Time-optimal control of the wave equation

Karl Kunisch, Graz Daniel Wachsmuth, Linz

Graz, October 2011

1. Time-optimal control problem

- 2. Penalized problem
- 3. Parametric problem, numerical results

 $\min au$

subject to the wave equation

$$y'' - \Delta y = \chi_{\omega} u \qquad \text{on } (0, \tau) \times \Omega$$
$$y = 0 \qquad \text{on } (0, \tau) \times \Gamma$$
$$y(0) = y_1$$
$$y'(0) = y_2$$

the terminal constraints

$$y(\tau) = z_1$$
, $y'(\tau) = z_2$

and the control constraints

$$\|u(t)\|_{L^2(\Omega)} \leq \gamma$$
 on $(0, \tau)$.

Data: $\omega \subset \Omega$, y_1 , $z_1 \in H^1_0(\Omega)$, y_2 , $z_2 \in L^2(\Omega)$, $\gamma > 0$.

1

Theorem: If there is a feasible control, then the time-optimal control problem is solvable.

Important ingredience: control constraints have non-empty interior in $L^{\infty}(0,T; L^{2}(\Omega))$.

Box constraints $|u(x, t)| \leq \gamma$: Existence of solutions for approximate problem

$$\|y(1)-z\|\leq\epsilon$$

for all $\epsilon > 0$.

References: Fattorini, Lions, Zuazua, Lempio, Leugering, Gugat, ...

Definition: System is *controllable* in time T if there exists for all initial values (y_1, y_2) and terminal values (z_1, z_2) a control, such that the associated state fulfills the initial and terminal conditions.

Geometrical condition:

[Bardos, Lebeau, Rauch]

System is controllable in time T if every ray in Ω reflected on Γ hits ω within time T.

Observability: Controllability is equivalent to observability for adjoint equation. [Lions]

The system is controllable in time T > 0 if there is a c > 0 such that

$$\|p(1)\|_{L^2}^2 + \|p'(1)\|_{H^{-1}}^2 \le c \int_0^T \int_\omega |p(x,t)|^2 dx dt$$

for all solutions p of the adjoint equation $p'' - \Delta p = 0$.

Time transformation: $t \rightarrow t/\tau$, I := (0, 1)

Vector notation:
$$\mathbf{y} = \begin{pmatrix} y \\ y' \end{pmatrix}$$
, $\mathbf{A} = \begin{pmatrix} 0 & l \\ \Delta & 0 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 \\ \chi_{\omega} \end{pmatrix}$,
Scaling of velocity component: $\Theta_{\tau} = \begin{pmatrix} 0 \\ \tau \end{pmatrix}$

Wave equation:

$$\mathbf{y}' = \tau (\mathbf{A}\mathbf{y} + \mathbf{B}u)$$

 $\mathbf{y}(0) = \Theta_{\tau}\mathbf{y}_{0}$

This is a wave equation in the first component of **y**.

Theorem: Let $\mathbf{y}_0 \in H_0^1(\Omega) \times L^2(\Omega)$, $u \in L^2(0, T; L^2(\omega))$ be given. Then the wave equation admits a unique weak solution \mathbf{y} that satisfies

 $\mathbf{y} \in C(I; H_0^1(\Omega) \times L^2(\Omega))$

with

$$\mathbf{y}_t \in L^2(I; L^2(\Omega) \times H^{-1}(\Omega)).$$

 \rightarrow amplitude component one order more regular than velocity component.

Fixed-interval problem:

 $\min au$

subject to

 $\mathbf{y}' = \tau(\mathbf{A}\mathbf{y} + \mathbf{B}u)$ $\mathbf{y}(0) = \Theta_{\tau}\mathbf{y}_{0}, \quad \mathbf{y}(1) = \Theta_{\tau}\mathbf{z},$ $\|u(t)\|_{L^{2}(\Omega)} \leq \gamma \quad \text{on } (0, 1).$

The resulting problem is clearly **non-linear and non-convex**.

Let $(\tau^*, \mathbf{y}^*, u^*)$ be solutions of the transformed problem. Let the system be controllable for τ^* .

Bang-bang principle: Then there exists $\mathbf{p}^* \neq 0$ that fulfills

$$-\mathbf{p}'= au^*\mathbf{A}^*\mathbf{p}$$

and

 $\tau^*(\mathbf{B}^*\mathbf{p}, u-u^*) \ge 0$ for all admissible u.

[Fattorini]

Note: The adjoint equation is a wave equation in \mathbf{p}_2 .

Fritz John type condition: Additionally, there is $\lambda_0 \ge 0$ such that

$$\lambda_0 + \langle \mathbf{A}\mathbf{y}^* + \mathbf{B}u^*$$
, $\mathbf{p}^*
angle + (y_2, \mathbf{p}_2^*(0))_{L^2} - (z_2, \mathbf{p}_2^*(1))_{L^2} = 0$

Question: $\lambda_0 > 0$?

- 1. Time-optimal control problem
- 2. Penalized problem
- 3. Parametric problem, numerical results

Let $\epsilon > 0$ be given. Consider the penalized problem:

$$\min \tau \left(1 + \frac{\epsilon}{2} \|u\|_{L^2}^2\right) + \frac{1}{2\epsilon} \|\mathbf{y}(1) - \Theta_{\tau} \mathbf{z}\|_{L^2 \times H^{-1}}^2$$

subject to

$$\mathbf{y}' = au(\mathbf{A}\mathbf{y} + \mathbf{B}u),$$

 $\Theta_{ au}\mathbf{y}(0) = \mathbf{y}_{0},$

and

$$\|u(t)\|_{L^2(\Omega)} \leq \gamma$$
 on $(0, 1)$.

Let the original time-optimal control problem be solvable with solution $(\tau^*, \mathbf{y}^*, u^*)$.

Convergence: $\tau_{\epsilon} \rightarrow \tau^*$, weak^{*} limits of $(\mathbf{y}_{\epsilon}, u_{\epsilon})$ are solutions of time-optimal control problem.

Sketch of proof:

$$\tau_{\epsilon} \left(1 + \frac{\epsilon}{2} \| u_{\epsilon} \|_{L^{2}(I;L^{2}(\omega))}^{2} \right) + \frac{1}{2\epsilon} \| \mathbf{y}_{\epsilon}(1) - \Theta_{\tau_{\epsilon}} \mathbf{z} \|_{L^{2} \times H^{-1}}^{2}$$
$$\leq \tau^{*} \left(1 + \frac{\epsilon}{2} \| u^{*} \|_{L^{2}(I;L^{2}(\omega))}^{2} \right).$$

 $\limsup \tau_{\epsilon} \leq \tau^*$

Necessary optimality condition: There exists \mathbf{p}_{ϵ} such that the following system is fulfilled:

 $-\mathbf{p}_{\epsilon,t} = \tau_{\epsilon} \mathbf{A}^{*} \mathbf{p}_{\epsilon}$ $\mathbf{p}_{\epsilon}(1) = \frac{1}{\epsilon} \begin{pmatrix} \mathbf{y}_{\epsilon,1}(1) - z_{1} \\ (-\Delta)^{-1} (\mathbf{y}_{\epsilon,2}(1) - \tau_{\epsilon} z_{2}) \end{pmatrix}$ $\tau_{\epsilon} (\epsilon u^{*} + \mathbf{B}^{*} \mathbf{p}_{\epsilon}, \ u - u_{\epsilon}) \geq 0 \text{ for all admissible } u.$ $1 + \frac{\epsilon}{2} \|u_{\epsilon}\|_{L^{2}}^{2} + \langle \mathbf{A} \mathbf{y}_{\epsilon} + \mathbf{B} u_{\epsilon}, \ \mathbf{p}_{\epsilon} \rangle + (y_{2}, \mathbf{p}_{\epsilon,2}(0))_{L^{2}} - (z_{2}, \mathbf{p}_{\epsilon,2}(1))_{L^{2}} = 0$

Question: Which of these equations remain valid if $\epsilon \rightarrow 0$?

Penalization term:

$$\|\mathbf{y}(1) - \Theta_{\tau} \mathbf{z}\|_{L^{2} \times H^{-1}}^{2} = \|y(1) - \mathbf{z}_{1}\|_{L^{2}}^{2} + \left((-\Delta)^{-1}(y'(1) - \tau \mathbf{z}_{2}), y'(1) - \tau \mathbf{z}_{2}\right)_{L^{2}}$$

 \rightarrow velocity component is smoothed

Terminal value of adjoint equation:

$$\mathbf{p}_{\epsilon}(1) = \frac{1}{\epsilon} \begin{pmatrix} \mathbf{y}_{\epsilon,1}(1) - z_1 \\ (-\Delta)^{-1} (\mathbf{y}_{\epsilon,2}(1) - \tau_{\epsilon} z_2) \end{pmatrix}$$

 \rightarrow amplitude component p_2 is one order smoother than velocity component $p_1.$

Integrated transversality condition:

$$1 + \frac{\epsilon}{2} \|u_{\epsilon}\|_{L^{2}}^{2} + \langle \mathbf{A}\mathbf{y}_{\epsilon} + \mathbf{B}u_{\epsilon}, \, \mathbf{p}_{\epsilon} \rangle + (y_{2}, \mathbf{p}_{\epsilon,2}(0))_{L^{2}} - (z_{2}, \mathbf{p}_{\epsilon,2}(1))_{L^{2}} = 0$$

Time derivative of integrand: If $\mathbf{y}_0 \in H^2 \times H_0^1$ then we have

$$\frac{d}{dt}\left(\frac{\epsilon}{2}\|u_{\epsilon}(t)\|_{L^{2}}^{2}+\langle\mathbf{A}\mathbf{y}_{\epsilon}(t)+\mathbf{B}u_{\epsilon}(t),\,\mathbf{p}_{\epsilon}(t)\rangle\right)=0$$

Point-wise transversality condition: If $\mathbf{y}_0 \in H^2 \times H_0^1$ then it holds

$$1 + \frac{\epsilon}{2} \|u_{\epsilon}(t)\|_{L^{2}}^{2} + \langle \mathbf{A}\mathbf{y}_{\epsilon}(t) + \mathbf{B}u_{\epsilon}(t), \mathbf{p}_{\epsilon}(t) \rangle$$
$$+ (y_{2}, \mathbf{p}_{\epsilon,2}(0))_{L^{2}} - (z_{2}, \mathbf{p}_{\epsilon,2}(1))_{L^{2}} = 0 \quad \forall t \in [0, 1].$$

Important relation: If $\mathbf{z} \in H^2 \times H_0^1$ then it holds

$$(\mathbf{A}\mathbf{y}_{\epsilon}(1), \mathbf{p}_{\epsilon}(1))_{L^{2}(\Omega)^{2}} = \langle \mathbf{A}\Theta_{\tau_{\epsilon}}\mathbf{z}, \mathbf{p}_{\epsilon}(1) \rangle.$$

 \rightarrow we can replace $\mathbf{y}_{\epsilon}(1)$ by $\Theta_{\tau_{\epsilon}}\mathbf{z}$ here, although in general $\mathbf{y}_{\epsilon}(1) \neq \Theta_{\tau_{\epsilon}}\mathbf{z}!$

End-time transversality condition: If \mathbf{y}_0 , $\mathbf{z} \in H^2 \times H^1_0$ then we have

$$1 + \frac{\epsilon}{2} \|u_{\epsilon}(1)\|_{L^{2}}^{2} + \langle \mathbf{A}\Theta_{\tau_{\epsilon}}\mathbf{z} + \mathbf{B}u_{\epsilon}(1), \mathbf{p}_{\epsilon}(1) \rangle + (y_{2}, \mathbf{p}_{\epsilon,2}(0))_{L^{2}} - (z_{2}, \mathbf{p}_{\epsilon,2}(1))_{L^{2}} = 0.$$

 \rightarrow this condition has the lowest regularity requirements on the solution.

Lemma 1:

$$(u_{\epsilon}(t), \mathbf{B}^* \mathbf{p}_{\epsilon}(t))_{L^2(\omega)} = -\epsilon \|u_{\epsilon}(t)\|_{L^2(\omega)}^2 - \gamma \|\epsilon u_{\epsilon}(t) + \mathbf{B}^* \mathbf{p}_{\epsilon}(t)\|_{L^2(\omega)}$$

Lemma 2: Let $\mathbf{z} \in H^2 \times H_0^1$. Then there exists $\overline{\epsilon} > 0$ and $\delta > 0$ such that

$$\|\mathbf{p}_{\epsilon}(1)\|_{L^{2} imes H^{-1}}\geq\delta$$

for all $\epsilon \in (0, \overline{\epsilon}]$,

Let $\tau_{\epsilon} \to \tau^*$, $(\mathbf{y}_{\epsilon}, u_{\epsilon}) \rightharpoonup^* (\tilde{\mathbf{y}}, \tilde{u})$ in $L^{\infty}(I; H^1_0 \times L^2) \times L^{\infty}(L^2)$.

Let the system be controllable for some $au' < au^*$.

Theorem: Assume that \tilde{u} is bang-bang or the sequence $\{\frac{p_{\epsilon}(1)}{\|p_{\epsilon}(1)\|_{H^{-1}\times L^{2}}}\}$ is bounded in $L^{2} \times H_{0}^{1}$. Then the sequence $\{\frac{p_{\epsilon}}{\|p_{\epsilon}(1)\|_{H^{-1}\times L^{2}}}\}$ has a subsequence converging weakly* in $L^{\infty}(I; L^{2} \times H^{-1})$ to $\tilde{\mathbf{p}} \neq 0$ that satisfies

$$-\widetilde{\mathbf{p}}' = \mathbf{A}^*\widetilde{\mathbf{p}}$$

and

$$(\mathbf{B}^*\tilde{\mathbf{p}}, u - \tilde{u}) \ge 0$$
 for all admissible u .

Controllability is essential to prove $\tilde{p} \neq 0$.

Theorem (ctd): Let in addition \tilde{u} be continuous at t = 1. If $\{\mathbf{p}_{\epsilon}(1)\}$ is bounded in $L^2 \times H_0^1$ then

 $1 + \langle \mathbf{A}\Theta_{\tau^*}\mathbf{z} + \mathbf{B}\tilde{u}(1), \ \tilde{\mathbf{p}}(1) \rangle + (y_2, \tilde{\mathbf{p}}_2(0))_{L^2} - (z_2, \tilde{\mathbf{p}}_2(1))_{L^2} = 0.$ Otherwise if $\{\frac{\mathbf{p}_{\epsilon}(1)}{\|\mathbf{p}_{\epsilon}(1)\|_{H^{-1} \times L^2}}\}$ is bounded in $L^2 \times H_0^1$ then

 $0 + \langle \mathbf{A} \Theta_{\tau^*} \mathbf{z} + \mathbf{B} \tilde{u}(1), \ \tilde{\mathbf{p}}(1) \rangle + (y_2, \tilde{\mathbf{p}}_2(0))_{L^2} - (z_2, \tilde{\mathbf{p}}_2(1))_{L^2} = 0.$

Missing case: What if the norm $\|\mathbf{p}_{\epsilon}(1)\|_{L^{2} \times H_{0}^{1}}$ tends faster to infinity than $\|\mathbf{p}_{\epsilon}(1)\|_{H^{-1} \times L^{2}}$?

Technique from Barbu '84 for parabolic equations.

Consider the case $\omega = \Omega$, $\mathbf{z} = 0$, $y_2 = 0$ (from rest to origin). Then $\mathbf{B}^*\mathbf{p} = \mathbf{p}_2$.

The transversality condition reads

$$1 + \frac{\epsilon}{2} \|u_{\epsilon}(1)\|_{L^{2}(\omega)}^{2} + (u_{\epsilon}(1), \mathbf{p}_{\epsilon}(1))_{L^{2}(\Omega)} = 0.$$

By Lemma 1 we obtain

$$1 + \frac{\epsilon}{2} \| u_{\epsilon}(1) \|_{L^{2}(\Omega)}^{2} = -(u_{\epsilon}(1), \mathbf{p}_{\epsilon,2}(1))_{L^{2}(\Omega)}$$

$$= \epsilon \| u_{\epsilon}(1) \|_{L^{2}(\Omega)}^{2} + \gamma \| \epsilon u_{\epsilon}(1) + \mathbf{p}_{\epsilon,2}(1) \|_{L^{2}(\Omega)}$$

$$\geq \epsilon \| u_{\epsilon}(1) \|_{L^{2}(\Omega)}^{2} + \gamma \| \mathbf{p}_{\epsilon,2}(1) \|_{L^{2}(\Omega)} - \gamma \| \epsilon u_{\epsilon}(1) \|_{L^{2}(\Omega)},$$

 $\rightarrow \{\mathbf{p}_{\epsilon,2}(1)\}$ bounded in $L^2(\Omega)$. What about $\mathbf{p}_{\epsilon,1}$?

Consider time-optimal control of the ODE system

$$y' = Ay + Bu.$$

They proved fulfillment of Zowe-Kurcyusz condition directly for ODE-system (A, B) if

- one component i^* is inactive for a small intervall
- system (A, B_{i^*}) is controllable

Then KKT-System is necessary, which includes transversality condition.

- 1. Time-optimal control problem
- 2. Penalized problem
- 3. Parametric problem, numerical results

Let $\epsilon > 0$ and $\tau > 0$ be given. Consider the penalized problem:

$$\min \tau (1 + \frac{\epsilon}{2} \|u\|_{L^2}^2) + \frac{1}{2\epsilon} \|\mathbf{y}(1) - \Theta_{\tau} \mathbf{z}\|_{L^2 \times H^{-1}}^2$$

subject to

$$\mathbf{y}' = au(\mathbf{A}\mathbf{y} + \mathbf{B}u),$$
 $\Theta_{ au}\mathbf{y}(0) = \mathbf{y}_{0},$

and

$$\|u(t)\|_{L^2(\Omega)} \leq \gamma$$
 on $(0, 1)$.

Existence: Problem is strictly convex w.r.t. u, unique solution $u_{\tau,\epsilon}$.

Define

$$\mathcal{V}(\tau) := \tau (1 + \frac{\epsilon}{2} \| u_{\tau,\epsilon} \|_{L^2}^2) + \frac{1}{2\epsilon} \| \mathbf{y}_{\tau,\epsilon}(1) - \Theta_{\tau} \mathbf{z} \|_{L^2 \times H^{-1}}^2$$

Then

$$\frac{d}{d\tau}\mathcal{V}(\tau) = 1 + \frac{\epsilon}{2} \|u_{\tau,\epsilon}\|_{L^2}^2 + \langle \mathbf{A}\mathbf{y}_{\tau,\epsilon} + \mathbf{B}u_{\tau,\epsilon}, \mathbf{p}_{\tau,\epsilon} \rangle + (y_2, \mathbf{p}_{\tau,\epsilon,2}(0))_{L^2} - (z_2, \mathbf{p}_{\tau,\epsilon,2}(1))_{L^2}$$

Let us assume that there are positive constants τ_0 , C_0 such that for all $\tau > \tau_0$ there exists a control $u_{0,\tau}$ that is admissible for the original time-optimal control problem and satisfies

 $||u_{0,\tau}||_{L^{\infty}(I;L^{2}(\omega))} \leq C_{0}\tau^{-1}.$

Then it holds

$$ert \mathcal{V}(au) - au) ert \leq c \ \epsilon \ au^{-1},$$
 $ert rac{d}{d au} \mathcal{V}(au) - 1 ert \leq c \ au^{-1/2}.$

Algorithm: Three nested iterations.

- Outer-most loop: adapt ϵ (refine discretization if necessary).
- Middle loop: solve for au, gradient algorithm for \mathcal{V} .
- Inner loop: solve the parametric problem for $u_{\tau,\epsilon}$ for fixed τ,ϵ .

Observations:

- Semi-smooth Newton method applied to penalized problem did not converge (system matrix is non-symmetric)
- Sometimes $\tau = 0$ is a local minimum
- SSN converges faster for pointwise box-constraints then for the constraints used in the talk

Challenges:

- The function $\mathcal{V}(\tau)$ has many local minima.
- Some of these minima do not disappear for $\epsilon \to 0$.
- When do mesh refinement?

Data: $\Omega = (0, 1)^2$, $y_1 = 4xy(1 - x)(1 - y)$, $y_2 = z_1 = z_2 = 0$, $\gamma = 1$. **Discretization:** FEM P1/P0/P0 for amplitude/velocity/controls; C-N

Summary:

- Strict transversality for time-optimal control is an open problem.
- If strict transversality is not fulfilled, the first-order system is under-determined.

Future work:

- Convergence of semi-smooth Newton for the parametric and the penalized problem
- Investigation of structure of parametric problem
- Analysis of convergence rates

Summary:

- Strict transversality for time-optimal control is an open problem.
- If strict transversality is not fulfilled, the first-order system is under-determined.

Future work:

- Convergence of semi-smooth Newton for the parametric and the penalized problem
- Investigation of structure of parametric problem
- Analysis of convergence rates

Thank you!