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The time-optimal control problem 1

min T
subject to the wave equation
y" — Ay = xuu on (0,7) x 2
y=0 on (0,7) x I
y(0) =wn
y'(0) =y

the terminal constraints

y(m)=z1, y(1)=2=

and the control constraints
|u(t)]2e0) < v on (0, 7).

Data: w C 2, y1, 21 € H3(2), yo, 20 € L?(2), v > 0.
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Existence of solutions 2

Theorem: If there is a feasible control, then the time-optimal control
problem iIs solvable.

Important ingredience: control constraints have non-empty interior in
L>(0, T; L?(£2)).

Box constraints |u(x, t)| < «y: Existence of solutions for approximate
problem

ly(1) =zl <€

for all e > 0.

References: Fattorini, Lions, Zuazua, Lempio, Leugering, Gugat, ...
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Controllability 3

Definition: System is controllable in time T if there exists for all initial
values (y1, ¥») and terminal values (z;, z») a control, such that the
associated state fulfills the initial and terminal conditions.

Geometrical condition: |[Bardos, Lebeau, Rauch]

System is controllable in time T if every ray in 2 reflected on [ hits w
within time T.

Observability: Controllability is equivalent to observability for adjoint
equation. [Lions]

The system is controllable in time T > 0 if there is a ¢ > 0 such that

)
P12 + [P (D)2 < / / p(x, )P dx dt
w

for all solutions p of the adjoint equation p” — Ap = 0.
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Transformation on fixed interval 4

Time transformation: t — t/7, | :=(0,1)

: y 0 |/ 0
Vector notation: y = , A= , B =
y' A O X w
Scaling of velocity component: ©, =
.

Wave equation:
y' = 7(Ay + Bu)

Y(O) — @TYO

This is a wave equation In the first component of y.
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Regularity of solutions of wave equation 5

Theorem: Let yo € H(2) x L2(£2), u € L2(0,T; L?(w)) be given.
Then the wave equation admits a unique weak solution y that satisfies

y € C(I; H3(R2) x L2(£2))

with
ye € L2(1; L?(2) x H1(02)).

— amplitude component one order more reqgular than velocity
component.
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Transformed problem 6

Fixed-interval problem:
min T

subject to
y' = 7(Ay + Bu)

Y(O) = OrYo, y(l) = Oz,

Ju(D)ll22) <v  on(0,1).

The resulting problem is clearly non-linear and non-convex.
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Maximum principle 7

Let (7%, y*, u*) be solutions of the transformed problem. Let the
system be controllable for 7*.

Bang-bang principle: Then there exists p* # 0 that fulfills
_p/ — T*A*p

and
T*(B*p, u— u*) > 0 for all admissible v.

[Fattorini]

Note: The adjoint equation is a wave equation in p-.

Fritz John type condition: Additionally, there i1s A\g > 0 such that

Ao + (Ay* + Bu*, p*) + (v2, p2(0)) 2 — (22, p3(1))2 = 0

Question: \g > 07
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Penalized problem 8

Let € > 0 be given. Consider the penalized problem:

. € 1
min7 (14 Sllul) + - Iy(1) = OrzlFeps
subject to

y' = 7(Ay + Bu),
@’Ty(o) — Yo,

and
lu( 2y <y on(0,1).
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Convergence 9

Let the original time-optimal control problem be solvable with solution
(T*, y*’ U*)

Convergence: 7. — 7%, weak* limits of (ye, u¢) are solutions of
time-optimal control problem.

Sketch of proof:

€ 1
e (1 e Eegzan) + e 19e(D) = OrzlEes
* € * |2
<T (1 T §||U ||L2(/;L2(w))) '

limsup7. < 7°
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Optimality system 10

Necessary optimality condition: There exists p. such that the
following system is fulfilled:

—Pet = TEA* Pe

(1) B 1 ( ye,l(l) — >
P T e () (yen(D) = mez0)

Te(eu™ + B*pe, u— ue) > 0 for all admissible v.

€
1+ §||ue||fz + (AYe + Bue, pe) + (2, Pe2(0)) 12 — (22, Pe2(1)) 2 =0

Question: Which of these equations remain valid if € — 07
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Smoothing of the terminal value 11

Penalization term:
ly(1) =67z 72y 1 = Iy (D) =z |24 ((=4) (V' (1) — 722), ¥/ (1) — T22)

— velocity component is smoothed
Terminal value of adjoint equation:
1) 1 Ye1(1) — 21
P(l) = - _
) € (_A) 1(y€,2(1) — TGZQ)

— amplitude component p» Is one order smoother than velocity
component p;.
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Transversality conditions 12

Integrated transversality condition:

€
L+ Slluell?z + (Aye + Bue, pe) + (v2, Pe2(0)) 12 = (22, Pea(1)) 12 = O

Time derivative of integrand: If yo € H® x Hj then we have

d

dt (%HUe(t)Hfz + (Ay(t) + Bu(t), pe(t)>> =0

Point-wise transversality condition: If yo € H? x H} then it holds

L+ Slluc(8) 7= + (Aye(t) + Buc(t), pe(t))
=+ (y27 pe,2(0))L2 - (227 pe,2(1))L2 =0 Vte [O' 1]
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Transversality conditions 13

Important relation: If z € H? x H} then it holds

(Aye(l)' pe(l))L2(9)2 — <A@T€Zr pe(1)>-

— we can replace y.(1) by ©..z here, although in general y.(1) # ©..2z!

End-time transversality condition: If yo,z € H? x H} then we have

1+ Sllue(D) 2 + (AOrz + Buc(1), pe(1)
+ (2, Pe2(0)) 2 — (22, Pe,2(1)) 2 = 0.

— this condition has the lowest regularity requirements on the solution.
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Preparation for passing to the limit 14

Lemma 1:

(Ue(t)' B*pe(t))Lz(w) — _€||U€(t)||%2(w) _ 'Y||€u€(t) + B*pe(t)HLz(w)

Lemma 2: Let z € H? x Hj. Then there exists € > 0 and § > 0 such
that
Ipe(L)ll2xp-1 =0

for all € € (0, €],
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Passing to limit 15

Let Te — 7%, (Ye, te) —* (§, @) in L®(/; HY x L2) x L>=(L2).

Let the system be controllable for some 7" < 7*.

Theorem: Assume that i 1s bang-bang or the sequence {Hpe(]-p)EH(/iI/-zl L2}
i : 2 1 Pe
is bounded in L= x Hg. Then the sequence {Ilpe(l)HH—leQ} has a

subsequence converging weakly* in L>®(/; L? x H™!) to p # 0 that
satisfies

and
(B*p, u— ) >0 for all admissible u.

Controllability is essential to prove p # 0.
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Passing to limit 16

Theorem (ctd): Let in addition i be continuous at t = 1.

If {pc(1)} is bounded in L2 x Hj then

1+ (A©~z+ Bii(1), p(1)) + (2. P2(0)) 12 — (22, P2(1))2 = 0.

Otherwise if {Hpe(]-p)eu(/_llzlxﬁ} is bounded in L2 x Hj then

0+ (AO-z+ Bii(1), p(1)) + (v2, P2(0)) 2 — (22, P2(1))2 = 0.

Missing case: What if the norm [|pe(1)||, 2,41 tends faster to infinity
than [[pe(1)][ 15127
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Barbu’s technique 17

Technique from Barbu '84 for parabolic equations.

Consider the case w = 2, z= 0, y» = 0 (from rest to origin). Then
B*p = p».
The transversality condition reads
€
1+ 5”“6(1)”%2@;) + (Ue(l)v pe(l))LQ(Q) = 0.
By Lemma 1 we obtain
€
L+ SllueMlTeie) = —(e(1), Pe2(1))20)

= €||U€(1)||i2(_(2) + ’YHGUe(l) + p€,2(1)|lL2(Q)
> €l (D)2 + YIPe (D) — Vllete(Dll 2.

— {pe2(1)} bounded in L2(£2). What about p 1 ?
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Ito & Kunisch ’'10 18

Consider time-optimal control of the ODE system
y' = Ay + Bu.

They proved fulfillment of Zowe-Kurcyusz condition directly for
ODE-system (A, B) if
e one component /* Is inactive for a small intervall

e system (A, Bj+) is controllable

Then KKT-System Is necessary, which includes transversality condition.
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Parametric problem 19

Let € > 0 and 7 > 0 be given. Consider the penalized problem:

| € 1
min7(1 + —||qu2) + —|ly(1) — @TZH%QXH_l
2 2€
subject to

y' = 7(Ay + Bu),
@’Ty(o) = Yo,

and
Ju(ll2) <y on(0,1).

Existence: Problem is strictly convex w.r.t. u, unique solution u; ..
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Value function 20

Define
€ 2 1 2
V(1) =71(1+ §||U7’,€||L2) + 2—€Hym(l) — O7zZ|| {2y 1

Then

d €
_V(T) =1+ EHU’T,EH%Q + <AY7‘,6 + BUT,Ev p’T,€>

dt
+ ()/2, pT,e,Q(O))L2 - (22, pT,€,2(1))L2
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Value function 21

Let us assume that there are positive constants 79, Co such that for all
T > Tg there exists a control ug ~ that is admissible for the original

time-optimal control problem and satisfies

||U0,T||LOO(I;L2(w)) < CoT_l-

Then it holds
V(T)—1)| <ceT !,

a

dTV(T) — 1‘ < cT 2

Daniel Wachsmuth, RICAM Linz



Solution procedure & challenges 22

Algorithm: Three nested iterations.
e Outer-most loop: adapt € (refine discretization if necessary).
e Middle loop: solve for T, gradient algorithm for V.
e Inner loop: solve the parametric problem for u, . for fixed T, €.
Observations:

e Semi-smooth Newton method applied to penalized problem did not
converge (system matrix is non-symmetric)

e Sometimes 7 = 0 is a local minimum

e SSN converges faster for pointwise box-constraints then for the
constraints used in the talk
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Solution procedure & challenges 23

Challenges:
e The function V(1) has many local minima.
e Some of these minima do not disappear for € — 0.

e \When do mesh refinement?
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Results

24

Data: 2=1(0,1)%, y1 =4xy(1 - x) (1 —y), yo=21=2=0, vy = 1.

Discretization: FEM P1/P0/P0 for amplitude/velocity/controls; C-N
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Observed rates: |7 — 7%, ||Ye(1) — O~ z||g-1x12 ~ €~

Boundedness of ||p.(1)|/ 2xm
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Outlook 25

Summary:
e Strict transversality for time-optimal control is an open problem.

e [f strict transversality i1s not fulfilled, the first-order system is
under-determined.

Future work:

e Convergence of semi-smooth Newton for the parametric and the
penalized problem

e |nvestigation of structure of parametric problem

e Analysis of convergence rates
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e Convergence of semi-smooth Newton for the parametric and the
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e |nvestigation of structure of parametric problem

e Analysis of convergence rates

Thank you!
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