p_f) = \mathbf{f} \\ \nabla \cdot \mathbf{u}_f = \mathbf{0} \quad \text{in } \Omega_f$$

Vessel equation (Lagrangian formulation):

$$\partial_{tt}^2 \mathbf{d} - \mathbf{\nabla} \cdot \boldsymbol{\sigma}(\mathbf{d}) = f(\mathbf{d})$$
 in Ω_s

where
$$\sigma_s(\mathbf{d}) = \mu'(\nabla \mathbf{d} + \nabla^T \mathbf{d}) + \lambda'\nabla \cdot (\mathbf{d})\mathbf{I}$$
.

Coupling equations:

$$\sigma_s(\mathbf{d}) \cdot \mathbf{n} = \mathsf{T}(\mathbf{u}_f, p_f) \cdot \mathbf{n}$$
 on $\mathbf{u}_f = \partial_t \mathbf{d}$

THE NONLINEAR INTERFACE EQUATION

Consider the coupled problem at a given time $t = t^{n+1}$.

We choose as interface variable the displacement $\lambda(t) = \mathbf{d}_{|\Gamma}(t)$ of the fluid-structure interface, and we define the nonlinear interface operators:

• S_f as the fluid map

$$S_f: H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma), \qquad \lambda \to \sigma_f(\lambda)$$

i.e. solve the Navier-Stokes problem with b.c.

$$\mathbf{u}_{f|\Gamma} = (\lambda - \mathbf{d}_{|\Gamma})/\delta t$$
 on Γ and recover the normal stress $\sigma_f = (\mathsf{T}(\mathbf{u}_f, p_f) \cdot \mathbf{n})_{|\Gamma}$.

• S_s as the structure map

$$S_s: H^{1/2}(\Gamma) \to H^{-1/2}(\Gamma), \qquad \lambda \to \sigma_s(\lambda),$$

i.e. solve a structure problem with b.c. $\mathbf{d}_{|\Gamma} = \lambda$ on Γ and recover the normal stress $\sigma_s = \sigma_s(\mathbf{d}) \cdot \mathbf{n}$ on Γ .

• The coupled fluid-structure problem can be expressed in terms of the solution λ of the following nonlinear Steklov-Poincaré interface problem:

find
$$\lambda \in H^{1/2}(\Gamma)$$
: $S_f(\lambda) + S_s(\lambda) = 0$.

Another possible formulation (commonly used for FSI problems):

find
$$\lambda$$
 : $S_s^{-1}(-S_f(\lambda)) - \lambda = 0$ on Γ

See also [Badea, Discacciati, Quarteroni (2010)]

ITERATIVE METHODS FOR THE INTERFACE EQUATION

We consider a preconditioned Richardson scheme:

Given
$$\lambda^0$$
, for $k \geq 0$,

1. compute
$$\sigma_s^k = S_s(\lambda^k)$$
; \Leftrightarrow 1 structure solve

2. compute
$$\sigma_f^k = \mathcal{S}_f(\lambda^k)$$
; \Leftrightarrow 1 fluid solve

3.
$$r^k = -(\sigma_f^k + \sigma_p^k);$$

4. solve
$$P_k \mu^k = r^k$$
; $\Leftrightarrow P_k$ maps the space $H^{1/2}(\Gamma)$ (diplacements) onto $H^{-1/2}(\Gamma)$ (normal stresses)

5. update $\lambda^{k+1} = \lambda^k + \omega^k \mu^k$.

At each step k, we require to solve *separately* the fluid and the structure problems and then to apply a scaling operator.

We define the generic linear operator:

$$P_{k}^{-1} = \alpha_{f}^{k} S_{f}'(\lambda^{k})^{-1} + \alpha_{s}^{k} S_{s}'(\lambda^{k})^{-1}$$

for two given scalars α_f^k and α_s^k . In particular, we have:

```
\begin{array}{ll} \textit{Dirichlet-Neumann:} & P_{DN} = S_s'(\lambda^k) & (\text{for } \alpha_f^k = 0, \, \alpha_s^k = 1) \\ \textit{Neumann-Dirichlet:} & P_{ND} = S_f'(\lambda^k) & (\text{for } \alpha_f^k = 1, \, \alpha_s^k = 0) \\ \textit{Neumann-Neumann:} & P_{NN}^{-1} = P_k^{-1} & (\text{if } \alpha_f^k + \alpha_s^k = 1, \, \alpha_f^k, \alpha_s^k \neq 0) \end{array}
```

- Numerical tests show that these preconditioners give convergence with a rate independent of h, but comparable to a fixed point method, usually quite slow!
- Other preconditioners based on Robin-type operators can be found in Nobile, Vergara (2008), Badia, Nobile, Vergara (2009), Yang, Zulehner (2011), Yang (2012).

NEWTON METHOD FOR THE INTERFACE EQUATION

 The Newton method for the interface equation is obtained considering

$$P_{Newton} = P_k = S_f'(\lambda^k) + S_s'(\lambda^k)$$

Algorithm:

solve
$$[S'_f(\lambda^k) + S'_s(\lambda^k)]\mu^k = -(S_f(\lambda^k) + S_s(\lambda^k))$$

update $\lambda^{k+1} = \lambda^k + \omega^k \mu^k$

• Remark that this is not equivalent to a Newton method on the problem $S_s^{-1}(-S_f(\lambda)) - \lambda = 0$ on Γ , since now all the steps can be performed in parallel.

NUMERICAL RESULTS

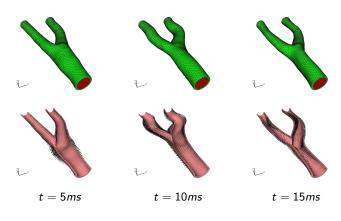
Using this preconditioner we simulate a pressure wave in the carotid bifurcation:

linear structure with thickness 0.5 $\it mm$ and inflow diameter of 0.67 $\it cm$; fluid viscosity $\mu = 0.03$ $\it poise$,

densities $ho_{\rm f}=1~{
m g/cm^3}$ and $ho_{
m s}=1.2~{
m g/cm^3}.$

Initially at rest and a normal stress of $1.3332 \cdot 10^4 \ dynes/cm^2$ is imposed on the inlet for $3 \cdot 10^{-3} \ s$.

[see Karner, Perktold, Hofer, Liepsch (1999)]



		$\delta t = 0.00$	1	$\delta t = 0.0005$			
Method	FS eval	FS' eval	CPU time	FS eval	FS' eval	CPU time	
Newton	3	7.5	8h51'	3	10	19h41'	
DD-Newton*	3	7.5	8h12'	3	10	19h33'	

 $^{^{*}}$ sequential computations [Deparis et al. (2006)]

SUMMARIZING

- DD methods allow us to reduce coupled multiphysics problems to an interface equation
- This approach is suitable for setting up parallel substructuring methods
- The study of the interface operators helps characterizing effective preconditioners
- Preconditioners based on 'ad-hoc' reduced models would reduce the computational cost
- ¿ Effective strategies for nonlinear problems ?

