A globalized Newton method for the optimal control of multiple interacting fermions

Greg von Winckel

Institut für Mathematik und Wissenschaftliches Rechnen
Karl-Franzens Universität Graz
October 12, 2011

Outline

- Single particle dynamics and control problem

Outline

- Single particle dynamics and control problem
- Two or more fermions

Outline

- Single particle dynamics and control problem
- Two or more fermions
- Discretization methods

Outline

- Single particle dynamics and control problem
- Two or more fermions
- Discretization methods
- Lagrangian and optimality conditions

Outline

- Single particle dynamics and control problem
- Two or more fermions
- Discretization methods
- Lagrangian and optimality conditions
- Reduced model method

Outline

- Single particle dynamics and control problem
- Two or more fermions
- Discretization methods
- Lagrangian and optimality conditions
- Reduced model method
- Numerical results for test cases

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$
Typical goal:

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$
Typical goal:
Given $\psi(x, 0)$, find $V(x, t)$ such that $\psi(x, T) \approx \tilde{\psi}(x)$

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$
Typical goal:
Given $\psi(x, 0)$, find $V(x, t)$ such that $\psi(x, T) \approx \tilde{\psi}(x)$

$$
\mathcal{P} \psi(x, T)=(\psi(\cdot, T), \tilde{\psi}) \tilde{\psi}(x)
$$

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$
Typical goal:
Given $\psi(x, 0)$, find $V(x, t)$ such that $\psi(x, T) \approx \tilde{\psi}(x)$

$$
\mathcal{P} \psi(x, T)=(\psi(\cdot, T), \tilde{\psi}) \tilde{\psi}(x)
$$

Want to make $\|\mathcal{P} \psi(\cdot, T)\|^{2} \rightarrow 1$

Single particle

Dynamics described by time-dependent Schr̈odinger equation

$$
i \partial_{t} \psi(x, t)=-\partial_{x}^{2} \psi+V(x, t) \psi(x, t)
$$

Any influence on the wavefunction is via potential $V(x, t)$
Typical goal:
Given $\psi(x, 0)$, find $V(x, t)$ such that $\psi(x, T) \approx \tilde{\psi}(x)$

$$
\mathcal{P} \psi(x, T)=(\psi(\cdot, T), \tilde{\psi}) \tilde{\psi}(x)
$$

Want to make $\|\mathcal{P} \psi(\cdot, T)\|^{2} \rightarrow 1$
State transition: $\tilde{\psi}$ and $\psi(x, 0)$ are eigenfunctions

Two identical particles
TDSE for two identical particles

$$
i \partial_{t} \psi\left(x_{1}, x_{2}, t\right)=\left\{-\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right)+V\left(x_{1}, x_{2}, t\right)\right\} \psi\left(x_{1}, x_{2}, t\right)
$$

Two identical particles

TDSE for two identical particles

$$
i \partial_{t} \psi\left(x_{1}, x_{2}, t\right)=\left\{-\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right)+V\left(x_{1}, x_{2}, t\right)\right\} \psi\left(x_{1}, x_{2}, t\right)
$$

Invariance of $|\psi|$ under permutation

$$
\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}=\left|\psi\left(x_{2}, x_{1}\right)\right|^{2} \Rightarrow \psi\left(x_{2}, x_{1}\right)=\psi\left(x_{1}, x_{2}\right) e^{i \theta}
$$

Two identical particles

TDSE for two identical particles

$$
i \partial_{t} \psi\left(x_{1}, x_{2}, t\right)=\left\{-\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right)+V\left(x_{1}, x_{2}, t\right)\right\} \psi\left(x_{1}, x_{2}, t\right)
$$

Invariance of $|\psi|$ under permutation

$$
\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}=\left|\psi\left(x_{2}, x_{1}\right)\right|^{2} \Rightarrow \psi\left(x_{2}, x_{1}\right)=\psi\left(x_{1}, x_{2}\right) e^{i \theta}
$$

Let P be the permutation operator

$$
P \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=e^{i \theta} \psi\left(x_{1}, x_{2}\right)
$$

Two identical particles

TDSE for two identical particles

$$
i \partial_{t} \psi\left(x_{1}, x_{2}, t\right)=\left\{-\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right)+V\left(x_{1}, x_{2}, t\right)\right\} \psi\left(x_{1}, x_{2}, t\right)
$$

Invariance of $|\psi|$ under permutation

$$
\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}=\left|\psi\left(x_{2}, x_{1}\right)\right|^{2} \Rightarrow \psi\left(x_{2}, x_{1}\right)=\psi\left(x_{1}, x_{2}\right) e^{i \theta}
$$

Let P be the permutation operator

$$
P \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=e^{i \theta} \psi\left(x_{1}, x_{2}\right)
$$

Two permutations

$$
P^{2} \psi\left(x_{1}, x_{2}\right)=P \psi\left(x_{2}, x_{1}\right)=e^{i 2 \theta} \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}, x_{2}\right)
$$

Two identical particles

TDSE for two identical particles

$$
i \partial_{t} \psi\left(x_{1}, x_{2}, t\right)=\left\{-\left(\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}\right)+V\left(x_{1}, x_{2}, t\right)\right\} \psi\left(x_{1}, x_{2}, t\right)
$$

Invariance of $|\psi|$ under permutation

$$
\left|\psi\left(x_{1}, x_{2}\right)\right|^{2}=\left|\psi\left(x_{2}, x_{1}\right)\right|^{2} \Rightarrow \psi\left(x_{2}, x_{1}\right)=\psi\left(x_{1}, x_{2}\right) e^{i \theta}
$$

Let P be the permutation operator

$$
P \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{2}, x_{1}\right)=e^{i \theta} \psi\left(x_{1}, x_{2}\right)
$$

Two permutations

$$
P^{2} \psi\left(x_{1}, x_{2}\right)=P \psi\left(x_{2}, x_{1}\right)=e^{i 2 \theta} \psi\left(x_{1}, x_{2}\right)=\psi\left(x_{1}, x_{2}\right)
$$

Parity relations

$$
\psi\left(x_{1}, x_{2}\right)= \pm \psi\left(x_{2}, x_{1}\right)
$$

Without interaction $V\left(x_{1}, x_{2}, t\right)=V\left(x_{1}, t\right)+V\left(x_{2}, t\right)$

$$
\begin{aligned}
& i \partial_{t} \psi_{1}\left(x_{1}, t\right)=\left[-\partial_{x_{1}}^{2}+V\left(x_{1}, t\right)\right] \psi_{1}\left(x_{1}, t\right) \\
& i \partial_{t} \psi_{2}\left(x_{2}, t\right)=\left[-\partial_{x_{2}}^{2}+V\left(x_{2}, t\right)\right] \psi_{2}\left(x_{2}, t\right)
\end{aligned}
$$

Without interaction $V\left(x_{1}, x_{2}, t\right)=V\left(x_{1}, t\right)+V\left(x_{2}, t\right)$

$$
\begin{aligned}
& i \partial_{t} \psi_{1}\left(x_{1}, t\right)=\left[-\partial_{x_{1}}^{2}+V\left(x_{1}, t\right)\right] \psi_{1}\left(x_{1}, t\right) \\
& i \partial_{t} \psi_{2}\left(x_{2}, t\right)=\left[-\partial_{x_{2}}^{2}+V\left(x_{2}, t\right)\right] \psi_{2}\left(x_{2}, t\right)
\end{aligned}
$$

Two particle wavefunction

$$
\psi\left(x_{1}, x_{2}, t\right)=\psi_{1}\left(x_{1}, t\right) \psi_{2}\left(x_{2}, t\right)-\psi_{1}\left(x_{2}, t\right) \psi_{1}\left(x_{2}, t\right)
$$

Two fermions

Without interaction $V\left(x_{1}, x_{2}, t\right)=V\left(x_{1}, t\right)+V\left(x_{2}, t\right)$

$$
\begin{aligned}
& i \partial_{t} \psi_{1}\left(x_{1}, t\right)=\left[-\partial_{x_{1}}^{2}+V\left(x_{1}, t\right)\right] \psi_{1}\left(x_{1}, t\right) \\
& i \partial_{t} \psi_{2}\left(x_{2}, t\right)=\left[-\partial_{x_{2}}^{2}+V\left(x_{2}, t\right)\right] \psi_{2}\left(x_{2}, t\right)
\end{aligned}
$$

Two particle wavefunction

$$
\psi\left(x_{1}, x_{2}, t\right)=\psi_{1}\left(x_{1}, t\right) \psi_{2}\left(x_{2}, t\right)-\psi_{1}\left(x_{2}, t\right) \psi_{1}\left(x_{2}, t\right)
$$

More generally: n fermions

$$
\psi\left(x_{1}, \ldots, x_{n}, t\right)=\operatorname{det}\left(\begin{array}{ccc}
\psi_{1}\left(x_{1}, t\right) & \cdots & \psi_{n}\left(x_{1}, t\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x_{n}, t\right) & \cdots & \psi_{n}\left(x_{n}, t\right)
\end{array}\right)
$$

Without interaction $V\left(x_{1}, x_{2}, t\right)=V\left(x_{1}, t\right)+V\left(x_{2}, t\right)$

$$
\begin{aligned}
& i \partial_{t} \psi_{1}\left(x_{1}, t\right)=\left[-\partial_{x_{1}}^{2}+V\left(x_{1}, t\right)\right] \psi_{1}\left(x_{1}, t\right) \\
& i \partial_{t} \psi_{2}\left(x_{2}, t\right)=\left[-\partial_{x_{2}}^{2}+V\left(x_{2}, t\right)\right] \psi_{2}\left(x_{2}, t\right)
\end{aligned}
$$

Two particle wavefunction

$$
\psi\left(x_{1}, x_{2}, t\right)=\psi_{1}\left(x_{1}, t\right) \psi_{2}\left(x_{2}, t\right)-\psi_{1}\left(x_{2}, t\right) \psi_{1}\left(x_{2}, t\right)
$$

More generally: n fermions

$$
\begin{aligned}
& \psi\left(x_{1}, \ldots, x_{n}, t\right)=\operatorname{det}\left(\begin{array}{ccc}
\psi_{1}\left(x_{1}, t\right) & \cdots & \psi_{n}\left(x_{1}, t\right) \\
\vdots & \ddots & \vdots \\
\psi_{1}\left(x_{n}, t\right) & \cdots & \psi_{n}\left(x_{n}, t\right)
\end{array}\right) \\
& \psi\left(x_{1}, \ldots, x_{n}, t\right)=0, \quad \text { if } x_{j}=x_{k} \text { for some } 1 \leqslant j, k \leqslant n
\end{aligned}
$$

TDSE for n fermions

$$
\left\{-\Delta+\sum_{j=1}^{n}\left(V^{c}\left(x_{j}, t\right)+\sum_{k>j}^{n} V^{i}\left(x_{j}, x_{k}\right)\right)\right\} \psi_{i}(\mathbf{x})=\lambda_{i} \psi_{i}(\mathbf{x})
$$

TDSE for n fermions

$$
\left\{-\Delta+\sum_{j=1}^{n}\left(V^{c}\left(x_{j}, t\right)+\sum_{k>j}^{n} V^{i}\left(x_{j}, x_{k}\right)\right)\right\} \psi_{i}(\mathbf{x})=\lambda_{i} \psi_{i}(\mathbf{x})
$$

where

$$
\Delta=\partial_{x_{1}}^{2}+\cdots \partial_{x_{n}}^{2}
$$

TDSE for n fermions

$$
\left\{-\Delta+\sum_{j=1}^{n}\left(V^{c}\left(x_{j}, t\right)+\sum_{k>j}^{n} V^{i}\left(x_{j}, x_{k}\right)\right)\right\} \psi_{i}(\mathbf{x})=\lambda_{i} \psi_{i}(\mathbf{x})
$$

where

$$
\Delta=\partial_{x_{1}}^{2}+\cdots \partial_{x_{n}}^{2}
$$

The confining/control potential $V^{c}(x, t)$ affects all particles

TDSE for n fermions

$$
\left\{-\Delta+\sum_{j=1}^{n}\left(V^{c}\left(x_{j}, t\right)+\sum_{k>j}^{n} V^{i}\left(x_{j}, x_{k}\right)\right)\right\} \psi_{i}(\mathbf{x})=\lambda_{i} \psi_{i}(\mathbf{x})
$$

where

$$
\Delta=\partial_{x_{1}}^{2}+\cdots \partial_{x_{n}}^{2}
$$

The confining/control potential $V^{c}(x, t)$ affects all particles
Coulombic interaction

$$
V^{i}\left(x_{j}, x_{k}\right)=\frac{q}{\left|x_{j}-x_{k}\right|} \approx \frac{q}{\sqrt{\left(x_{j}-x_{k}\right)^{2}+\epsilon^{2}}}
$$

q is electronic charge

Eigenfunctions - square well without interaction

Figure: Single particle: states $|1\rangle,|2\rangle$, and $|3\rangle$

Eigenfunctions - square well without interaction

Figure: Two particles: state $|1,2\rangle$ and $|1,3\rangle$

Eigenfunctions - square well without interaction

Figure: Three particles: state $|1,2,3\rangle$ and $|1,2,4\rangle$

Spatial discretization - one dimension

Legendre G-NI discretization

$$
\psi(x) \approx \psi_{p}(x)=\sum_{k=1}^{p} \hat{\psi}_{k} \ell_{k}(x)
$$

Spatial discretization - one dimension

Legendre G-NI discretization

$$
\psi(x) \approx \psi_{p}(x)=\sum_{k=1}^{p} \hat{\psi}_{k} \ell_{k}(x)
$$

The Lagrange polynomials are

$$
\ell_{j}(x)=\prod_{\substack{k=0 \\ k \neq j}}^{p+1} \frac{x-x_{k}}{x_{j}-x_{k}}, \quad j=0, \ldots, p+1
$$

End points excluded for homogeneous Dirichlet conditions

Spatial discretization - one dimension

Legendre G-NI discretization

$$
\psi(x) \approx \psi_{p}(x)=\sum_{k=1}^{p} \hat{\psi}_{k} \ell_{k}(x)
$$

The Lagrange polynomials are

$$
\ell_{j}(x)=\prod_{\substack{k=0 \\ k \neq j}}^{p+1} \frac{x-x_{k}}{x_{j}-x_{k}}, \quad j=0, \ldots, p+1
$$

End points excluded for homogeneous Dirichlet conditions The Legendre-Gauss-Lobatto nodes are

$$
\left\{x_{0}, \ldots, x_{p+1}\right\}=\left\{x \mid P_{p+1}^{\prime}(x)=0\right\} \cup\{ \pm 1\}
$$

where $P_{k}(x)$ is the k th Legendre polynomial

Spatial discretization - one dimension

Legendre G-NI discretization

$$
\psi(x) \approx \psi_{p}(x)=\sum_{k=1}^{p} \hat{\psi}_{k} \ell_{k}(x)
$$

The Lagrange polynomials are

$$
\ell_{j}(x)=\prod_{\substack{k=0 \\ k \neq j}}^{p+1} \frac{x-x_{k}}{x_{j}-x_{k}}, \quad j=0, \ldots, p+1
$$

End points excluded for homogeneous Dirichlet conditions The Legendre-Gauss-Lobatto nodes are

$$
\left\{x_{0}, \ldots, x_{p+1}\right\}=\left\{x \mid P_{p+1}^{\prime}(x)=0\right\} \cup\{ \pm 1\}
$$

where $P_{k}(x)$ is the k th Legendre polynomial
The weights are

$$
w_{k}=\frac{1}{(p+1)(p+2)} \frac{2}{\left[P_{p+1}\left(x_{k}\right)\right]^{2}}
$$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Stiffness matrix $\tilde{\mathbf{K}}_{j k}=\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Stiffness matrix $\tilde{\mathbf{K}}_{j k}=\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)$
Confining potential $\tilde{\mathbf{V}}_{j k}^{\mathrm{c}}=\left(\ell_{j}, V^{c} \ell_{k}\right)$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Stiffness matrix $\tilde{\mathbf{K}}_{j k}=\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)$
Confining potential $\tilde{\mathbf{V}}_{j k}^{\mathrm{c}}=\left(\ell_{j}, V^{c} \ell_{k}\right)$
Mass matrix $\tilde{\mathbf{M}}_{j k}=\left(\ell_{j}, \ell_{k}\right)$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Stiffness matrix $\tilde{\mathbf{K}}_{j k}=\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)$
Confining potential $\tilde{\mathbf{V}}_{j k}^{c}=\left(\ell_{j}, V^{c} \ell_{k}\right)$
Mass matrix $\tilde{\mathbf{M}}_{j k}=\left(\ell_{j}, \ell_{k}\right)$
Compute inner products with quadrature

$$
\tilde{\mathbf{M}}_{j k}=\sum_{i=1}^{p} \ell_{j}\left(x_{i}\right) \ell_{k}\left(x_{i}\right) w_{i}, \quad \tilde{\mathbf{K}}_{j k}=\sum_{i=1}^{p} \ell_{j}^{\prime}\left(x_{i}\right) \ell_{k}^{\prime}\left(x_{i}\right) w_{i}
$$

Spatial discretization - one particle

Weak form of generalized eigenvalue problem

$$
\sum_{k=1}^{p}\left[\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)+\left(\ell_{j}, V^{c} \ell_{k}\right)\right] \hat{\psi}_{k}=\lambda \sum_{k=1}^{p}\left[\left(\ell_{j}, \ell_{k}\right) \hat{\psi}_{k}\right.
$$

Stiffness matrix $\tilde{\mathbf{K}}_{j k}=\left(\ell_{j}^{\prime}, \ell_{k}^{\prime}\right)$
Confining potential $\tilde{\mathbf{V}}_{j k}^{c}=\left(\ell_{j}, V^{c} \ell_{k}\right)$
Mass matrix $\tilde{\mathbf{M}}_{j k}=\left(\ell_{j}, \ell_{k}\right)$
Compute inner products with quadrature

$$
\tilde{\mathbf{M}}_{j k}=\sum_{i=1}^{p} \ell_{j}\left(x_{i}\right) \ell_{k}\left(x_{i}\right) w_{i}, \quad \tilde{\mathbf{k}}_{j k}=\sum_{i=1}^{p} \ell_{j}^{\prime}\left(x_{i}\right) \ell_{k}^{\prime}\left(x_{i}\right) w_{i}
$$

All variable coefficient matrices are diagonal.

Spatial discretization - one particle

The mass matrix just contains the weights

$$
\tilde{\mathbf{M}}_{j k}=w_{j} \delta_{j k}
$$

Spatial discretization - one particle

The mass matrix just contains the weights

$$
\tilde{\mathbf{M}}_{j k}=w_{j} \delta_{j k}
$$

Trivial Cholesky factorization

$$
\tilde{\mathbf{M}}=\mathbf{R}^{\top} \mathbf{R}, \quad \mathbf{R}_{j k}=\sqrt{w_{j}} \delta_{j k}
$$

Spatial discretization - one particle

The mass matrix just contains the weights

$$
\tilde{\mathbf{M}}_{j k}=w_{j} \delta_{j k}
$$

Trivial Cholesky factorization

$$
\tilde{\mathbf{M}}=\mathbf{R}^{\top} \mathbf{R}, \quad \mathbf{R}_{j k}=\sqrt{w_{j}} \delta_{j k}
$$

The mass matrix is now the identity

$$
\left[\mathbf{K}+\mathbf{V}^{\mathbf{c}}\right] \hat{\varphi}=\lambda \hat{\varphi}, \quad \mathbf{K}=\mathbf{R}^{-\top} \tilde{\mathbf{K}} \mathbf{R}^{-1}, \quad \mathbf{V}^{\mathbf{v}}=\mathbf{R}^{-\top} \tilde{\mathbf{V}}^{\mathbf{c}} \mathbf{R}^{-1}
$$

This is algebraically equivalent to collocation

Spatial discretization - n particles

In principle need p^{n} grid points...

Spatial discretization - n particles

In principle need p^{n} grid points...
however, (anti)symmetry relations reduce the number of basis functions to N_{p}

$$
N_{p}=\binom{p}{n}=\frac{p!}{n!(p-n)!}
$$

Spatial discretization - n particles

In principle need p^{n} grid points...
however, (anti)symmetry relations reduce the number of basis functions to N_{p}

$$
N_{p}=\binom{p}{n}=\frac{p!}{n!(p-n)!}
$$

Build a set of indices containing all unique n-tuples

Spatial discretization - n particles

In principle need p^{n} grid points...
however, (anti)symmetry relations reduce the number of basis functions to N_{p}

$$
N_{p}=\binom{p}{n}=\frac{p!}{n!(p-n)!}
$$

Build a set of indices containing all unique n-tuples
Can do this with one Matlab command

$$
\operatorname{map}=\operatorname{nchoosek}(1: p, n) ;
$$

Spatial discretization - n particles

In principle need p^{n} grid points...
however, (anti)symmetry relations reduce the number of basis functions to N_{p}

$$
N_{p}=\binom{p}{n}=\frac{p!}{n!(p-n)!}
$$

Build a set of indices containing all unique n-tuples
Can do this with one Matlab command

$$
\operatorname{map}=\operatorname{nchoosek}(1: p, n) ;
$$

This returns an $N_{p} \times n$ matrix of all n-tuples, which happen to be the n-dimensional indices of grid points in the simplex.

3-tuples for $p=6$

j	j_{1}	j_{2}	j_{3}
1	1	2	3
2	1	2	4
3	1	2	5
4	1	2	6
5	1	3	4
6	1	3	5
7	1	3	6
8	1	4	5
9	1	4	6
10	1	5	6
11	2	3	4
12	2	3	5
13	2	3	6
14	2	4	5
15	2	4	6
16	2	5	6
17	3	4	5
18	3	4	6
19	3	5	6
20	4	5	6

n particle stiffness matrix elements

n particle trial function φ is a Slater determinant of L^{2}-normalized Lagrange polynomials.

n particle stiffness matrix elements

n particle trial function φ is a Slater determinant of L^{2}-normalized Lagrange polynomials.

$$
\left(\partial_{x_{v}} \varphi_{j}, \partial_{x_{v}} \varphi_{k}\right)=K_{j k}^{v}
$$

n particle stiffness matrix elements

n particle trial function φ is a Slater determinant of L^{2}-normalized Lagrange polynomials.

$$
\left(\partial_{x_{v}} \varphi_{j}, \partial_{x_{v}} \varphi_{k}\right)=K_{j k}^{v}
$$

Löwden rule for Slater inner products

$$
K_{j k}^{v}=\operatorname{det}\left(\begin{array}{ccccccc}
\delta_{j_{1}, k_{1}} & \cdots & \delta_{j_{1}, k_{v-1}} & K_{j_{1}, k_{v}} & \delta_{j_{1}, k_{v+1}} & \cdots & \delta_{j_{1}, k_{n}} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\delta_{j_{n}, k_{1}} & \cdots & \delta_{j_{n}, k_{v-1}} & K_{j_{n}, k_{v}} & \delta_{j_{n}, k_{v+1}} & \cdots & \delta_{j_{n}, k_{n}}
\end{array}\right)
$$

n particle stiffness matrix elements

n particle trial function φ is a Slater determinant of L^{2}-normalized Lagrange polynomials.

$$
\left(\partial_{x_{v}} \varphi_{j}, \partial_{x_{v}} \varphi_{k}\right)=K_{j k}^{v}
$$

Löwden rule for Slater inner products

$$
K_{j k}^{v}=\operatorname{det}\left(\begin{array}{ccccccc}
\delta_{j_{1}, k_{1}} & \cdots & \delta_{j_{1}, k_{v-1}} & K_{j_{1}, k_{v}} & \delta_{j_{1}, k_{v+1}} & \cdots & \delta_{j_{1}, k_{n}} \\
\vdots & & \vdots & \vdots & \vdots & & \vdots \\
\delta_{j_{n}, k_{1}} & \cdots & \delta_{j_{n}, k_{v-1}} & K_{j_{n}, k_{v}} & \delta_{j_{n}, k_{v+1}} & \cdots & \delta_{j_{n}, k_{n}}
\end{array}\right)
$$

n particle stiffness matrix elements are taken directly from the single particle matrix with possible sign change

Stiffness matrix sparsity pattern

Figure: Left: $p=15$ and $n=2$, Right: $p=15$ and $n=5$

Stiffness matrix sparsity pattern

Figure: Left: $p=15$ and $n=2$, Right: $p=15$ and $n=5$

The off-diagonal sparsity pattern is that of the Johnson Graph's adjacency matrix

Discretization

Semi-discrete state equation

$$
i \psi_{t}=\left\{\mathbf{H}_{0}+u(t) \mathbf{V}^{\mathbf{c}}\right\} \psi, \quad \psi \in \mathbb{C}^{N_{p}}
$$

Discretization

Semi-discrete state equation

$$
i \psi_{t}=\left\{\mathbf{H}_{0}+u(t) \mathbf{V}^{\mathbf{c}}\right\} \psi, \quad \psi \in \mathbb{C}^{N_{p}}
$$

Compute $N_{s} \ll N_{p}$ eigenpairs (Λ, Φ) of stationary Hamiltonian

$$
\mathbf{H}_{0} \Phi=\Phi \Lambda, \quad \Phi \in \mathbb{R}^{N_{p} \times N_{s}}, \quad \Lambda \in \mathbb{R}^{N_{s} \times N_{s}}
$$

Discretization

Semi-discrete state equation

$$
i \psi_{t}=\left\{\mathbf{H}_{0}+u(t) \mathbf{V}^{\mathbf{c}}\right\} \psi, \quad \psi \in \mathbb{C}^{N_{p}}
$$

Compute $N_{s} \ll N_{p}$ eigenpairs (Λ, Φ) of stationary Hamiltonian

$$
\mathbf{H}_{0} \Phi=\Phi \Lambda, \quad \Phi \in \mathbb{R}^{N_{p} \times N_{s}}, \quad \Lambda \in \mathbb{R}^{N_{s} \times N_{s}}
$$

Reduced order model

$$
i y_{t}=\{\Lambda+u(t) \mathbf{X}\} y, \quad y \in \mathbb{C}^{N_{s}}, \quad \mathbf{X}=\Phi^{\top} \mathbf{V}^{\mathbf{c}} \Phi
$$

Discretization

Semi-discrete state equation

$$
i \psi_{t}=\left\{\mathbf{H}_{0}+u(t) \mathbf{V}^{\mathbf{c}}\right\} \psi, \quad \psi \in \mathbb{C}^{N_{p}}
$$

Compute $N_{s} \ll N_{p}$ eigenpairs (Λ, Φ) of stationary Hamiltonian

$$
\mathbf{H}_{0} \Phi=\Phi \Lambda, \quad \Phi \in \mathbb{R}^{N_{p} \times N_{s}}, \quad \Lambda \in \mathbb{R}^{N_{s} \times N_{s}}
$$

Reduced order model

$$
i y_{t}=\{\Lambda+u(t) \mathbf{X}\} y, \quad y \in \mathbb{C}^{N_{s}}, \quad \mathbf{X}=\Phi^{\top} \mathbf{V}^{\mathbf{c}} \Phi
$$

More compactly

$$
y_{t}=\mathbf{A}(t) y, \quad \mathbf{A}(t)=-i\{\Lambda+u(t) \mathbf{X}\}
$$

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping

$$
\left(I-\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

This becomes the k th equality constraint

$$
e_{k}\left(y_{k}, y_{k-1}, u_{k}, u_{k-1}\right)=0
$$

Discretization and the Lagrangian

Modified Crank-Nicolson time stepping

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

This becomes the k th equality constraint

$$
\begin{gathered}
e_{k}\left(y_{k}, y_{k-1}, u_{k}, u_{k-1}\right)=0 \\
L(y, \bar{y}, u, \lambda, \bar{\lambda})=1-\bar{y}_{n}^{\top} P y_{n}+\frac{1}{2} u^{\top} W u+\sum_{k=1}^{N} \lambda_{k}^{\top} e_{k}+\bar{\lambda}_{k}^{\top} \bar{e}_{k}
\end{gathered}
$$

First-order optimality conditions

State equation

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

First-order optimality conditions

State equation

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

Adjoint equation

$$
\left(I-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) \lambda_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) \lambda_{k+1}
$$

First-order optimality conditions

State equation

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

Adjoint equation

$$
\left(I-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) \lambda_{k}=\left(I+\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) \lambda_{k+1}
$$

Final condition $\lambda_{N}=P \bar{y}_{N}$

First-order optimality conditions

State equation

$$
\left(1-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k}=\left(1+\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) y_{k-1}
$$

Adjoint equation

$$
\left(I-\frac{\delta t}{4}\left[A_{k}+A_{k-1}\right]\right) \lambda_{k}=\left(I+\frac{\delta t}{4}\left[A_{k}+A_{k+1}\right]\right) \lambda_{k+1}
$$

Final condition $\lambda_{N}=P \bar{y}_{N}$
Control equation and reduced gradient

$$
\begin{gathered}
\nabla \tilde{J}(u)=W u-\frac{\delta t}{2} \operatorname{Im}[\xi]=0 \\
\xi_{k}=\lambda_{k}^{\top} \mathbf{X}\left(y_{k}+y_{k-1}\right)+\lambda_{k+1}^{\top} \mathbf{X}\left(y_{k+1}+y_{k}\right)
\end{gathered}
$$

Second-order optimality conditions

KKT system

$$
\left(\begin{array}{ccccc}
L_{y y} & 0 & L_{y u} & 0 & L_{y \bar{\lambda}} \\
0 & L_{\bar{y} \bar{y}} & L_{\bar{y} u} & L_{\bar{y} \lambda} & 0 \\
L_{u y} & L_{u \bar{y}} & L_{u u} & L_{u \lambda} & L_{u \bar{\lambda}} \\
0 & L_{\lambda \bar{y}} & L_{\lambda u} & 0 & 0 \\
L_{\bar{\lambda} y} & 0 & L_{\bar{\lambda} u} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\delta y \\
\delta \bar{y} \\
\delta u \\
\delta \lambda \\
\delta \bar{\lambda}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
0 \\
L_{u} \\
0 \\
0
\end{array}\right)
$$

Second-order optimality conditions

KKT system

$$
\left(\begin{array}{ccccc}
L_{y y} & 0 & L_{y u} & 0 & L_{y \bar{\lambda}} \\
0 & L_{\bar{y} \bar{y}} & L_{\bar{y} u} & L_{\bar{y} \lambda} & 0 \\
L_{u y} & L_{u \bar{y}} & L_{u u} & L_{u \lambda} & L_{u \bar{\lambda}} \\
0 & L_{\lambda \bar{y}} & L_{\lambda u} & 0 & 0 \\
L_{\bar{\lambda} y} & 0 & L_{\bar{\lambda} u} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\delta y \\
\delta \bar{y} \\
\delta u \\
\delta \lambda \\
\delta \bar{\lambda}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
0 \\
L_{u} \\
0 \\
0
\end{array}\right)
$$

Differential change in state and adjoint

$$
\begin{aligned}
& \delta y=-L_{\bar{\lambda} y}^{-1} L_{\bar{\lambda} u} \delta u \\
& \delta \lambda=-L_{\bar{y} \lambda} \delta \lambda^{-1}\left[L_{\bar{y} u} \delta u+L_{\bar{y} \bar{y}} \delta \bar{y}\right]
\end{aligned}
$$

Second-order optimality conditions

KKT system

$$
\left(\begin{array}{ccccc}
L_{y y} & 0 & L_{y u} & 0 & L_{y \bar{\lambda}} \\
0 & L_{\bar{y} \bar{y}} & L_{\bar{y} u} & L_{\bar{y} \lambda} & 0 \\
L_{u y} & L_{u \bar{y}} & L_{u u} & L_{u \lambda} & L_{u \bar{\lambda}} \\
0 & L_{\lambda \bar{y}} & L_{\lambda u} & 0 & 0 \\
L_{\bar{\lambda} y} & 0 & L_{\bar{\lambda} u} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\delta y \\
\delta \bar{y} \\
\delta u \\
\delta \lambda \\
\delta \bar{\lambda}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
0 \\
L_{u} \\
0 \\
0
\end{array}\right)
$$

Differential change in state and adjoint

$$
\begin{aligned}
& \delta y=-L_{\bar{\lambda} y}^{-1} L_{\bar{\lambda} u} \delta u \\
& \delta \lambda=-L_{\bar{y} \lambda} \delta \lambda^{-1}\left[L_{\bar{y} u} \delta u+L_{\bar{y} \bar{y}} \delta \bar{y}\right]
\end{aligned}
$$

Action of reduced Hessian

$$
\left[\nabla^{2 \tilde{J}}(u)\right] \delta u=L_{u u} \delta u+2 \operatorname{Re}\left[L_{u y} \delta y+L_{u \lambda} \delta \lambda\right]
$$

Second-order optimality conditions

KKT system

$$
\left(\begin{array}{ccccc}
L_{y y} & 0 & L_{y u} & 0 & L_{y \bar{\lambda}} \\
0 & L_{\bar{y} \bar{y}} & L_{\bar{y} u} & L_{\bar{y} \lambda} & 0 \\
L_{u y} & L_{u \bar{y}} & L_{u u} & L_{u \lambda} & L_{u \bar{\lambda}} \\
0 & L_{\lambda \bar{y}} & L_{\lambda u} & 0 & 0 \\
L_{\bar{\lambda} y} & 0 & L_{\bar{\lambda} u} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\delta y \\
\delta \bar{y} \\
\delta u \\
\delta \lambda \\
\delta \bar{\lambda}
\end{array}\right)=-\left(\begin{array}{c}
0 \\
0 \\
L_{u} \\
0 \\
0
\end{array}\right)
$$

Differential change in state and adjoint

$$
\begin{aligned}
& \delta y=-L_{\bar{\lambda} y}^{-1} L_{\bar{\lambda} u} \delta u \\
& \delta \lambda=-L_{\bar{y} \lambda} \delta \lambda^{-1}\left[L_{\bar{y} u} \delta u+L_{\bar{y} \bar{y}} \delta \bar{y}\right]
\end{aligned}
$$

Action of reduced Hessian

$$
\left[\nabla^{2 \tilde{\jmath}}(u)\right] \delta u=L_{u u} \delta u+2 \operatorname{Re}\left[L_{u y} \delta y+L_{u \lambda} \delta \lambda\right]
$$

Iteratively compute Newton direction with symmetric LQ method

$$
\left[\nabla^{2} \tilde{J}(u)\right] \delta u=-\nabla \tilde{\jmath}(u)
$$

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.
The tracking part of the cost functional is bounded between 0 and 1 for all controls by virtue of the unitarity of the state equation

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.
The tracking part of the cost functional is bounded between 0 and 1 for all controls by virtue of the unitarity of the state equation
The cost functional is bounded from below by the regularization term.

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.
The tracking part of the cost functional is bounded between 0 and 1 for all controls by virtue of the unitarity of the state equation
The cost functional is bounded from below by the regularization term.
This amounts to a quadratic polynomial and we can write

$$
J(\mathbf{u}+a \mathbf{d}) \geqslant m_{2} a^{2}+m_{1} a+m_{0}
$$

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.
The tracking part of the cost functional is bounded between 0 and 1 for all controls by virtue of the unitarity of the state equation
The cost functional is bounded from below by the regularization term.
This amounts to a quadratic polynomial and we can write

$$
J(\mathbf{u}+a \mathbf{d}) \geqslant m_{2} a^{2}+m_{1} a+m_{0}
$$

Where the coefficients are given by $m_{0}=\frac{\gamma}{2} \mathbf{u}^{\top} \mathbf{K} \mathbf{u}-J(\mathbf{u}) \leqslant 0$, $m_{1}=\gamma \mathbf{u}^{\top} \mathbf{K d}$, and $m_{2}=\frac{\gamma}{2} \mathbf{d}^{\top} \mathbf{K} \mathbf{d}$.

Initial step length

Conventional wisdom: start with $a_{0}=1$ for Newton and quasi-Newton methods.
The tracking part of the cost functional is bounded between 0 and 1 for all controls by virtue of the unitarity of the state equation
The cost functional is bounded from below by the regularization term.
This amounts to a quadratic polynomial and we can write

$$
J(\mathbf{u}+a \mathbf{d}) \geqslant m_{2} a^{2}+m_{1} a+m_{0}
$$

Where the coefficients are given by $m_{0}=\frac{\gamma}{2} \mathbf{u}^{\top} \mathbf{K} \mathbf{u}-J(\mathbf{u}) \leqslant 0$, $m_{1}=\gamma \mathbf{u}^{\top} \mathbf{K d}$, and $m_{2}=\frac{\gamma}{2} \mathbf{d}^{\top} \mathbf{K} \mathbf{d}$.
We can establish an upper bound on the maximum feasible step length

$$
a \max =\frac{\sqrt{m_{1}^{2}-4 m_{0} m_{2}}-m_{1}}{2 m_{2}}
$$

A priori estimate

Before evaluating $J(\mathbf{u}+a \mathbf{d})$, for some a, we know what the maximum feasible a can be to satisfy the SWC. This gives an a priori estimate on whether the cost functional is locally quadratic.

A priori estimate

Before evaluating $J(\mathbf{u}+a \mathbf{d})$, for some a, we know what the maximum feasible a can be to satisfy the SWC. This gives an a priori estimate on whether the cost functional is locally quadratic.
In particular, if $\operatorname{amax}<1, J(\mathbf{u})$ is not locally quadratic.

A priori estimate

Before evaluating $J(\mathbf{u}+a \mathbf{d})$, for some a, we know what the maximum feasible a can be to satisfy the SWC. This gives an a priori estimate on whether the cost functional is locally quadratic.
In particular, if $a_{\max }<1, J(\mathbf{u})$ is not locally quadratic.
Make an initial step length of $\min (1, a \max)$.

Model Reduction: Connectivity of states

Figure: Left: Sparsity of interaction matrix \mathbf{X}.

Model Reduction: Connectivity of states

Figure: Left: Sparsity of interaction matrix X. Right: Model reduction: Connectivity graph

Model reduction: Interaction picture

Time-dependent change of basis

$$
y(t)=\exp (-i \wedge t) z(t)
$$

Model reduction: Interaction picture

Time-dependent change of basis

$$
y(t)=\exp (-i \wedge t) z(t)
$$

Obtain new equation for $z(t)$

$$
\dot{z}(t)=-i u(t) \exp (i \wedge t) \mathbf{X} \exp (-i \wedge t) z(t)
$$

Model reduction: Interaction picture

Time-dependent change of basis

$$
y(t)=\exp (-i \wedge t) z(t)
$$

Obtain new equation for $z(t)$

$$
\dot{z}(t)=-i u(t) \exp (i \wedge t) \mathbf{X} \exp (-i \wedge t) z(t)
$$

Write time-dependent interaction matrix

$$
\tilde{\mathbf{X}}(t)=\exp (i \wedge t) \mathbf{X} \exp (-i \wedge t), \quad \tilde{\mathbf{X}}_{j k}(t)=\mathbf{X}_{j k} \exp i \omega_{j k} t
$$

Where $\omega_{j k}=\lambda_{j}-\lambda_{k}$.

Model reduction: Interaction picture

Time-dependent change of basis

$$
y(t)=\exp (-i \wedge t) z(t)
$$

Obtain new equation for $z(t)$

$$
\dot{z}(t)=-i u(t) \exp (i \wedge t) \mathbf{X} \exp (-i \wedge t) z(t)
$$

Write time-dependent interaction matrix

$$
\tilde{\mathbf{X}}(t)=\exp (i \wedge t) \mathbf{X} \exp (-i \wedge t), \quad \tilde{\mathbf{X}}_{j k}(t)=\mathbf{X}_{j k} \exp i \omega_{j k} t
$$

Where $\omega_{j k}=\lambda_{j}-\lambda_{k}$.
Write in integral form

$$
z(T)=z(0)-i \int_{0}^{t} u(t) \tilde{\mathbf{X}}(t) z(t) d t
$$

Model reduction: Interaction picture

We don't know $u(t)$ and $z(t)$ in advance.

Model reduction: Interaction picture

We don't know $u(t)$ and $z(t)$ in advance.
However, $\tilde{\mathbf{X}}(t)$ is known and

$$
\hat{\mathbf{X}}=\int_{0}^{T} \tilde{\mathbf{X}}_{j k}(t) d t, \quad \hat{\mathbf{X}}_{j k}=\mathbf{X}_{j k} \frac{\exp \left(i \omega_{j k} T\right)-1}{i \omega_{j k}}
$$

Model reduction: Interaction picture

We don't know $u(t)$ and $z(t)$ in advance.
However, $\tilde{\mathbf{X}}(t)$ is known and

$$
\hat{\mathbf{X}}=\int_{0}^{T} \tilde{\mathbf{X}}_{j k}(t) d t, \quad \hat{\mathbf{X}}_{j k}=\mathbf{X}_{j k} \frac{\exp \left(i \omega_{j k} T\right)-1}{i \omega_{j k}}
$$

The $\hat{\mathbf{X}}_{j k}$ are like an inverse cost associated with the transition $|j\rangle \rightarrow|k\rangle$ or indicates how strongly the interaction couples the two states.

Model reduction: Interaction picture

We don't know $u(t)$ and $z(t)$ in advance.
However, $\tilde{\mathbf{X}}(t)$ is known and

$$
\hat{\mathbf{X}}=\int_{0}^{T} \tilde{\mathbf{X}}_{j k}(t) d t, \quad \hat{\mathbf{X}}_{j k}=\mathbf{X}_{j k} \frac{\exp \left(i \omega_{j k} T\right)-1}{i \omega_{j k}}
$$

The $\hat{\mathbf{X}}_{j k}$ are like an inverse cost associated with the transition $|j\rangle \rightarrow|k\rangle$ or indicates how strongly the interaction couples the two states.
Rank the connections of other states based on strength of coupling.

Model reduction: State coupling

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1 .

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1 .
The states most strongly coupled to e_{i} will have largest magnitude

$$
r_{1}=\left|e_{i}+\hat{\mathbf{X}} e_{i}\right|
$$

This if for a single step from e_{i} to each other state.

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1 .
The states most strongly coupled to e_{i} will have largest magnitude

$$
r_{1}=\left|e_{i}+\hat{\mathbf{X}} e_{i}\right|
$$

This if for a single step from e_{i} to each other state.
Can have transition from e_{i} to e_{j} via intermediate state

$$
r_{2}=\left|e_{i}+\hat{\mathbf{X}} e_{i}+\hat{\mathbf{X}}^{2} e_{i}\right|
$$

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1 .
The states most strongly coupled to e_{i} will have largest magnitude

$$
r_{1}=\left|e_{i}+\hat{\mathbf{X}} e_{i}\right|
$$

This if for a single step from e_{i} to each other state.
Can have transition from e_{i} to e_{j} via intermediate state

$$
r_{2}=\left|e_{i}+\hat{\mathbf{X}} e_{i}+\hat{\mathbf{X}}^{2} e_{i}\right|
$$

Assuming any number of steps between intermediate states

$$
r_{\infty}=\left|\sum_{j=0}^{\infty} \hat{\mathbf{X}}^{j} e_{i}\right|
$$

Model reduction: Coupling strength

Heuristic idea: normalize coupling strength of state to self as 1 .
The states most strongly coupled to e_{i} will have largest magnitude

$$
r_{1}=\left|e_{i}+\hat{\mathbf{X}} e_{i}\right|
$$

This if for a single step from e_{i} to each other state.
Can have transition from e_{i} to e_{j} via intermediate state

$$
r_{2}=\left|e_{i}+\hat{\mathbf{X}} e_{i}+\hat{\mathbf{X}}^{2} e_{i}\right|
$$

Assuming any number of steps between intermediate states

$$
r_{\infty}=\left|\sum_{j=0}^{\infty} \hat{\mathbf{X}}^{j} e_{i}\right|=\left|(\mathbf{I}-\hat{\mathbf{X}})^{-1} e_{i}\right|
$$

Sort elements of r_{∞} in descending order.

Model reduction: Coupling strength

Example: order of states coupled to e_{1} from strongest to weakest

$$
\{1,2,7,5,3,14,11,8,4,10,9,16,12,20,15,13,6,17,18,19\}
$$

Model reduction: Coupling strength

Example: order of states coupled to e_{1} from strongest to weakest

$$
\{1,2,7,5,3,14,11,8,4,10,9,16,12,20,15,13,6,17,18,19\}
$$

Solve control problem with n_{1} most coupled states to initial state.
Obtain u_{1}^{*}.

Model reduction: Coupling strength

Example: order of states coupled to e_{1} from strongest to weakest

$$
\{1,2,7,5,3,14,11,8,4,10,9,16,12,20,15,13,6,17,18,19\}
$$

Solve control problem with n_{1} most coupled states to initial state.
Obtain u_{1}^{*}.
Augment state space to n_{2}, use u_{1}^{*} as initial guess. Obtain u_{2}^{*}.

Model reduction: Coupling strength

Example: order of states coupled to e_{1} from strongest to weakest

$$
\{1,2,7,5,3,14,11,8,4,10,9,16,12,20,15,13,6,17,18,19\}
$$

Solve control problem with n_{1} most coupled states to initial state. Obtain u_{1}^{*}.
Augment state space to n_{2}, use u_{1}^{*} as initial guess. Obtain u_{2}^{*}.
Repeat until affect of augmenting state space on cost is less than tolerance.

Numerical results - including $\exp (i \omega T)$

Here we have the state transition of the two particle system

$$
|1,2\rangle \rightarrow|1,3\rangle
$$

(a) State occupancy vs. time

(b) Optimal control with refinement

Numerical results - excluding $\exp (i \omega T)$

Here we have the state transition of the two particle system

$$
|1,2\rangle \rightarrow|1,3\rangle
$$

(c) State occupancy vs. time

(d) Optimal control with refinement

Numerical results - two particles

Here we have the state transition of the two particle system

$$
|1,2\rangle \rightarrow|1,4\rangle
$$

(e) State occupancy vs. time

(f) Optimal control (50 modes)

Numerical results - four particles

Here we have the state transition of the four particle system

$$
|1,2,3,4\rangle \rightarrow|1,2,3,5\rangle \text { state } 1 \text { to state } 2
$$

(g) State occupancy vs. time

(h) Optimal control (50 modes)

Numerical results - four particles

Here we have the state transition of the four particle system

$$
|1,2,3,4\rangle \rightarrow|1,2,3,6\rangle \text { state } 1 \text { to state } 4
$$

(i) State occupancy vs. time

(j) Optimal control (50 modes)

Continuing work

- Extension to Gauß-Runge-Kutta time stepping

Continuing work

- Extension to Gauß-Runge-Kutta time stepping
- Automated update to state basis

Continuing work

- Extension to Gauß-Runge-Kutta time stepping
- Automated update to state basis
- Incorporation of spin

Continuing work

- Extension to Gauß-Runge-Kutta time stepping
- Automated update to state basis
- Incorporation of spin
- SR1-Trust region method may require less CPU time

Thank you for your attention

