A general theorem on error estimates with application to optimal control

Fredi Tröltzsch

Technische Universität Berlin

Workshop on Control and Optimization of PDEs
Mariatrost, October 10-14, 2011

Matheon

Joint work with

Eduardo Casas

Outline

- A control problem for a quasilinear elliptic equation
- Nonconvex optimization problem in Banach space
- Main result on error estimates
- Application to the control problem

An elliptic control problem

(P)

$$
\begin{aligned}
& \min J(u):=\int_{\Omega} L\left(x, y_{u}(x), u(x)\right) d x, \\
& \alpha \leq u(x) \leq \beta \text { for a.e. } x \in \Omega,
\end{aligned}
$$

where y_{u} is the solution of the quasilinear state equation

$$
\begin{array}{rlrll}
-\operatorname{div}[a(x, y(x)) \nabla y(x)]+f(x, y(x)) & =u(x) & \text { in } \Omega \\
y(x) & =0 & & \text { on } \Gamma .
\end{array}
$$

An elliptic control problem

(P)

$$
\begin{aligned}
& \min J(u):=\int_{\Omega} L\left(x, y_{u}(x), u(x)\right) d x, \\
& \alpha \leq u(x) \leq \beta \text { for a.e. } x \in \Omega,
\end{aligned}
$$

where y_{u} is the solution of the quasilinear state equation

$$
\begin{array}{rlrll}
-\operatorname{div}[a(x, y(x)) \nabla y(x)]+f(x, y(x)) & =u(x) & \text { in } \Omega \\
y(x) & =0 & & \text { on } \Gamma .
\end{array}
$$

Under associated assumptions, the mapping $u \mapsto y_{u}$ is of class C^{2} from $L^{2}(\Omega)$ to $C(\bar{\Omega}) \cap H_{0}^{1}(\Omega)$. Therefore, the functional J is of class C^{2} in $L^{\infty}(\Omega)$.

Related work

We are interested in sharp error estimates for a FE approximation of this problem. For elliptic control problems, there is an extensive list of references.

Arada, Casas, T.	COAP 2002	semilinear, distributed control
Casas, Mateos, T.	COAP 2005	semilinear, boundary control
Meyer, Rösch	SICON 2004	semilinear, superconvergence
Hinze	COAP 2005,	linear, variational discretization
Deckelnick, Hinze	SINUM 2007	state constraints, var. discret.
Casas, T.	SICON 2009	quasilinear, second-order cond.
Casas, T.	ESAIM COCV	quasilinear, FE estimates
Deckelnick, Günter, Hinze	SICON 2009	Dirichlet boundary control
Casas, Dhamo	COAP	quasilinear, boundary control

A general problem

(\mathcal{P}) $\min _{u \in \mathcal{K}} J(u)$.

A general problem

$$
(\mathcal{P}) \quad \min _{u \in \mathcal{K}} J(u) .
$$

- Banach space $\left\{U_{\infty},\|\cdot\|_{\infty}\right\}$, Hilbert space $\left\{U_{2},\|\cdot\|_{2}\right\}$ Continuous embedding $U_{\infty} \subset U_{2}$; possible choice $U_{\infty}=U_{2}$

A general problem

$$
(\mathcal{P}) \quad \min _{u \in \mathcal{K}} J(u) .
$$

- Banach space $\left\{U_{\infty},\|\cdot\|_{\infty}\right\}$, Hilbert space $\left\{U_{2},\|\cdot\|_{2}\right\}$ Continuous embedding $U_{\infty} \subset U_{2}$; possible choice $U_{\infty}=U_{2}$
- $J: U_{\infty} \longrightarrow \mathbb{R}$

A general problem

$$
(\mathcal{P}) \quad \min _{u \in \mathcal{K}} J(u) .
$$

- Banach space $\left\{U_{\infty},\|\cdot\|_{\infty}\right\}$, Hilbert space $\left\{U_{2},\|\cdot\|_{2}\right\}$ Continuous embedding $U_{\infty} \subset U_{2}$; possible choice $U_{\infty}=U_{2}$
- $J: U_{\infty} \longrightarrow \mathbb{R}$
- $\mathcal{K} \subset U_{\infty}$ nonempty and convex, closed in U_{2};

Assume for simplicity boundedness of \mathcal{K} in U_{2}.

A general problem

$$
(\mathcal{P}) \quad \min _{u \in \mathcal{K}} J(u) .
$$

- Banach space $\left\{U_{\infty},\|\cdot\|_{\infty}\right\}$, Hilbert space $\left\{U_{2},\|\cdot\|_{2}\right\}$

Continuous embedding $U_{\infty} \subset U_{2}$; possible choice $U_{\infty}=U_{2}$

- $J: U_{\infty} \longrightarrow \mathbb{R}$
- $\mathcal{K} \subset U_{\infty}$ nonempty and convex, closed in U_{2};

Assume for simplicity boundedness of \mathcal{K} in U_{2}.
(A1) Lower semicontinuity of J

$$
\left\{u_{k}\right\}_{k=1}^{\infty} \subset \mathcal{K} \text { and } u_{k} \rightharpoonup u \text { in } U_{2} \Rightarrow J(u) \leq \liminf _{k \rightarrow \infty} J\left(u_{k}\right)
$$

Theorem (Existence)

Under these assumptions, (\mathcal{P}) has at least one solution.

Theorem (Existence)

Under these assumptions, (\mathcal{P}) has at least one solution.
Local solution of $(\mathcal{P}): \quad \bar{u} \in \mathcal{K}$ such that, with some $\varepsilon>0$,

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{K} \cap\left\{u \in U_{\infty}:\|u-\bar{u}\|_{\infty}<\varepsilon\right\} .
$$

If analogously $J(\bar{u})<J(u)$ for $u \neq \bar{u}$, then \bar{u} is a strict local solution.

Theorem (Existence)

Under these assumptions, (\mathcal{P}) has at least one solution.
Local solution of $(\mathcal{P}): \quad \bar{u} \in \mathcal{K}$ such that, with some $\varepsilon>0$,

$$
J(\bar{u}) \leq J(u) \quad \forall u \in \mathcal{K} \cap\left\{u \in U_{\infty}:\|u-\bar{u}\|_{\infty}<\varepsilon\right\} .
$$

If analogously $J(\bar{u})<J(u)$ for $u \neq \bar{u}$, then \bar{u} is a strict local solution.

Theorem (First order necessary condition)
If \bar{u} is a local solution of (\mathcal{P}) and J is differentiable at \bar{u}, both in the sense of U_{∞}, then there holds the variational inequality

$$
J^{\prime}(\bar{u})(u-\bar{u}) \geq 0 \quad \forall u \in \mathcal{K} .
$$

(A2) Differentiability properties of J

(A2) Differentiability properties of J

- J is is of class C^{2} in an open subset $\mathcal{A} \subset U_{\infty}$ covering \mathcal{K}.

(A2) Differentiability properties of J

- J is is of class C^{2} in an open subset $\mathcal{A} \subset U_{\infty}$ covering \mathcal{K}.
- $J^{\prime}(u)$ and $J^{\prime \prime}(u)$ can be continuously extended to U_{2} :
$\exists r>0, M_{i}, i=1,2$, such that $\forall v, v_{1}, v_{2} \in U_{\infty}, u \in B_{2}(\bar{u}, r) \cap \mathcal{K}$

$$
\left|J^{\prime}(u) v\right| \leq M_{1}\|v\|_{2} \quad \text { and } \quad\left|J^{\prime \prime}(u)\left(v_{1}, v_{2}\right)\right| \leq M_{2}\left\|v_{1}\right\|_{2}\left\|v_{2}\right\|_{2}
$$

(A2) Differentiability properties of J

- J is is of class C^{2} in an open subset $\mathcal{A} \subset U_{\infty}$ covering \mathcal{K}.
- $J^{\prime}(u)$ and $J^{\prime \prime}(u)$ can be continuously extended to U_{2} :
$\exists r>0, M_{i}, i=1,2$, such that $\forall v, v_{1}, v_{2} \in U_{\infty}, u \in B_{2}(\bar{u}, r) \cap \mathcal{K}$

$$
\left|J^{\prime}(u) v\right| \leq M_{1}\|v\|_{2} \quad \text { and } \quad\left|J^{\prime \prime}(u)\left(v_{1}, v_{2}\right)\right| \leq M_{2}\left\|v_{1}\right\|_{2}\left\|v_{2}\right\|_{2}
$$

- Continuity of $u \mapsto J^{\prime}(u), u \mapsto J^{\prime \prime}(u)$:
$\forall \varepsilon>0 \exists \delta>0$ such that $\forall u_{1}, u_{2} \in B_{\infty}(\bar{u}, r), v \in U_{\infty}$

$$
\left\|u_{1}-u_{2}\right\|_{\infty}<\delta \Rightarrow\left\{\begin{array}{l}
\left|\left[J^{\prime}\left(u_{1}\right)-J^{\prime}\left(u_{2}\right)\right] v\right| \leq \varepsilon\|v\|_{2}, \\
\left|\left[J^{\prime \prime}\left(u_{1}\right)-J^{\prime \prime}\left(u_{2}\right)\right] v^{2}\right| \leq \varepsilon\|v\|_{2}^{2} .
\end{array}\right.
$$

(A2) Differentiability properties of J

- J is is of class C^{2} in an open subset $\mathcal{A} \subset U_{\infty}$ covering \mathcal{K}.
- $J^{\prime}(u)$ and $J^{\prime \prime}(u)$ can be continuously extended to U_{2} :
$\exists r>0, M_{i}, i=1,2$, such that $\forall v, v_{1}, v_{2} \in U_{\infty}, u \in B_{2}(\bar{u}, r) \cap \mathcal{K}$

$$
\left|J^{\prime}(u) v\right| \leq M_{1}\|v\|_{2} \quad \text { and } \quad\left|J^{\prime \prime}(u)\left(v_{1}, v_{2}\right)\right| \leq M_{2}\left\|v_{1}\right\|_{2}\left\|v_{2}\right\|_{2}
$$

- Continuity of $u \mapsto J^{\prime}(u), u \mapsto J^{\prime \prime}(u)$:
$\forall \varepsilon>0 \exists \delta>0$ such that $\forall u_{1}, u_{2} \in B_{\infty}(\bar{u}, r), v \in U_{\infty}$

$$
\left\|u_{1}-u_{2}\right\|_{\infty}<\delta \Rightarrow\left\{\begin{array}{l}
\left|\left[J^{\prime}\left(u_{1}\right)-J^{\prime}\left(u_{2}\right)\right] v\right| \leq \varepsilon\|v\|_{2}, \\
\left|\left[J^{\prime \prime}\left(u_{1}\right)-J^{\prime \prime}\left(u_{2}\right)\right] v^{2}\right| \leq \varepsilon\|v\|_{2}^{2} .
\end{array}\right.
$$

- The quadratic form $Q: v \mapsto J^{\prime \prime}(\bar{u}) v^{2}, Q: U_{2} \longrightarrow \mathbb{R}$ is a Legendre form.

Legendre form $J^{\prime \prime}(u)$:

Legendre form $J^{\prime \prime}(u)$:

- If $v_{k}-v$ in U_{2} as $k \rightarrow \infty$, then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}$.

Legendre form $J^{\prime \prime}(u)$:

- If $v_{k}-v$ in U_{2} as $k \rightarrow \infty$, then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}$.
- If additionally $\lim _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}=J^{\prime \prime}(u) v^{2}$, then $\left\|v-v_{k}\right\|_{2} \rightarrow 0$.

Legendre form $J^{\prime \prime}(u)$:

- If $v_{k} \rightharpoonup v$ in U_{2} as $k \rightarrow \infty$, then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}$.
- If additionally $\lim _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}=J^{\prime \prime}(u) v^{2}$, then $\left\|v-v_{k}\right\|_{2} \rightarrow 0$.

Example: $\quad v \mapsto \int_{\Omega} y_{v}^{2}(x) d x+\int_{\Omega} v^{2}(x) d x \quad$ in $L^{2}(\Omega)$.

Legendre form $J^{\prime \prime}(u)$:

- If $v_{k} \rightharpoonup v$ in U_{2} as $k \rightarrow \infty$, then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}$.
- If additionally $\lim _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}=J^{\prime \prime}(u) v^{2}$, then $\left\|v-v_{k}\right\|_{2} \rightarrow 0$.

Example: $\quad v \mapsto \int_{\Omega} y_{v}^{2}(x) d x+\int_{\Omega} v^{2}(x) d x \quad$ in $L^{2}(\Omega)$.
Cone of feasible directions:

$$
S_{\bar{u}}=\left\{v \in U_{\infty}: v=\lambda(u-\bar{u}) \text { for some } \lambda>0 \text { and } u \in \mathcal{K}\right\}
$$

Legendre form $J^{\prime \prime}(u)$:

- If $v_{k} \rightharpoonup v$ in U_{2} as $k \rightarrow \infty$, then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}$.
- If additionally $\lim _{k \rightarrow \infty} J^{\prime \prime}(u) v_{k}^{2}=J^{\prime \prime}(u) v^{2}$, then $\left\|v-v_{k}\right\|_{2} \rightarrow 0$.

Example: $\quad v \mapsto \int_{\Omega} y_{v}^{2}(x) d x+\int_{\Omega} v^{2}(x) d x \quad$ in $L^{2}(\Omega)$.
Cone of feasible directions:

$$
S_{\bar{u}}=\left\{v \in U_{\infty}: v=\lambda(u-\bar{u}) \text { for some } \lambda>0 \text { and } u \in \mathcal{K}\right\}
$$

Cone of critical directions:

$$
C_{\bar{u}}=c l_{2}\left(S_{\bar{u}}\right) \cap\left\{v \in U_{2}: J^{\prime}(\bar{u}) v=0\right\} .
$$

Theorem (Second-order sufficient condition)

Assume (A2); If $\bar{u} \in \mathcal{K}$ satisfies the first-order necessary condition and

$$
J^{\prime \prime}(\bar{u}) v^{2}>0 \quad \forall v \in C_{\bar{u}} \backslash\{0\} .
$$

Then, there exist $\varepsilon>0$ and $\delta>0$ such that

$$
J(u) \geq J(\bar{u})+\frac{\delta}{2}\|u-\bar{u}\|_{2}{ }^{2} \forall u \in \mathcal{K} \cap B_{\infty}(\bar{u}, \varepsilon)
$$

(quadratic growth condition).

Approximation of (\mathcal{P})

$$
\left(\mathcal{P}_{h}\right) \quad \min _{u \in \mathcal{K}_{h}} J_{h}(u)
$$

Approximation of (\mathcal{P})

$$
\left(\mathcal{P}_{h}\right) \quad \min _{u \in \mathcal{K}_{h}} J_{h}(u) .
$$

- Small parameter $h>0$ "mesh size",

Approximation of (\mathcal{P})

$$
\left(\mathcal{P}_{h}\right) \quad \min _{u \in \mathcal{K}_{h}} J_{h}(u)
$$

- Small parameter $h>0$ "mesh size",
- Sets $\mathcal{K}_{h} \subset \mathcal{K}$ and functionals $J_{h}: U_{\infty} \longrightarrow \mathbb{R}$.

Approximation of (\mathcal{P})

$$
\left(\mathcal{P}_{h}\right) \quad \min _{u \in \mathcal{K}_{h}} J_{h}(u) .
$$

- Small parameter $h>0$ "mesh size",
- Sets $\mathcal{K}_{h} \subset \mathcal{K}$ and functionals $J_{h}: U_{\infty} \longrightarrow \mathbb{R}$.

(A3) Approximation of \mathcal{K} by \mathcal{K}_{h}

$\mathcal{K}_{h} \subset \mathcal{K}$ is convex and closed in U_{2}. For all $u \in \mathcal{K}$ there exist $u_{h} \in \mathcal{K}_{h}$ such that

$$
\left\|u-u_{h}\right\|_{2} \rightarrow 0 \text { as } h \rightarrow 0 .
$$

Approximation of (\mathcal{P})

$$
\left(\mathcal{P}_{h}\right) \quad \min _{u \in \mathcal{K}_{h}} J_{h}(u) .
$$

- Small parameter $h>0$ "mesh size",
- Sets $\mathcal{K}_{h} \subset \mathcal{K}$ and functionals $J_{h}: U_{\infty} \longrightarrow \mathbb{R}$.
(A3) Approximation of \mathcal{K} by \mathcal{K}_{h}
$\mathcal{K}_{h} \subset \mathcal{K}$ is convex and closed in U_{2}. For all $u \in \mathcal{K}$ there exist $u_{h} \in \mathcal{K}_{h}$ such that

$$
\left\|u-u_{h}\right\|_{2} \rightarrow 0 \text { as } h \rightarrow 0 .
$$

(A4) Lower semicontinuity of J_{h} for all fixed $h>0$
If $\left\{u_{k}\right\}_{k=1}^{\infty} \subset \mathcal{K}_{h}$ and $u_{k} \rightharpoonup u$ in U_{2}, then $J_{h}(u) \leq \liminf _{k \rightarrow \infty} J_{h}\left(u_{k}\right)$.

- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.
- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.

To guarantee that the family $\left\{\left(\mathcal{P}_{h}\right)\right\}_{h}$ well approximates problem (\mathcal{P}), we need two further assumptions. We skip them, because they are standard and not needed for our theorem on error estimates.

They ensure the following properties:

- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.

To guarantee that the family $\left\{\left(\mathcal{P}_{h}\right)\right\}_{h}$ well approximates problem (\mathcal{P}), we need two further assumptions. We skip them, because they are standard and not needed for our theorem on error estimates.

They ensure the following properties:

- Any sequence of solutions $\left\{\bar{u}_{h}\right\}_{h>0}$ contains a subsequence, say $\left\{\bar{u}_{h}\right\}_{h>0}$, converging weakly in U_{2} to a limit point \bar{u}.
- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.

To guarantee that the family $\left\{\left(\mathcal{P}_{h}\right)\right\}_{h}$ well approximates problem (\mathcal{P}), we need two further assumptions. We skip them, because they are standard and not needed for our theorem on error estimates.

They ensure the following properties:

- Any sequence of solutions $\left\{\bar{u}_{h}\right\}_{h>0}$ contains a subsequence, say $\left\{\bar{u}_{h}\right\}_{h>0}$, converging weakly in U_{2} to a limit point \bar{u}.
- Each of these weak limit points is a solution to (\mathcal{P}).
- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.

To guarantee that the family $\left\{\left(\mathcal{P}_{h}\right)\right\}_{h}$ well approximates problem (\mathcal{P}), we need two further assumptions. We skip them, because they are standard and not needed for our theorem on error estimates.

They ensure the following properties:

- Any sequence of solutions $\left\{\bar{u}_{h}\right\}_{h>0}$ contains a subsequence, say $\left\{\bar{u}_{h}\right\}_{h>0}$, converging weakly in U_{2} to a limit point \bar{u}.
- Each of these weak limit points is a solution to (\mathcal{P}).
- The convergence $\bar{u}_{h} \rightarrow \bar{u}$ is even strong in U_{2}.
- Under (A4), for all $h>0$, problem $\left(\mathcal{P}_{h}\right)$ has at least one (global) solution \bar{u}_{h}.

To guarantee that the family $\left\{\left(\mathcal{P}_{h}\right)\right\}_{h}$ well approximates problem (\mathcal{P}), we need two further assumptions. We skip them, because they are standard and not needed for our theorem on error estimates.

They ensure the following properties:

- Any sequence of solutions $\left\{\bar{u}_{h}\right\}_{h>0}$ contains a subsequence, say $\left\{\bar{u}_{h}\right\}_{h>0}$, converging weakly in U_{2} to a limit point \bar{u}.
- Each of these weak limit points is a solution to (\mathcal{P}).
- The convergence $\bar{u}_{h} \rightarrow \bar{u}$ is even strong in U_{2}.

Conversely, we are able to show under appropriate conditions that to each strict local solution \bar{u} of (\mathcal{P}) there exists a sequence $\left\{\bar{u}_{h}\right\}_{h>0}$ of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly in the norm of U_{2} to \bar{u}.

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.
(A5)

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

(A5)

- The functions $J_{h}: \mathcal{A} \longrightarrow \mathbb{R}$ are of class C^{1}, where \mathcal{A} is the open set of U_{∞} introduced in assumption (A2).

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

(A5)

- The functions $J_{h}: \mathcal{A} \longrightarrow \mathbb{R}$ are of class C^{1}, where \mathcal{A} is the open set of U_{∞} introduced in assumption (A2).
- There is a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[J_{h}^{\prime}(u)-J^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{2}, \quad \forall(u, v) \in \mathcal{K} \times U_{2},
$$

where $v=u_{h}-\bar{u}$ with $u_{h} \in \mathcal{K}_{h}$.

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

(A5)

- The functions $J_{h}: \mathcal{A} \longrightarrow \mathbb{R}$ are of class C^{1}, where \mathcal{A} is the open set of U_{∞} introduced in assumption (A2).
- There is a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[J_{h}^{\prime}(u)-J^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{2}, \quad \forall(u, v) \in \mathcal{K} \times U_{2}
$$

where $v=u_{h}-\bar{u}$ with $u_{h} \in \mathcal{K}_{h}$.

- We either have $\left\|\bar{u}-\bar{u}_{n}\right\|_{\infty} \rightarrow 0$ or the following holds with some $\Lambda>0$: For all $\left\{\left(u_{k}, v_{k}\right)\right\}_{k=1}^{\infty} \subset \mathcal{K} \times U_{2}$ with $\left\|u_{k}-u\right\|_{2} \rightarrow 0$:

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

(A5)

- The functions $J_{h}: \mathcal{A} \longrightarrow \mathbb{R}$ are of class C^{1}, where \mathcal{A} is the open set of U_{∞} introduced in assumption (A2).
- There is a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[J_{h}^{\prime}(u)-J^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{2}, \quad \forall(u, v) \in \mathcal{K} \times U_{2}
$$

where $v=u_{h}-\bar{u}$ with $u_{h} \in \mathcal{K}_{h}$.

- We either have $\left\|\bar{u}-\bar{u}_{h}\right\|_{\infty} \rightarrow 0$ or the following holds with some $\Lambda>0$: For all $\left\{\left(u_{k}, v_{k}\right)\right\}_{k=1}^{\infty} \subset \mathcal{K} \times U_{2}$ with $\left\|u_{k}-u\right\|_{2} \rightarrow 0$:

If $v_{k} \rightharpoonup v$ in U_{2} then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}\left(u_{k}\right) v_{k}^{2}$,

Main goal: Estimation of $\left\|\bar{u}-\bar{u}_{h}\right\|_{2}$. We need an extra assumption.

(A5)

- The functions $J_{h}: \mathcal{A} \longrightarrow \mathbb{R}$ are of class C^{1}, where \mathcal{A} is the open set of U_{∞} introduced in assumption (A2).
- There is a sequence $\varepsilon_{h} \rightarrow 0$ such that

$$
\left|\left[J_{h}^{\prime}(u)-J^{\prime}(u)\right] v\right| \leq \varepsilon_{h}\|v\|_{2}, \quad \forall(u, v) \in \mathcal{K} \times U_{2}
$$

where $v=u_{h}-\bar{u}$ with $u_{h} \in \mathcal{K}_{h}$.

- We either have $\left\|\bar{u}-\bar{u}_{n}\right\|_{\infty} \rightarrow 0$ or the following holds with some $\Lambda>0$: For all $\left\{\left(u_{k}, v_{k}\right)\right\}_{k=1}^{\infty} \subset \mathcal{K} \times U_{2}$ with $\left\|u_{k}-u\right\|_{2} \rightarrow 0$:

If $v_{k} \rightharpoonup v$ in U_{2} then $J^{\prime \prime}(u) v^{2} \leq \liminf _{k \rightarrow \infty} J^{\prime \prime}\left(u_{k}\right) v_{k}^{2}$,
if $v_{k} \rightharpoonup 0$ in U_{2} then $\liminf _{k \rightarrow \infty} J^{\prime \prime}\left(u_{k}\right) v_{k}^{2} \geq \wedge \liminf _{k \rightarrow \infty}\left\|v_{k}\right\|_{2}^{2}$.

General error estimate

Theorem

Assume (A2), (A3) and (A5); let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly to \bar{u} in U_{2}. Under the second-order sufficiency condition at \bar{u} there exist $C>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]
$$

for all $u_{h} \in \mathcal{K}_{h}$ and all sufficiently small $h>0$.

General error estimate

Theorem

Assume (A2), (A3) and (A5); let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly to \bar{u} in U_{2}. Under the second-order sufficiency condition at \bar{u} there exist $C>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]
$$

for all $u_{h} \in \mathcal{K}_{h}$ and all sufficiently small $h>0$.
Application in PDE control:

General error estimate

Theorem

Assume (A2), (A3) and (A5); let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly to \bar{u} in U_{2}. Under the second-order sufficiency condition at \bar{u} there exist $C>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]
$$

for all $u_{h} \in \mathcal{K}_{h}$ and all sufficiently small $h>0$.
Application in PDE control:

- ε_{h} : Is related to FE estimates for the state and adjoint state equation.

General error estimate

Theorem

Assume (A2), (A3) and (A5); let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly to \bar{u} in U_{2}. Under the second-order sufficiency condition at \bar{u} there exist $C>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]
$$

for all $u_{h} \in \mathcal{K}_{h}$ and all sufficiently small $h>0$.
Application in PDE control:

- ε_{h} : Is related to FE estimates for the state and adjoint state equation.
- u_{n} : The selection of u_{n} is crucial for an optimal estimate, "interpolate of \bar{u} ".

General error estimate

Theorem

Assume (A2), (A3) and (A5); let $\left\{\bar{u}_{h}\right\}_{h>0}$ be a sequence of local solutions to $\left(\mathcal{P}_{h}\right)$ converging strongly to \bar{u} in U_{2}. Under the second-order sufficiency condition at \bar{u} there exist $C>0$ such that

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]
$$

for all $u_{h} \in \mathcal{K}_{h}$ and all sufficiently small $h>0$.
Application in PDE control:

- ε_{h} : Is related to FE estimates for the state and adjoint state equation.
- u_{n} : The selection of u_{n} is crucial for an optimal estimate, "interpolate of \bar{u} ".
- The discussion of the last term is delicate.

Sketch of the proof

To show: $\quad\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right]$.

Sketch of the proof

To show:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right] .
$$

- If this is false, with $\left\{h_{k}\right\}_{k=1}^{\infty}$ converging to 0 and $u_{h_{k}} \in \mathcal{K}_{h_{k}}$

$$
\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}>k\left[\varepsilon_{h_{k}}^{2}+\left\|\bar{u}-u_{h_{k}}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)\right] .
$$

Sketch of the proof

To show:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right] .
$$

- If this is false, with $\left\{h_{k}\right\}_{k=1}^{\infty}$ converging to 0 and $u_{h_{k}} \in \mathcal{K}_{h_{k}}$

$$
\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}>k\left[\varepsilon_{h_{k}}^{2}+\left\|\bar{u}-u_{h_{k}}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)\right] .
$$

Equivalently

$$
\frac{1}{k}>\frac{\varepsilon_{h_{k}}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{\left\|u_{h_{k}}-\bar{u}\right\|_{2}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}} .
$$

Sketch of the proof

To show:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right] .
$$

- If this is false, with $\left\{h_{k}\right\}_{k=1}^{\infty}$ converging to 0 and $u_{h_{k}} \in \mathcal{K}_{h_{k}}$

$$
\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}>k\left[\varepsilon_{h_{k}}^{2}+\left\|\bar{u}-u_{h_{k}}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)\right] .
$$

Equivalently

$$
\frac{1}{k}>\frac{\varepsilon_{h_{k}}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{\left\|u_{h_{k}}-\bar{u}\right\|_{2}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}
$$

All terms are nonnegative, hence all converge to zero. Define

$$
v_{h_{k}}:=\frac{\bar{u}_{h_{k}}-\bar{u}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}} .
$$

Sketch of the proof

To show:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right] .
$$

- If this is false, with $\left\{h_{k}\right\}_{k=1}^{\infty}$ converging to 0 and $u_{h_{k}} \in \mathcal{K}_{h_{k}}$

$$
\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}>k\left[\varepsilon_{h_{k}}^{2}+\left\|\bar{u}-u_{h_{k}}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)\right] .
$$

Equivalently

$$
\frac{1}{k}>\frac{\varepsilon_{h_{k}}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{\left\|u_{h_{k}}-\bar{u}\right\|_{2}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}} .
$$

All terms are nonnegative, hence all converge to zero. Define

$$
v_{h_{k}}:=\frac{\bar{u}_{h_{k}}-\bar{u}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}} .
$$

W.I.o.g, $v_{h_{k}} \rightharpoonup v$ in U_{2}.

Sketch of the proof

To show:

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{2}^{2} \leq C\left[\varepsilon_{h}^{2}+\left\|\bar{u}-u_{h}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right)\right] .
$$

- If this is false, with $\left\{h_{k}\right\}_{k=1}^{\infty}$ converging to 0 and $u_{h_{k}} \in \mathcal{K}_{h_{k}}$

$$
\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}>k\left[\varepsilon_{h_{k}}^{2}+\left\|\bar{u}-u_{h_{k}}\right\|_{2}^{2}+J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)\right] .
$$

Equivalently

$$
\frac{1}{k}>\frac{\varepsilon_{h_{k}}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{\left\|u_{h_{k}}-\bar{u}\right\|_{2}^{2}}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}}+\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}-\bar{u}_{h_{k}}\right\|_{2}^{2}} .
$$

All terms are nonnegative, hence all converge to zero. Define

$$
v_{h_{k}}:=\frac{\bar{u}_{h_{k}}-\bar{u}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}} .
$$

W.I.o.g, $v_{h_{k}} \rightharpoonup v$ in U_{2}. With some effort, one shows $v \in C_{\bar{u}}$.

- We invoke the variational inequalities for \bar{u} and \bar{u}_{h}, respectively, and mutually insert these solutions.
- We invoke the variational inequalities for \bar{u} and \bar{u}_{h}, respectively, and mutually insert these solutions. Adding them and manipulating a little bit,
- We invoke the variational inequalities for \bar{u} and \bar{u}_{h}, respectively, and mutually insert these solutions. Adding them and manipulating a little bit,

$$
\begin{gathered}
{\left[J^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}(\bar{u})\right]\left(\bar{u}_{h}-\bar{u}\right) \leq\left[J_{h}^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}\left(\bar{u}_{h}\right)\right]\left(\bar{u}-\bar{u}_{h}\right)} \\
+\left[J_{h}^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}\left(\bar{u}_{h}\right)\right]\left(u_{h}-\bar{u}\right)+\left[J^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}(\bar{u})\right]\left(u_{h}-\bar{u}\right)+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) .
\end{gathered}
$$

- We invoke the variational inequalities for \bar{u} and \bar{u}_{h}, respectively, and mutually insert these solutions. Adding them and manipulating a little bit,

$$
\begin{gathered}
{\left[J^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}(\bar{u})\right]\left(\bar{u}_{h}-\bar{u}\right) \leq\left[J_{h}^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}\left(\bar{u}_{h}\right)\right]\left(\bar{u}-\bar{u}_{h}\right)} \\
+\left[J_{h}^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}\left(\bar{u}_{h}\right)\right]\left(u_{h}-\bar{u}\right)+\left[J^{\prime}\left(\bar{u}_{h}\right)-J^{\prime}(\bar{u})\right]\left(u_{h}-\bar{u}\right)+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) .
\end{gathered}
$$

We apply the mean value theorem to the left-hand side and estimate the right-hand side,

$$
\begin{aligned}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) .
\end{aligned}
$$

with some \hat{u}_{n} in $\left[\bar{u}_{h}, \bar{u}\right]$.

$$
\begin{align*}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) \tag{+}
\end{align*}
$$

$$
\begin{align*}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) \tag{+}
\end{align*}
$$

- By (A5),

$$
\begin{align*}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) \tag{+}
\end{align*}
$$

- By (A5),

$$
J^{\prime \prime}(\bar{u}) v^{2} \underbrace{\leq}_{(A 5)} \liminf _{k \rightarrow \infty} J^{\prime \prime}(\underbrace{\hat{u}_{h_{k}}}_{\rightarrow \bar{u}}) v_{h_{k}}^{2} \leq \limsup _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2}
$$

$$
\begin{align*}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) \tag{+}
\end{align*}
$$

- By (A5),

$$
\begin{gathered}
J^{\prime \prime}(\bar{u}) v^{2} \underbrace{\leq}_{(A 5)} \liminf _{k \rightarrow \infty} J^{\prime \prime}(\underbrace{\hat{u}_{h_{k}}}_{\rightarrow \bar{u}}) v_{h_{k}}^{2} \leq \limsup _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2} \\
\underbrace{\leq}_{(+)} \lim _{k \rightarrow \infty}\{\underbrace{\frac{\varepsilon_{h_{k}}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0}(1+\underbrace{\frac{\left\|\bar{u}-u_{h_{k}}\right\|_{2}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0})+M_{2} \underbrace{\frac{\left\|\bar{u}-u_{h_{k}}\right\|_{2}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0}+\underbrace{\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}^{2}}}_{\rightarrow 0}\} \\
=0
\end{gathered}
$$

$$
\begin{align*}
J^{\prime \prime}\left(\hat{u}_{h}\right)\left(\bar{u}_{h}-\bar{u}\right)^{2} \leq & \varepsilon_{h}\left(\left\|\bar{u}-\bar{u}_{h}\right\|_{2}+\left\|\bar{u}-u_{h}\right\|_{2}\right) \\
& +M_{2}\left\|\bar{u}_{h}-\bar{u}\right\|_{2}\left\|\bar{u}-u_{h}\right\|_{2}+J^{\prime}(\bar{u})\left(u_{h}-\bar{u}\right) \tag{+}
\end{align*}
$$

- By (A5),

$$
\begin{gathered}
J^{\prime \prime}(\bar{u}) v^{2} \underbrace{\leq}_{(A 5)} \liminf _{k \rightarrow \infty} J^{\prime \prime}(\underbrace{\hat{u}_{h_{k}}}_{\rightarrow \bar{u}}) v_{h_{k}}^{2} \leq \limsup _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2} \\
\underbrace{\leq}_{(+)} \lim _{k \rightarrow \infty}\{\underbrace{\frac{\varepsilon_{h_{k}}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0}(1+\underbrace{\frac{\left\|\bar{u}-u_{h_{k}}\right\|_{2}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0})+M_{2} \underbrace{\frac{\left\|\bar{u}-u_{h_{k}}\right\|_{2}}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}}}_{\rightarrow 0}+\underbrace{\frac{J^{\prime}(\bar{u})\left(u_{h_{k}}-\bar{u}\right)}{\left\|\bar{u}_{h_{k}}-\bar{u}\right\|_{2}^{2}}}_{\rightarrow 0}\} \\
=0 \\
\text { SSC } \Rightarrow \quad v=0 .
\end{gathered}
$$

- Now we arrive at a contradiction:

Case 1: $\left\|\bar{u}-\hat{u}_{h_{k}}\right\|_{\infty} \rightarrow 0$.

- Now we arrive at a contradiction:

Case 1: $\left\|\bar{u}-\hat{u}_{h_{k}}\right\|_{\infty} \rightarrow 0$.

$$
\lim _{k \rightarrow \infty} J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2}=\lim _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2}=0
$$

- Now we arrive at a contradiction:

Case 1: $\left\|\bar{u}-\hat{u}_{h_{k}}\right\|_{\infty} \rightarrow 0$.

$$
\lim _{k \rightarrow \infty} J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2}=\lim _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2}=0
$$

Thus $J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2} \rightarrow 0$ and $v_{h_{k}} \rightharpoonup 0$ weakly in U_{2}.

- Now we arrive at a contradiction:

Case 1: $\left\|\bar{u}-\hat{u}_{h_{k}}\right\|_{\infty} \rightarrow 0$.

$$
\lim _{k \rightarrow \infty} J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2}=\lim _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2}=0
$$

Thus $J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2} \rightarrow 0$ and $v_{h_{k}} \rightharpoonup 0$ weakly in U_{2}.
Since $J^{\prime \prime}(\bar{u})$ is a Legendre form, we get $\left\|v_{h_{k}}\right\|_{2} \rightarrow 0$, contradicting $\left\|v_{h_{k}}\right\|_{2}=1$ for every k.

- Now we arrive at a contradiction:

Case 1: $\left\|\bar{u}-\hat{u}_{h_{k}}\right\|_{\infty} \rightarrow 0$.

$$
\lim _{k \rightarrow \infty} J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2}=\lim _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2}=0
$$

Thus $J^{\prime \prime}(\bar{u}) v_{h_{k}}^{2} \rightarrow 0$ and $v_{h_{k}} \rightharpoonup 0$ weakly in U_{2}.
Since $J^{\prime \prime}(\bar{u})$ is a Legendre form, we get $\left\|v_{h_{k}}\right\|_{2} \rightarrow 0$, contradicting $\left\|v_{h_{k}}\right\|_{2}=1$ for every k.

Case 2: (A5) implies then (we know that $v_{h_{k}} \rightharpoonup 0$)

$$
0 \geq \liminf _{k \rightarrow \infty} J^{\prime \prime}\left(\hat{u}_{h_{k}}\right) v_{h_{k}}^{2} \geq \Lambda \underbrace{\liminf \left\|v_{h_{k}}\right\|_{2}^{2}}_{=1}=\Lambda>0 .
$$

The quasilinear control problem

(P)

$$
\begin{gathered}
\min J(u):=\int_{\Omega} L(x, y(x), u(x)) d x, \\
-\operatorname{div}[a(x, y(x)) \nabla y(x)]+f(x, y(x))=u(x) \\
y(x)=0
\end{gathered} \begin{aligned}
& \text { in } \quad \Omega \\
\alpha \leq u(x) \leq \beta & \text { on } \quad \text { a.e. in } \Omega .
\end{aligned}
$$

The quasilinear control problem

(P)

$$
\begin{gathered}
\min J(u):=\int_{\Omega} L(x, y(x), u(x)) d x, \\
-\operatorname{div}[a(x, y(x)) \nabla y(x)]+f(x, y(x))=u(x) \\
y(x)=0
\end{gathered} \begin{aligned}
& \text { in } \quad \text { on } \quad \Gamma . \\
\alpha \leq u(x) \leq \beta & \text { a.e. in } \Omega .
\end{aligned}
$$

Main assumptions:

- $L(x, y, u), a(x, y), f(x, y)$ are measurable with respect to x and twice differentiable with respect to (y, u).
- Certain (local) Lipschitz properties of L, a, f and their derivatives w.r. to $(y, u), L$ Lipschitz w.r. to x.
- $a(x, y) \geq \delta>0, \quad f_{y}(x, y) \geq 0, \quad L_{u u}(x, y, u) \geq \wedge>0$.

Application of the general result

Application of the general result

- We considered a regular triangulation of $\Omega \subset \mathbb{R}^{2}$, where Ω is a bounded Lipschitz domain.

Application of the general result

- We considered a regular triangulation of $\Omega \subset \mathbb{R}^{2}$, where Ω is a bounded Lipschitz domain.
- Under our assumptions on (P) we were able to verify that the assumptions of the general optimization problem are met.

Application of the general result

- We considered a regular triangulation of $\Omega \subset \mathbb{R}^{2}$, where Ω is a bounded Lipschitz domain.
- Under our assumptions on (P) we were able to verify that the assumptions of the general optimization problem are met.
- Error estimates:

Application of the general result

- We considered a regular triangulation of $\Omega \subset \mathbb{R}^{2}$, where Ω is a bounded Lipschitz domain.
- Under our assumptions on (P) we were able to verify that the assumptions of the general optimization problem are met.
- Error estimates:

Variational discretization

$$
\left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}\left(\Omega_{h}\right)} \leq C h^{2}
$$

Piecewise constant controls

$$
\begin{aligned}
& \left\|\bar{u}-\bar{u}_{h}\right\|_{L^{2}\left(\Omega_{h}\right)} \leq C h \\
& \left\|\bar{u}-\bar{u}_{h}\right\|_{L^{\infty}\left(\Omega_{h}\right)} \leq C h .
\end{aligned}
$$

References

围 E. Casas and F. T.
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations.

```
ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2009010.
```


E. Casas and F. T.

First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations.
SIAM J. Control Optim., 48:688-718, 2009.
E. Casas and F. T.

A general theorem on error estimates with application to a quasilinear elliptic optimal control problem.
Submitted.

References

围 E. Casas and F. T.
Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations.

```
ESAIM Control Optim. Calc. Var., DOI: 10.1051/cocv/2009010.
```


E. Casas and F. T.

First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations.
SIAM J. Control Optim., 48:688-718, 2009.
E. Casas and F. T.

A general theorem on error estimates with application to a quasilinear elliptic optimal control problem.
Submitted.

Thank you

