POD for Coupled Nonlinear PDE Systems

Stefan Volkwein

Department of Mathematics and Statistics, University of Constance

Joined work with O. Lass and Stefan Trenz

Int. Workshop on Control and Optimization, Graz 2011

(人間) システン イラン

Motivation and Outline

$$\|\bar{u}_{\delta} - \bar{u}_{\delta}^{\ell}\| \leq C \|\zeta_{\delta}^{\ell}\|$$

 $\|\bar{u}-\bar{u}^{\ell}\| < C \|\zeta^{\ell}\|$

• Multi component systems (battery equations)

- PDEs with different types
- nonlinear coupling
- \rightarrow What is a good POD model?
- Optimization and model reduction
 - inexact second-order methods
 - inexactness by model reduction
 - \rightarrow Can we ensure convergence (rate)?
- Nonlinear model reduction
 - nonlinear optimal control
 - solve of reduced-order model
 - \rightarrow Can we apply error estimates?

POD-(D)EIM for coupled systems [Lass/V.'11]

白 ト イヨト イヨト

• Elliptic-parabolic systems: T = 1, $\Omega = (a, b)$

$$y_t - \nabla \cdot (c_1 \nabla y) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q = (0, T) \times \Omega$$
$$-\nabla \cdot (c_2 \nabla p) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q$$
$$-\nabla \cdot (c_3 \nabla q) + \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q$$

• Parameter-dependent nonlinearity: $\mu = (\mu_1, \mu_2) \ge 0$

$$\mathcal{N}(y, p, q; \mu) = \mu_2 \sqrt{y} \sinh(\mu_1(q - p - \ln y))$$

- Boundary conditions: $y_x(t, a) = y_x(t, b) = p(t, a) = p_x(t, b) = 0$, $q_x(t, a) = q(t, b) = 0$
- Discretization: FE (2nd order) and implicit Euler method
- Numerical solution method: (damped) Newton algorithm

Reduced-Order Model (ROM)

Fine model:

(FM)
$$y_t - \nabla \cdot (c_1 \nabla y) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q$$
$$-\nabla \cdot (c_2 \nabla p) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q$$
$$-\nabla \cdot (c_3 \nabla q) + \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q$$

- Idea of ROM: Replace (FM) by ROM, which is reliable (i.e., sufficiently accurate), but fast to evaluate
- Procedure: Galerkin projection of (FM) with appropriate ansatz function containing characteristics of (FM)
- Methods: Reduced-Basis, Proper Orthogonal Decomposition,...
- Efficiency: decouple computation in off- and online phase, where the online phase is independent of discretization of (FM)

イロト イポト イヨト イヨト

POD basis computation

• POD criterium: $\ell \leq \dim(\text{span}\{y(t) \mid t \in [0, T]\})$

$$\min \int_0^T \left\| y(t) - \sum_{i=1}^{\ell} \langle y(t), \psi_i \rangle \psi_i \right\|^2 \mathrm{d}t \quad \text{s.t.} \quad \langle \psi_i, \psi_j \rangle = \delta_{ij}$$

- Inner product: $L^2(\Omega)$ or $H^1(\Omega)$ (+b.c.)
- Solution to optimization problem:

•
$$\mathcal{R}\psi_i = \int_0^T \langle y(t), \psi_i \rangle y(t) \, \mathrm{d}t = \lambda_i \psi_i, \ i = 1, \dots, \ell$$

- $(\mathcal{K}v_i)(t) = \int_0^t \langle y(t), y(\cdot) \rangle v_i \, \mathrm{d}s = \lambda_i v_i(t), \ i = 1, \dots, \ell$
- Relation via SVD: $\psi_i = \int_0^T v_i(t) y(t) dt / \sqrt{\lambda_i}$
- Discrete variant: $\alpha_j = \mathcal{O}(\Delta t)$

$$\min \sum_{j=1}^{N_t} \alpha_j \, \left\| y(t_j) - \sum_{i=1}^{\ell} \langle y(t_j), \psi_i \rangle \, \psi_i \right\|^2 \quad \text{s.t.} \quad \langle \psi_i, \psi_j \rangle = \delta_{ij}$$

• Solution: $YY^{\top}\psi_i = \lambda_i\psi_i$, $Y^{\top}Yv_i = \lambda_iv_i$, $Yv_i = \sqrt{\lambda_i}\psi_i$

ROM: different POD bases for y, p, and q

• Fine model:

$$(\mathsf{FM}) \qquad \begin{array}{l} y_t - \operatorname{div}\left(c_1 \nabla y\right) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q\\ -\operatorname{div}\left(c_2 \nabla p\right) - \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q\\ -\operatorname{div}\left(c_3 \nabla q\right) + \mathcal{N}(y, p, q; \mu) = 0 \quad \text{in } Q \end{array}$$

• FE model for (FM):
$$y^{h}(t) = \sum_{i=1}^{N_{FE}} \bar{y}_{i}(t)\varphi_{i}$$
 etc.
 $M\bar{y}_{t}(t) + S_{c_{1}}\bar{y}(t) - \bar{\mathcal{N}}(\bar{y}(t), \bar{p}(t), \bar{q}(t); \mu) = 0$
 $S_{c_{2}}\bar{p}(t) - \bar{\mathcal{N}}(\bar{y}(t), \bar{p}(t), \bar{q}(t); \mu) = 0$
 $S_{c_{3}}\bar{q}(t) + \bar{\mathcal{N}}(\bar{y}(t), \bar{p}(t), \bar{q}(t); \mu) = 0$

• ROM for (FM):
$$y^{\ell}(t) = \sum_{i=1}^{\ell^{\gamma}} \hat{y}_{i}(t) \psi_{j}^{\gamma}$$
 etc. [Off-/Online]
 $\Psi_{y}^{\top} M \Psi_{y} \hat{y}_{t}(t) + \Psi_{y}^{\top} S_{c_{1}} \Psi_{y} \hat{y}(t) - \Psi_{y}^{\top} \bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$
 $\Psi_{p}^{\top} S_{c_{2}} \Psi_{p} \hat{p}(t) - \Psi_{p}^{\top} \bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$
 $\Psi_{q}^{\top} S_{c_{3}} \Psi_{q} \hat{q}(t) + \Psi_{q}^{\top} \bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$

Problems for the ROM

• ROM for (FM):
$$y^{\ell}(t) = \sum_{i=1}^{\ell^{y}} \hat{y}_{i}(t)\psi_{i}^{y}$$
 etc.
 $M^{\ell^{y}}\hat{y}_{t}(t) + S_{c_{1}}^{\ell^{y}}\hat{y}(t) - \Psi_{y}^{\top}\bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$
 $S_{c_{2}}^{\ell^{p}}\Psi_{p}\hat{p}(t) - \Psi_{p}^{\top}\bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$
 $S_{c_{3}}^{\ell^{q}}\hat{q}(t) + \Psi_{q}^{\top}\bar{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) = 0$

• Problem 1: Imply the reconstruction error

$$\int_0^T \left\| y(t) - \sum_{i=1}^{\ell} \langle y(t), \psi_i \rangle \psi_i \right\|^2 \mathrm{d}t = \sum_{i > \ell} \lambda_i$$

the error relation

$$\|y - y^{\ell}\|^{2} + \|p - p^{\ell}\|^{2} + \|q - q^{\ell}\|^{2} = \mathcal{O}(\sum_{i > \ell} \lambda_{i})$$

• Problem 2: evaluation of the nonlinear terms

$$\Psi_y^{\top} \overline{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu)$$
 etc.

is of complexity $N_{FE} \gg \ell$

・ロン ・回 と ・ヨン ・ヨン

Problem 1: A-priori error estimation

• Problem 1: Imply the reconstruction error

$$\int_0^T \left\| y(t) - \sum_{i=1}^{\ell} \langle y(t), \psi_i \rangle \psi_i \right\|^2 \mathrm{d}t = \sum_{i > \ell} \lambda_i$$

the error relation

$$\|y - y^{\ell}\|^{2} + \|p - p^{\ell}\|^{2} + \|q - q^{\ell}\|^{2} = O\left(\sum_{i > \ell} \lambda_{i}\right)$$

• Theorem: There is a constant C > 0 such that

$$\begin{split} \int_{0}^{T} \|y(t) - y^{\ell}(t)\|^{2} + \|p(t) - p^{\ell}(t)\|^{2} + \|q(t) - q^{\ell}(t)\|^{2} \, \mathrm{d}t \\ & \leq C \big(\|\mathcal{P}^{\ell^{y}} y_{\circ} - y^{\ell}(0)\|^{2} + \|\mathcal{P}^{\ell^{y}} y_{t} - y_{t}\|^{2} \big) \\ & + C \bigg(\sum_{i > \ell^{y}} \lambda_{i}^{y} + \sum_{i > \ell^{p}} \lambda_{i}^{p} + \sum_{i > \ell^{q}} \lambda_{i}^{q} \bigg) \end{split}$$

・ロト ・回ト ・ヨト ・ヨト

Problem 2: evaluation of $\Psi_{\gamma}^{\top} \overline{\mathcal{N}}(\gamma^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu)$

- Replacement: $F(t) = \overline{\mathcal{N}}(y^{\ell}(t), p^{\ell}(t), q^{\ell}(t); \mu) \approx \sum_{i=1}^{m} c_i(t) u_i \in \mathbb{R}^{N_{FE}}.$
- Interpolation condition for 1 ≤ k ≤ m ≪ N_{FE}:

$$\left(F(t)\right)_{\mathbf{p}_{k}}=\left(\sum_{i=1}^{m}c(t)u_{i}\right)_{\mathbf{p}_{k}}=\sum_{i=1}^{m}c_{i}(t)\left(u_{i}\right)_{\mathbf{p}_{k}}, \quad \mathbf{p}_{k}\in\{1,\ldots,N_{\mathsf{FE}}\}$$

- Computation of c(t): $\underbrace{(P^T U)}_{m \times m} c(t) = P^T F(t) \in \mathbb{R}^m$
- Complexity reduction: $P^T F(t) = \overline{\mathcal{N}}(P^T y^{\ell}(t), P^T p^{\ell}(t), P^T q^{\ell}(t); \mu)$
- Choice for *U* (DEIM): POD basis for span $\{F(t_j)\}_{j=0}^{N_t}$.
- Theorem: error estimate for POD-DEIM [compare Chaturantabut/Sorensen]
- Alternative: EIM [Maday, Patera et al.]

イロト イポト イヨト イヨト

Run 1: accuracy (a-priori analysis) for fixed parameter μ

- "Truth" solution: $N_x = 1000$, $N_t = 100$, 2^{nd} order elements
- POD and EIM: $\ell_y = 12$, $\ell_p = 10$, $\ell_q = 10$, $\ell_{DEIM} = \ell_{EIM} = 25$
- Average relative *L*² error (FEM and POD):

	ROM	ROM-EIM	ROM-DEIM
y p q	$\begin{array}{c} 1.6765 \times 10^{-7} \\ 2.8723 \times 10^{-7} \\ 9.7545 \times 10^{-8} \end{array}$	$\begin{array}{c} 1.6763 \times 10^{-7} \\ 2.7560 \times 10^{-7} \\ 9.4332 \times 10^{-8} \end{array}$	$\begin{array}{c} 1.6762 \times 10^{-7} \\ 2.7467 \times 10^{-7} \\ 9.1929 \times 10^{-8} \end{array}$

OPU time:

FEM	POD	EIM	DEIM	ROM	ROM-EIM	ROM-DEIM
18.20	0.20	0.19	0.03	6.03	0.24 ~(pprox1/75)	0.48

ヘロン 人間 とくほど くほどう

Run 2: multiple parameters

- Sample set: $\mu_{sample} \in \{1,2\} \times \{1,2\}$
- Test set: $\mu_{\textit{test}} \in \{0.5, 1.5, 2.5, 3\} \times \{0.5, 1.5, 2.5, 3\}$
- POD and EIM: $\ell_y = 20$, $\ell_p = 18$, $\ell_q = 18$, $\ell_{EIM} = \ell_{DEIM} = 40$
- CPU time:

FEM	POD	EIM	DEIM	ROM	ROM-EIM	ROM-DEIM
~ 18	0.54	0.74	0.09	~ 7.50	~ 0.30	~ 0.60

• Average relative L^2 error:

ROM based inexact/multilevel SQP [Kahlbacher/V.'11]

< ≣⇒

→

SQP framework

• Infinite dimensional optimization:

(P)
$$\min J(x)$$
 s.t. $e(x) = 0$

- Lagrange functional for (P): $\mathcal{L}(x,p) = J(x) + \langle e(x), p \rangle$
- (Local) SQP method: at $z_k = (x_k, p_k)$ solve

$$(\mathbf{QP}^k) \qquad \begin{cases} \min_{x_{\delta}} \mathcal{L}_x(z_k) x_{\delta} + \frac{1}{2} \mathcal{L}_{xx}(z_k) (x_{\delta}, x_{\delta}) \\ \text{s.t. } e(x_k) + e'(x_k) x_{\delta} = 0 \end{cases}$$

• KKT system: solution \bar{x}_{δ} to (\mathbf{QP}^k) is characterized by

$$\underbrace{\begin{pmatrix} \mathcal{L}_{xx}(z_k) & e'(x_k)^* \\ e'(x_k) & 0 \end{pmatrix}}_{e'(x_k)} \underbrace{\begin{pmatrix} \bar{x}_{\delta} \\ \bar{p}_{\delta} \end{pmatrix}}_{e} = \underbrace{-\begin{pmatrix} \mathcal{L}_x(z_k) \\ e(x_k) \end{pmatrix}}_{e'(x_k)}$$

 $A_k \quad \cdot \quad \overline{z}_{\delta} = \qquad b_k$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Inexact SQP by using POD or RB

- KKT system: inexact solve of $A_k \bar{z}_{\delta} = b_k$ by discretization
- Discretization: (POD or RB or BT or...) model reduction

$$A_k^\ell \bar{z}_\delta^\ell = b_k^\ell \in \mathbb{R}^n, \quad n = n(\ell)$$

• Convergence of (local) SQP method: \bar{z}_{δ}^{ℓ} reduced-order solution

$$\|A_k\mathcal{P}ar{z}_\delta^\ell-b_k\|=\mathcal{O}ig(\|\mathcal{L}'(z_k)\|^qig),\quad q\in[1,2],$$

with prolongation $\ensuremath{\mathcal{P}}$

- Rate of convergence: superlinear (1 < q < 2), quadratic (q = 2)
- Control of reduced-order approach:

$$\|A_k \mathcal{P} ar{z}_\delta^\ell - b_k\| \simeq \|ar{z}_\delta - \mathcal{P} ar{z}_\delta^\ell\| \simeq \|\mathcal{L}'(z_k)\|^q$$

- 4 回 ト 4 ヨ ト - 4 ヨ ト

Multilevel approach with reduced-order models

- Convergence criterium: $\|A_k \mathcal{P} \bar{z}_{\delta}^{\ell} b_k\| \simeq \|\bar{u}_{\delta} \bar{u}_{\delta}^{\ell}\| < \text{TOL}$
- A-posteriori error [Tröltzsch/V.'09]:

$$\|ar{u}_{\delta}-ar{u}^{\ell}_{\delta}\|\simeq \|\underbrace{\mathcal{L}_{uy}(z_k) ilde{y}_{\delta}+\mathcal{L}_{uu}(z_k)ar{u}^{\ell}_{\delta}+e_u(x_k)^* ilde{p}_{\delta}+\mathcal{L}_u(z_k)}_{:=-ar{\zeta}^{\ell}}\|$$

with $\|ar{\zeta}^\ell\| o 0$ for $\ell o \infty$ (theoretically [Studinger/V.'11])

- Convergence of $\|\bar{\zeta}^{\ell}\|$: no rate, basis dependent [Hinze/V.'08]
- POD basis: combination with Optimality-System POD [V.'11]
- Alternatives via nonlinear optimization: Trust-Region POD [Arian/Fahl/Sachs'00, Schu/Sachs'07]
- Combination with adaptivity: [Clever/Lang/Ulbrich/Ziems]

A B > A B >

POD a-posteriori error estimation for nonlinear problems [Lass/Trenz/V.'1?]

Nonlinear optimal control problem

• Optimal control problem:

$$\min J(y,\mu) = \frac{1}{2} \int_{\Omega} |y(T,\cdot) - y_{\Omega}|^{2} dx + \frac{1}{200} \sum_{i=1}^{2} |\mu_{i}|^{2}$$
(P)
s.t.
$$\begin{cases} y_{t} - \Delta y + \sinh\left(y\sum_{i=1}^{2} \mu_{i} b_{i}\right) = f, \ \frac{\partial y}{\partial n} = 0, \ y(0,\cdot) = y_{o} \\ \mu \in \mathcal{D}_{ad} = \left\{\mu \in \mathbb{R}^{2} \mid 0 \leq \mu\right\} \end{cases}$$

- Control-to-state mapping: $\mathcal{D}_{ad} \ni \mu \mapsto y = \mathcal{G}(\mu)$
- Reduced cost: $\hat{J}(\mu) = J(G(\mu), \mu)$
- Reduced problem: $\min_{\mu \in \mathcal{D}_{ad}} \hat{J}'(\mu)$ with Hessian $\hat{J}''(\mu) \in \mathbb{R}^{2 \times 2}$

イロン イヨン イヨン イヨン

- Reduced problem: $\min_{\mu \in \mathcal{D}_{ad}} \hat{J}'(\mu)$ with Hessian $\hat{J}''(\mu) \in \mathbb{R}^{m \times m}$
- A-posteriori estimate [Kammann/Tröltzsch'11]: $\bar{\mu}$ optimal, $\bar{\mu}^{\ell}$ POD

$$\|ar{\mu}-ar{\mu}^\ell\|\leq rac{2}{\lambda_{\min}}\,\|\zeta^\ell(ar{\mu}^\ell)\|$$

where $\lambda_{\min} = \min\{\lambda \,|\, \lambda \text{ eigenvalue of } \hat{J}''(\bar{\mu})\}$ depends on $\bar{\mu}$

- Heuristic algorithm:
 - gradient-based method with second-order information
 - estimate λ_{\min} from BFGS matrix evaluated at $ar{\mu}^\ell$

	POD optimization	FE optimization
$2 \ \zeta^{\ell}\ /\lambda_{\min}$	$1.787 \cdot 10^{-3}$	_
$\ \bar{\mu}_h - \bar{\mu}^\ell\ $	$1.277 \cdot 10^{-3}$	_
λ_{\min}	$4.952 \cdot 10^{-2}$	$4.948 \cdot 10^{-2}$
CPU time	99 s	916 s

≣ ▶

Conclusion and References

- efficient POD-(D)EIM for coupled system
- use of a-posteriori estimates at each level of the SQP or for the nonlinear problem (POD and Reduced Basis)
- Kahlbacher/V.: POD a-posteriori error based inexact SQP method for bilinear elliptic optimal control problems. To appear in M2AN
- Kammann: Modellreduktion und Fehlerabschätzung bei parabolischen Optimalsteuerproblemen. Diploma thesis, 2010
- Lass/V.: POD Galerkin schemes for nonlinear elliptic-parabolic systems. Submitted 2011
- Studinger: *tba*. Diploma thesis, 2011
- Tröltzsch/V.: POD a-posteriori error estimates for linear-quadratic optimal control problems. COAP, 44:83-115, 2009
- V.: Optimality system POD and a-posteriori error analysis for linear-quadratic problems. Submitted 2011