
A globalized Newton method for the optimal control of
multiple interacting fermions

Greg von Winckel

Institut für Mathematik und Wissenschaftliches Rechnen
Karl-Franzens Universität Graz

October 12, 2011

1

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Outline

Single particle dynamics and control problem

Two or more fermions

Discretization methods

Lagrangian and optimality conditions

Reduced model method

Numerical results for test cases

2

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Single particle

Dynamics described by time-dependent Scḧrodinger equation

i∂tψ(x , t) = −∂2
xψ+ V (x , t)ψ(x , t)

Any influence on the wavefunction is via potential V (x , t)

Typical goal:

Given ψ(x , 0), find V (x , t) such that ψ(x , T) ≈ ψ̃(x)

Pψ(x , T) =
(
ψ(·, T), ψ̃

)
ψ̃(x)

Want to make ‖Pψ(·, T)‖2 → 1

State transition: ψ̃ and ψ(x , 0) are eigenfunctions

3

Two identical particles

TDSE for two identical particles

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t)

Invariance of |ψ| under permutation

|ψ(x1, x2)|
2 = |ψ(x2, x1)|

2 ⇒ ψ(x2, x1) = ψ(x1, x2)e
iθ

Let P be the permutation operator

Pψ(x1, x2) = ψ(x2, x1) = e iθψ(x1, x2)

Two permutations

P2ψ(x1, x2) = Pψ(x2, x1) = e i2θψ(x1, x2) = ψ(x1, x2)

Parity relations
ψ(x1, x2) = ±ψ(x2, x1)

4

Two identical particles

TDSE for two identical particles

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t)

Invariance of |ψ| under permutation

|ψ(x1, x2)|
2 = |ψ(x2, x1)|

2 ⇒ ψ(x2, x1) = ψ(x1, x2)e
iθ

Let P be the permutation operator

Pψ(x1, x2) = ψ(x2, x1) = e iθψ(x1, x2)

Two permutations

P2ψ(x1, x2) = Pψ(x2, x1) = e i2θψ(x1, x2) = ψ(x1, x2)

Parity relations
ψ(x1, x2) = ±ψ(x2, x1)

4

Two identical particles

TDSE for two identical particles

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t)

Invariance of |ψ| under permutation

|ψ(x1, x2)|
2 = |ψ(x2, x1)|

2 ⇒ ψ(x2, x1) = ψ(x1, x2)e
iθ

Let P be the permutation operator

Pψ(x1, x2) = ψ(x2, x1) = e iθψ(x1, x2)

Two permutations

P2ψ(x1, x2) = Pψ(x2, x1) = e i2θψ(x1, x2) = ψ(x1, x2)

Parity relations
ψ(x1, x2) = ±ψ(x2, x1)

4

Two identical particles

TDSE for two identical particles

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t)

Invariance of |ψ| under permutation

|ψ(x1, x2)|
2 = |ψ(x2, x1)|

2 ⇒ ψ(x2, x1) = ψ(x1, x2)e
iθ

Let P be the permutation operator

Pψ(x1, x2) = ψ(x2, x1) = e iθψ(x1, x2)

Two permutations

P2ψ(x1, x2) = Pψ(x2, x1) = e i2θψ(x1, x2) = ψ(x1, x2)

Parity relations
ψ(x1, x2) = ±ψ(x2, x1)

4

Two identical particles

TDSE for two identical particles

i∂tψ(x1, x2, t) =
{
−(∂2

x1
+ ∂2

x2
) + V (x1, x2, t)

}
ψ(x1, x2, t)

Invariance of |ψ| under permutation

|ψ(x1, x2)|
2 = |ψ(x2, x1)|

2 ⇒ ψ(x2, x1) = ψ(x1, x2)e
iθ

Let P be the permutation operator

Pψ(x1, x2) = ψ(x2, x1) = e iθψ(x1, x2)

Two permutations

P2ψ(x1, x2) = Pψ(x2, x1) = e i2θψ(x1, x2) = ψ(x1, x2)

Parity relations
ψ(x1, x2) = ±ψ(x2, x1)

4

Two fermions

Without interaction V (x1, x2, t) = V (x1, t) + V (x2, t)

i∂tψ1(x1, t) = [−∂2
x1

+ V (x1, t)]ψ1(x1, t)
i∂tψ2(x2, t) = [−∂2

x2
+ V (x2, t)]ψ2(x2, t)

Two particle wavefunction

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t) −ψ1(x2, t)ψ1(x2, t)

More generally: n fermions

ψ(x1, . . . , xn, t) = det

 ψ1(x1, t) · · · ψn(x1, t)
...

. . .
...

ψ1(xn, t) · · · ψn(xn, t)

ψ(x1, . . . , xn, t) = 0, if xj = xk for some 1 6 j , k 6 n

5

Two fermions

Without interaction V (x1, x2, t) = V (x1, t) + V (x2, t)

i∂tψ1(x1, t) = [−∂2
x1

+ V (x1, t)]ψ1(x1, t)
i∂tψ2(x2, t) = [−∂2

x2
+ V (x2, t)]ψ2(x2, t)

Two particle wavefunction

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t) −ψ1(x2, t)ψ1(x2, t)

More generally: n fermions

ψ(x1, . . . , xn, t) = det

 ψ1(x1, t) · · · ψn(x1, t)
...

. . .
...

ψ1(xn, t) · · · ψn(xn, t)

ψ(x1, . . . , xn, t) = 0, if xj = xk for some 1 6 j , k 6 n

5

Two fermions

Without interaction V (x1, x2, t) = V (x1, t) + V (x2, t)

i∂tψ1(x1, t) = [−∂2
x1

+ V (x1, t)]ψ1(x1, t)
i∂tψ2(x2, t) = [−∂2

x2
+ V (x2, t)]ψ2(x2, t)

Two particle wavefunction

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t) −ψ1(x2, t)ψ1(x2, t)

More generally: n fermions

ψ(x1, . . . , xn, t) = det

 ψ1(x1, t) · · · ψn(x1, t)
...

. . .
...

ψ1(xn, t) · · · ψn(xn, t)

ψ(x1, . . . , xn, t) = 0, if xj = xk for some 1 6 j , k 6 n

5

Two fermions

Without interaction V (x1, x2, t) = V (x1, t) + V (x2, t)

i∂tψ1(x1, t) = [−∂2
x1

+ V (x1, t)]ψ1(x1, t)
i∂tψ2(x2, t) = [−∂2

x2
+ V (x2, t)]ψ2(x2, t)

Two particle wavefunction

ψ(x1, x2, t) = ψ1(x1, t)ψ2(x2, t) −ψ1(x2, t)ψ1(x2, t)

More generally: n fermions

ψ(x1, . . . , xn, t) = det

 ψ1(x1, t) · · · ψn(x1, t)
...

. . .
...

ψ1(xn, t) · · · ψn(xn, t)

ψ(x1, . . . , xn, t) = 0, if xj = xk for some 1 6 j , k 6 n

5

TDSE for n fermions

−∆+

n∑
j=1

V c(xj , t) +

n∑
k>j

V i (xj , xk)

ψi (x) = λiψi (x)

where
∆ = ∂2

x1
+ · · ·∂2

xn

The confining/control potential V c(x , t) affects all particles

Coulombic interaction

V i (xj , xk) =
q

|xj − xk |
≈ q√

(xj − xk)2 + ε2

q is electronic charge

6

TDSE for n fermions

−∆+

n∑
j=1

V c(xj , t) +

n∑
k>j

V i (xj , xk)

ψi (x) = λiψi (x)

where
∆ = ∂2

x1
+ · · ·∂2

xn

The confining/control potential V c(x , t) affects all particles

Coulombic interaction

V i (xj , xk) =
q

|xj − xk |
≈ q√

(xj − xk)2 + ε2

q is electronic charge

6

TDSE for n fermions

−∆+

n∑
j=1

V c(xj , t) +

n∑
k>j

V i (xj , xk)

ψi (x) = λiψi (x)

where
∆ = ∂2

x1
+ · · ·∂2

xn

The confining/control potential V c(x , t) affects all particles

Coulombic interaction

V i (xj , xk) =
q

|xj − xk |
≈ q√

(xj − xk)2 + ε2

q is electronic charge

6

TDSE for n fermions

−∆+

n∑
j=1

V c(xj , t) +

n∑
k>j

V i (xj , xk)

ψi (x) = λiψi (x)

where
∆ = ∂2

x1
+ · · ·∂2

xn

The confining/control potential V c(x , t) affects all particles

Coulombic interaction

V i (xj , xk) =
q

|xj − xk |
≈ q√

(xj − xk)2 + ε2

q is electronic charge

6

Eigenfunctions - square well without interaction

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

φ
1
(x)

φ
2
(x)

φ
3
(x)

Figure: Single particle: states |1〉, |2〉, and |3〉

7

Eigenfunctions - square well without interaction

Figure: Two particles: state |1, 2〉 and |1, 3〉

8

Eigenfunctions - square well without interaction

Figure: Three particles: state |1, 2, 3〉 and |1, 2, 4〉

9

Spatial discretization - one dimension

Legendre G-NI discretization

ψ(x) ≈ ψp(x) =

p∑
k=1

ψ̂k`k(x)

The Lagrange polynomials are

`j(x) =

p+1∏
k=0
k 6=j

x − xk

xj − xk
, j = 0, . . . , p + 1

End points excluded for homogeneous Dirichlet conditions
The Legendre-Gauss-Lobatto nodes are

{x0, . . . , xp+1} = {x |P ′p+1(x) = 0} ∪ {±1}

where Pk(x) is the kth Legendre polynomial
The weights are

wk =
1

(p + 1)(p + 2)

2

[Pp+1(xk)]2

10

Spatial discretization - one dimension

Legendre G-NI discretization

ψ(x) ≈ ψp(x) =

p∑
k=1

ψ̂k`k(x)

The Lagrange polynomials are

`j(x) =

p+1∏
k=0
k 6=j

x − xk

xj − xk
, j = 0, . . . , p + 1

End points excluded for homogeneous Dirichlet conditions

The Legendre-Gauss-Lobatto nodes are

{x0, . . . , xp+1} = {x |P ′p+1(x) = 0} ∪ {±1}

where Pk(x) is the kth Legendre polynomial
The weights are

wk =
1

(p + 1)(p + 2)

2

[Pp+1(xk)]2

10

Spatial discretization - one dimension

Legendre G-NI discretization

ψ(x) ≈ ψp(x) =

p∑
k=1

ψ̂k`k(x)

The Lagrange polynomials are

`j(x) =

p+1∏
k=0
k 6=j

x − xk

xj − xk
, j = 0, . . . , p + 1

End points excluded for homogeneous Dirichlet conditions
The Legendre-Gauss-Lobatto nodes are

{x0, . . . , xp+1} = {x |P ′p+1(x) = 0} ∪ {±1}

where Pk(x) is the kth Legendre polynomial

The weights are

wk =
1

(p + 1)(p + 2)

2

[Pp+1(xk)]2

10

Spatial discretization - one dimension

Legendre G-NI discretization

ψ(x) ≈ ψp(x) =

p∑
k=1

ψ̂k`k(x)

The Lagrange polynomials are

`j(x) =

p+1∏
k=0
k 6=j

x − xk

xj − xk
, j = 0, . . . , p + 1

End points excluded for homogeneous Dirichlet conditions
The Legendre-Gauss-Lobatto nodes are

{x0, . . . , xp+1} = {x |P ′p+1(x) = 0} ∪ {±1}

where Pk(x) is the kth Legendre polynomial
The weights are

wk =
1

(p + 1)(p + 2)

2

[Pp+1(xk)]2 10

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

p∑
k=1

[(` ′j , ` ′k) + (`j , V
c`k)]ψ̂k = λ

p∑
k=1

[(`j , `k)ψ̂k

Stiffness matrix K̃jk = (` ′j , ` ′k)

Confining potential Ṽc
jk = (`j , V

c`k)

Mass matrix M̃jk = (`j , `k)

Compute inner products with quadrature

M̃jk =

p∑
i=1

`j(xi)`k(xi)wi , K̃jk =

p∑
i=1

` ′j (xi)`
′
k(xi)wi

All variable coefficient matrices are diagonal.

11

Spatial discretization - one particle

The mass matrix just contains the weights

M̃jk = wjδjk

Trivial Cholesky factorization

M̃ = R>R, Rjk =
√

wjδjk

The mass matrix is now the identity

[K + Vc]ϕ̂ = λϕ̂, K = R−>K̃R−1, Vv = R−>ṼcR−1

This is algebraically equivalent to collocation

12

Spatial discretization - one particle

The mass matrix just contains the weights

M̃jk = wjδjk

Trivial Cholesky factorization

M̃ = R>R, Rjk =
√

wjδjk

The mass matrix is now the identity

[K + Vc]ϕ̂ = λϕ̂, K = R−>K̃R−1, Vv = R−>ṼcR−1

This is algebraically equivalent to collocation

12

Spatial discretization - one particle

The mass matrix just contains the weights

M̃jk = wjδjk

Trivial Cholesky factorization

M̃ = R>R, Rjk =
√

wjδjk

The mass matrix is now the identity

[K + Vc]ϕ̂ = λϕ̂, K = R−>K̃R−1, Vv = R−>ṼcR−1

This is algebraically equivalent to collocation

12

Spatial discretization - n particles

In principle need pn grid points...

however, (anti)symmetry relations reduce the number of basis
functions to Np

Np =

(
p
n

)
=

p!

n!(p − n)!

Build a set of indices containing all unique n-tuples

Can do this with one Matlab command

map=nchoosek(1:p,n);

This returns an Np × n matrix of all n-tuples, which happen to be the
n-dimensional indices of grid points in the simplex.

13

Spatial discretization - n particles

In principle need pn grid points...

however, (anti)symmetry relations reduce the number of basis
functions to Np

Np =

(
p
n

)
=

p!

n!(p − n)!

Build a set of indices containing all unique n-tuples

Can do this with one Matlab command

map=nchoosek(1:p,n);

This returns an Np × n matrix of all n-tuples, which happen to be the
n-dimensional indices of grid points in the simplex.

13

Spatial discretization - n particles

In principle need pn grid points...

however, (anti)symmetry relations reduce the number of basis
functions to Np

Np =

(
p
n

)
=

p!

n!(p − n)!

Build a set of indices containing all unique n-tuples

Can do this with one Matlab command

map=nchoosek(1:p,n);

This returns an Np × n matrix of all n-tuples, which happen to be the
n-dimensional indices of grid points in the simplex.

13

Spatial discretization - n particles

In principle need pn grid points...

however, (anti)symmetry relations reduce the number of basis
functions to Np

Np =

(
p
n

)
=

p!

n!(p − n)!

Build a set of indices containing all unique n-tuples

Can do this with one Matlab command

map=nchoosek(1:p,n);

This returns an Np × n matrix of all n-tuples, which happen to be the
n-dimensional indices of grid points in the simplex.

13

Spatial discretization - n particles

In principle need pn grid points...

however, (anti)symmetry relations reduce the number of basis
functions to Np

Np =

(
p
n

)
=

p!

n!(p − n)!

Build a set of indices containing all unique n-tuples

Can do this with one Matlab command

map=nchoosek(1:p,n);

This returns an Np × n matrix of all n-tuples, which happen to be the
n-dimensional indices of grid points in the simplex.

13

3-tuples for p = 6

14

n particle stiffness matrix elements

n particle trial function ϕ is a Slater determinant of L2-normalized
Lagrange polynomials.

(∂xνϕj ,∂xνϕk) = Kνjk

Löwden rule for Slater inner products

Kνjk = det

 δj1,k1 · · · δj1,kν−1 Kj1,kν δj1,kν+1 · · · δj1,kn

...
...

...
...

...
δjn,k1 · · · δjn,kν−1 Kjn,kν δjn,kν+1 · · · δjn,kn

n particle stiffness matrix elements are taken directly from the single
particle matrix with possible sign change

15

n particle stiffness matrix elements

n particle trial function ϕ is a Slater determinant of L2-normalized
Lagrange polynomials.

(∂xνϕj ,∂xνϕk) = Kνjk

Löwden rule for Slater inner products

Kνjk = det

 δj1,k1 · · · δj1,kν−1 Kj1,kν δj1,kν+1 · · · δj1,kn

...
...

...
...

...
δjn,k1 · · · δjn,kν−1 Kjn,kν δjn,kν+1 · · · δjn,kn

n particle stiffness matrix elements are taken directly from the single
particle matrix with possible sign change

15

n particle stiffness matrix elements

n particle trial function ϕ is a Slater determinant of L2-normalized
Lagrange polynomials.

(∂xνϕj ,∂xνϕk) = Kνjk

Löwden rule for Slater inner products

Kνjk = det

 δj1,k1 · · · δj1,kν−1 Kj1,kν δj1,kν+1 · · · δj1,kn

...
...

...
...

...
δjn,k1 · · · δjn,kν−1 Kjn,kν δjn,kν+1 · · · δjn,kn

n particle stiffness matrix elements are taken directly from the single
particle matrix with possible sign change

15

n particle stiffness matrix elements

n particle trial function ϕ is a Slater determinant of L2-normalized
Lagrange polynomials.

(∂xνϕj ,∂xνϕk) = Kνjk

Löwden rule for Slater inner products

Kνjk = det

 δj1,k1 · · · δj1,kν−1 Kj1,kν δj1,kν+1 · · · δj1,kn

...
...

...
...

...
δjn,k1 · · · δjn,kν−1 Kjn,kν δjn,kν+1 · · · δjn,kn

n particle stiffness matrix elements are taken directly from the single
particle matrix with possible sign change

15

Stiffness matrix sparsity pattern

Figure: Left: p = 15 and n = 2, Right: p = 15 and n = 5

The off-diagonal sparsity pattern is that of the Johnson Graph’s adjacency
matrix

16

Stiffness matrix sparsity pattern

Figure: Left: p = 15 and n = 2, Right: p = 15 and n = 5

The off-diagonal sparsity pattern is that of the Johnson Graph’s adjacency
matrix

16

Discretization

Semi-discrete state equation

iψt = {H0 + u(t)Vc}ψ, ψ ∈ CNp

Compute Ns << Np eigenpairs (Λ,Φ) of stationary Hamiltonian

H0Φ = ΦΛ, Φ ∈ RNp×Ns , Λ ∈ RNs×Ns

Reduced order model

iyt = {Λ+ u(t)X}y , y ∈ CNs , X = Φ>VcΦ

More compactly

yt = A(t)y , A(t) = −i {Λ+ u(t)X}

17

Discretization

Semi-discrete state equation

iψt = {H0 + u(t)Vc}ψ, ψ ∈ CNp

Compute Ns << Np eigenpairs (Λ,Φ) of stationary Hamiltonian

H0Φ = ΦΛ, Φ ∈ RNp×Ns , Λ ∈ RNs×Ns

Reduced order model

iyt = {Λ+ u(t)X}y , y ∈ CNs , X = Φ>VcΦ

More compactly

yt = A(t)y , A(t) = −i {Λ+ u(t)X}

17

Discretization

Semi-discrete state equation

iψt = {H0 + u(t)Vc}ψ, ψ ∈ CNp

Compute Ns << Np eigenpairs (Λ,Φ) of stationary Hamiltonian

H0Φ = ΦΛ, Φ ∈ RNp×Ns , Λ ∈ RNs×Ns

Reduced order model

iyt = {Λ+ u(t)X}y , y ∈ CNs , X = Φ>VcΦ

More compactly

yt = A(t)y , A(t) = −i {Λ+ u(t)X}

17

Discretization

Semi-discrete state equation

iψt = {H0 + u(t)Vc}ψ, ψ ∈ CNp

Compute Ns << Np eigenpairs (Λ,Φ) of stationary Hamiltonian

H0Φ = ΦΛ, Φ ∈ RNp×Ns , Λ ∈ RNs×Ns

Reduced order model

iyt = {Λ+ u(t)X}y , y ∈ CNs , X = Φ>VcΦ

More compactly

yt = A(t)y , A(t) = −i {Λ+ u(t)X}

17

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping(
I −

δt

4
[Ak + Ak+1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

This becomes the kth equality constraint

ek(yk , yk−1, uk , uk−1) = 0

L(y , ȳ , u, λ, λ̄) = 1 − ȳ>n Pyn +
1

2
u>Wu +

N∑
k=1

λ>k ek + λ̄>k ēk

18

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping(
I −

δt

4
[Ak + Ak+1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

This becomes the kth equality constraint

ek(yk , yk−1, uk , uk−1) = 0

L(y , ȳ , u, λ, λ̄) = 1 − ȳ>n Pyn +
1

2
u>Wu +

N∑
k=1

λ>k ek + λ̄>k ēk

18

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping(
I −

δt

4
[Ak + Ak+1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

This becomes the kth equality constraint

ek(yk , yk−1, uk , uk−1) = 0

L(y , ȳ , u, λ, λ̄) = 1 − ȳ>n Pyn +
1

2
u>Wu +

N∑
k=1

λ>k ek + λ̄>k ēk

18

First-order optimality conditions

State equation(
I −

δt

4
[Ak + Ak−1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

Adjoint equation(
I −

δt

4
[Ak + Ak−1]

)
λk =

(
I +

δt

4
[Ak + Ak+1]

)
λk+1

Final condition λN = PȳN

Control equation and reduced gradient

∇J̃(u) = Wu −
δt

2
Im[ξ] = 0

ξk = λ>k X(yk + yk−1) + λ>k+1X(yk+1 + yk)

19

First-order optimality conditions

State equation(
I −

δt

4
[Ak + Ak−1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

Adjoint equation(
I −

δt

4
[Ak + Ak−1]

)
λk =

(
I +

δt

4
[Ak + Ak+1]

)
λk+1

Final condition λN = PȳN

Control equation and reduced gradient

∇J̃(u) = Wu −
δt

2
Im[ξ] = 0

ξk = λ>k X(yk + yk−1) + λ>k+1X(yk+1 + yk)

19

First-order optimality conditions

State equation(
I −

δt

4
[Ak + Ak−1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

Adjoint equation(
I −

δt

4
[Ak + Ak−1]

)
λk =

(
I +

δt

4
[Ak + Ak+1]

)
λk+1

Final condition λN = PȳN

Control equation and reduced gradient

∇J̃(u) = Wu −
δt

2
Im[ξ] = 0

ξk = λ>k X(yk + yk−1) + λ>k+1X(yk+1 + yk)

19

First-order optimality conditions

State equation(
I −

δt

4
[Ak + Ak−1]

)
yk =

(
I +

δt

4
[Ak + Ak−1]

)
yk−1

Adjoint equation(
I −

δt

4
[Ak + Ak−1]

)
λk =

(
I +

δt

4
[Ak + Ak+1]

)
λk+1

Final condition λN = PȳN

Control equation and reduced gradient

∇J̃(u) = Wu −
δt

2
Im[ξ] = 0

ξk = λ>k X(yk + yk−1) + λ>k+1X(yk+1 + yk)

19

Second-order optimality conditions

KKT system
Lyy 0 Lyu 0 Ly λ̄

0 Lȳ ȳ Lȳu Lȳλ 0
Luy Luȳ Luu Luλ Luλ̄

0 Lλȳ Lλu 0 0
Lλ̄y 0 Lλ̄u 0 0

δy
δȳ
δu
δλ

δλ̄

 = −

0
0
Lu

0
0

Differential change in state and adjoint

δy = −L−1
λ̄y

Lλ̄uδu

δλ = −Lȳλδλ
−1[Lȳuδu + Lȳ ȳδȳ]

Action of reduced Hessian

[∇2J̃(u)]δu = Luuδu + 2Re[Luyδy + Luλδλ]

Iteratively compute Newton direction with symmetric LQ method

[∇2J̃(u)]δu = −∇J̃(u)

20

Second-order optimality conditions

KKT system
Lyy 0 Lyu 0 Ly λ̄

0 Lȳ ȳ Lȳu Lȳλ 0
Luy Luȳ Luu Luλ Luλ̄

0 Lλȳ Lλu 0 0
Lλ̄y 0 Lλ̄u 0 0

δy
δȳ
δu
δλ

δλ̄

 = −

0
0
Lu

0
0

Differential change in state and adjoint

δy = −L−1
λ̄y

Lλ̄uδu

δλ = −Lȳλδλ
−1[Lȳuδu + Lȳ ȳδȳ]

Action of reduced Hessian

[∇2J̃(u)]δu = Luuδu + 2Re[Luyδy + Luλδλ]

Iteratively compute Newton direction with symmetric LQ method

[∇2J̃(u)]δu = −∇J̃(u)

20

Second-order optimality conditions

KKT system
Lyy 0 Lyu 0 Ly λ̄

0 Lȳ ȳ Lȳu Lȳλ 0
Luy Luȳ Luu Luλ Luλ̄

0 Lλȳ Lλu 0 0
Lλ̄y 0 Lλ̄u 0 0

δy
δȳ
δu
δλ

δλ̄

 = −

0
0
Lu

0
0

Differential change in state and adjoint

δy = −L−1
λ̄y

Lλ̄uδu

δλ = −Lȳλδλ
−1[Lȳuδu + Lȳ ȳδȳ]

Action of reduced Hessian

[∇2J̃(u)]δu = Luuδu + 2Re[Luyδy + Luλδλ]

Iteratively compute Newton direction with symmetric LQ method

[∇2J̃(u)]δu = −∇J̃(u)

20

Second-order optimality conditions

KKT system
Lyy 0 Lyu 0 Ly λ̄

0 Lȳ ȳ Lȳu Lȳλ 0
Luy Luȳ Luu Luλ Luλ̄

0 Lλȳ Lλu 0 0
Lλ̄y 0 Lλ̄u 0 0

δy
δȳ
δu
δλ

δλ̄

 = −

0
0
Lu

0
0

Differential change in state and adjoint

δy = −L−1
λ̄y

Lλ̄uδu

δλ = −Lȳλδλ
−1[Lȳuδu + Lȳ ȳδȳ]

Action of reduced Hessian

[∇2J̃(u)]δu = Luuδu + 2Re[Luyδy + Luλδλ]

Iteratively compute Newton direction with symmetric LQ method

[∇2J̃(u)]δu = −∇J̃(u)
20

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

Initial step length

Conventional wisdom: start with a0 = 1 for Newton and
quasi-Newton methods.

The tracking part of the cost functional is bounded between 0 and 1
for all controls by virtue of the unitarity of the state equation

The cost functional is bounded from below by the regularization term.

This amounts to a quadratic polynomial and we can write

J(u + ad) > m2a
2 + m1a + m0

Where the coefficients are given by m0 = γ
2 u>Ku − J(u) 6 0,

m1 = γu>Kd, and m2 = γ
2 d>Kd.

We can establish an upper bound on the maximum feasible step
length

amax =

√
m2

1 − 4m0m2 − m1

2m2

21

A priori estimate

Before evaluating J(u + ad), for some a, we know what the maximum
feasible a can be to satisfy the SWC. This gives an a priori estimate
on whether the cost functional is locally quadratic.

In particular, if amax < 1, J(u) is not locally quadratic.

Make an initial step length of min(1, amax).

22

A priori estimate

Before evaluating J(u + ad), for some a, we know what the maximum
feasible a can be to satisfy the SWC. This gives an a priori estimate
on whether the cost functional is locally quadratic.

In particular, if amax < 1, J(u) is not locally quadratic.

Make an initial step length of min(1, amax).

22

A priori estimate

Before evaluating J(u + ad), for some a, we know what the maximum
feasible a can be to satisfy the SWC. This gives an a priori estimate
on whether the cost functional is locally quadratic.

In particular, if amax < 1, J(u) is not locally quadratic.

Make an initial step length of min(1, amax).

22

Model Reduction: Connectivity of states

0 5 10 15 20

0

5

10

15

20

1

2 6

5 3

47

Figure: Left: Sparsity of interaction matrix X.

Right: Model reduction:
Connectivity graph

23

Model Reduction: Connectivity of states

0 5 10 15 20

0

5

10

15

20

1

2 6

5 3

47

Figure: Left: Sparsity of interaction matrix X. Right: Model reduction:
Connectivity graph

23

Model reduction: Interaction picture

Time-dependent change of basis

y(t) = exp(−iΛt)z(t)

Obtain new equation for z(t)

ż(t) = −iu(t) exp(iΛt)X exp(−iΛt)z(t)

Write time-dependent interaction matrix

X̃(t) = exp(iΛt)X exp(−iΛt), X̃jk(t) = Xjk exp iωjkt

Where ωjk = λj − λk .

Write in integral form

z(T) = z(0) − i

t∫
0

u(t)X̃(t)z(t)dt

24

Model reduction: Interaction picture

Time-dependent change of basis

y(t) = exp(−iΛt)z(t)

Obtain new equation for z(t)

ż(t) = −iu(t) exp(iΛt)X exp(−iΛt)z(t)

Write time-dependent interaction matrix

X̃(t) = exp(iΛt)X exp(−iΛt), X̃jk(t) = Xjk exp iωjkt

Where ωjk = λj − λk .

Write in integral form

z(T) = z(0) − i

t∫
0

u(t)X̃(t)z(t)dt

24

Model reduction: Interaction picture

Time-dependent change of basis

y(t) = exp(−iΛt)z(t)

Obtain new equation for z(t)

ż(t) = −iu(t) exp(iΛt)X exp(−iΛt)z(t)

Write time-dependent interaction matrix

X̃(t) = exp(iΛt)X exp(−iΛt), X̃jk(t) = Xjk exp iωjkt

Where ωjk = λj − λk .

Write in integral form

z(T) = z(0) − i

t∫
0

u(t)X̃(t)z(t)dt

24

Model reduction: Interaction picture

Time-dependent change of basis

y(t) = exp(−iΛt)z(t)

Obtain new equation for z(t)

ż(t) = −iu(t) exp(iΛt)X exp(−iΛt)z(t)

Write time-dependent interaction matrix

X̃(t) = exp(iΛt)X exp(−iΛt), X̃jk(t) = Xjk exp iωjkt

Where ωjk = λj − λk .

Write in integral form

z(T) = z(0) − i

t∫
0

u(t)X̃(t)z(t)dt

24

Model reduction: Interaction picture

We don’t know u(t) and z(t) in advance.

However, X̃(t) is known and

X̂ =

T∫
0

X̃jk(t)dt, X̂jk = Xjk
exp(iωjkT) − 1

iωjk

The X̂jk are like an inverse cost associated with the transition
|j〉 → |k〉 or indicates how strongly the interaction couples the two
states.

Rank the connections of other states based on strength of coupling.

25

Model reduction: Interaction picture

We don’t know u(t) and z(t) in advance.

However, X̃(t) is known and

X̂ =

T∫
0

X̃jk(t)dt, X̂jk = Xjk
exp(iωjkT) − 1

iωjk

The X̂jk are like an inverse cost associated with the transition
|j〉 → |k〉 or indicates how strongly the interaction couples the two
states.

Rank the connections of other states based on strength of coupling.

25

Model reduction: Interaction picture

We don’t know u(t) and z(t) in advance.

However, X̃(t) is known and

X̂ =

T∫
0

X̃jk(t)dt, X̂jk = Xjk
exp(iωjkT) − 1

iωjk

The X̂jk are like an inverse cost associated with the transition
|j〉 → |k〉 or indicates how strongly the interaction couples the two
states.

Rank the connections of other states based on strength of coupling.

25

Model reduction: Interaction picture

We don’t know u(t) and z(t) in advance.

However, X̃(t) is known and

X̂ =

T∫
0

X̃jk(t)dt, X̂jk = Xjk
exp(iωjkT) − 1

iωjk

The X̂jk are like an inverse cost associated with the transition
|j〉 → |k〉 or indicates how strongly the interaction couples the two
states.

Rank the connections of other states based on strength of coupling.

25

Model reduction: State coupling

1

2

6

5 3

4

7

X̂17

X̂15

X̂12

X̂47

X̂35

X̂26

X̂23

X̂24

X̂37

X̂45

X̂56

X̂67

26

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1.

The states most strongly coupled to ei will have largest magnitude

r1 = |ei + X̂ei |

This if for a single step from ei to each other state.

Can have transition from ei to ej via intermediate state

r2 = |ei + X̂ei + X̂2ei |

Assuming any number of steps between intermediate states

r∞ =

∣∣∣∣∣
∞∑

j=0

X̂jei

∣∣∣∣∣

= |(I − X̂)−1ei |

Sort elements of r∞ in descending order.

27

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1.

The states most strongly coupled to ei will have largest magnitude

r1 = |ei + X̂ei |

This if for a single step from ei to each other state.

Can have transition from ei to ej via intermediate state

r2 = |ei + X̂ei + X̂2ei |

Assuming any number of steps between intermediate states

r∞ =

∣∣∣∣∣
∞∑

j=0

X̂jei

∣∣∣∣∣

= |(I − X̂)−1ei |

Sort elements of r∞ in descending order.

27

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1.

The states most strongly coupled to ei will have largest magnitude

r1 = |ei + X̂ei |

This if for a single step from ei to each other state.

Can have transition from ei to ej via intermediate state

r2 = |ei + X̂ei + X̂2ei |

Assuming any number of steps between intermediate states

r∞ =

∣∣∣∣∣
∞∑

j=0

X̂jei

∣∣∣∣∣

= |(I − X̂)−1ei |

Sort elements of r∞ in descending order.

27

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1.

The states most strongly coupled to ei will have largest magnitude

r1 = |ei + X̂ei |

This if for a single step from ei to each other state.

Can have transition from ei to ej via intermediate state

r2 = |ei + X̂ei + X̂2ei |

Assuming any number of steps between intermediate states

r∞ =

∣∣∣∣∣
∞∑

j=0

X̂jei

∣∣∣∣∣

= |(I − X̂)−1ei |

Sort elements of r∞ in descending order.

27

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1.

The states most strongly coupled to ei will have largest magnitude

r1 = |ei + X̂ei |

This if for a single step from ei to each other state.

Can have transition from ei to ej via intermediate state

r2 = |ei + X̂ei + X̂2ei |

Assuming any number of steps between intermediate states

r∞ =

∣∣∣∣∣
∞∑

j=0

X̂jei

∣∣∣∣∣ = |(I − X̂)−1ei |

Sort elements of r∞ in descending order.

27

Model reduction: Coupling strength

Example: order of states coupled to e1 from strongest to weakest

{1, 2, 7, 5, 3, 14, 11, 8, 4, 10, 9, 16, 12, 20, 15, 13, 6, 17, 18, 19}

Solve control problem with n1 most coupled states to initial state.
Obtain u∗1 .

Augment state space to n2, use u∗1 as initial guess. Obtain u∗2 .

Repeat until affect of augmenting state space on cost is less than
tolerance.

28

Model reduction: Coupling strength

Example: order of states coupled to e1 from strongest to weakest

{1, 2, 7, 5, 3, 14, 11, 8, 4, 10, 9, 16, 12, 20, 15, 13, 6, 17, 18, 19}

Solve control problem with n1 most coupled states to initial state.
Obtain u∗1 .

Augment state space to n2, use u∗1 as initial guess. Obtain u∗2 .

Repeat until affect of augmenting state space on cost is less than
tolerance.

28

Model reduction: Coupling strength

Example: order of states coupled to e1 from strongest to weakest

{1, 2, 7, 5, 3, 14, 11, 8, 4, 10, 9, 16, 12, 20, 15, 13, 6, 17, 18, 19}

Solve control problem with n1 most coupled states to initial state.
Obtain u∗1 .

Augment state space to n2, use u∗1 as initial guess. Obtain u∗2 .

Repeat until affect of augmenting state space on cost is less than
tolerance.

28

Model reduction: Coupling strength

Example: order of states coupled to e1 from strongest to weakest

{1, 2, 7, 5, 3, 14, 11, 8, 4, 10, 9, 16, 12, 20, 15, 13, 6, 17, 18, 19}

Solve control problem with n1 most coupled states to initial state.
Obtain u∗1 .

Augment state space to n2, use u∗1 as initial guess. Obtain u∗2 .

Repeat until affect of augmenting state space on cost is less than
tolerance.

28

Numerical results - including exp(iωT)

Here we have the state transition of the two particle system

|1, 2〉 → |1, 3〉

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

|y
j(t)

|2

 1
 2
 7
 5
 3
14
11
 8
 4
10

(a) State occupancy vs. time

0 0.2 0.4 0.6 0.8 1
40

30

20

10

0

10

20

30

40

50

time

u op
t(t)

5
10
15
20
25
30

(b) Optimal control with refinement

29

Numerical results - excluding exp(iωT)

Here we have the state transition of the two particle system

|1, 2〉 → |1, 3〉

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

|
(t)

|2

 1
 2
 3
 5
 4
 7
11
14
 6
10

(c) State occupancy vs. time

0 0.2 0.4 0.6 0.8 1
30

20

10

0

10

20

30

time

u op
t(t)

5
10
15
20
25
30

(d) Optimal control with refinement

30

Numerical results - two particles

Here we have the state transition of the two particle system

|1, 2〉 → |1, 4〉

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

|y
j(t

)|
2

 1
 2
 3
 5
 4
 7
11
14
 6
10

(e) State occupancy vs. time

0 0.5 1 1.5 2
15

10

5

0

5

10

15

time

u o
pt
(t)

(f) Optimal control (50 modes)

31

Numerical results - four particles

Here we have the state transition of the four particle system

|1, 2, 3, 4〉 → |1, 2, 3, 5〉 state 1 to state 2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

|
(t)
|2

(g) State occupancy vs. time

0 0.5 1 1.5 2
50

40

30

20

10

0

10

20

30

40

time

u o
pt
(t)

(h) Optimal control (50 modes)

32

Numerical results - four particles

Here we have the state transition of the four particle system

|1, 2, 3, 4〉 → |1, 2, 3, 6〉 state 1 to state 4

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time

|
(t
)|2

(i) State occupancy vs. time

0 0.5 1 1.5 2
80

60

40

20

0

20

40

60

80

100

time

u(
t)

(j) Optimal control (50 modes)

33

Continuing work

Extension to Gauß-Runge-Kutta time stepping

Automated update to state basis

Incorporation of spin

SR1-Trust region method may require less CPU time

34

Continuing work

Extension to Gauß-Runge-Kutta time stepping

Automated update to state basis

Incorporation of spin

SR1-Trust region method may require less CPU time

34

Continuing work

Extension to Gauß-Runge-Kutta time stepping

Automated update to state basis

Incorporation of spin

SR1-Trust region method may require less CPU time

34

Continuing work

Extension to Gauß-Runge-Kutta time stepping

Automated update to state basis

Incorporation of spin

SR1-Trust region method may require less CPU time

34

Thank you for your attention

35

