Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations

Sérgio S. Rodrigues

SFB Workshop on Control and Optimization of PDEs

Joint work with:

Viorel Barbu, University "Al. I. Cuza", Iași, Romania; Armen Shirikyan, UMR CNRS 8088, University of Cergy-Pontoise, France.

S. S. Rodrigues (RICAM-Linz) Exp. Feedback stabilization of N-S eq. Graz; October, 2011 1/26

OUTLINE

1 The equations

- The Navier-Stokes system
- The task
- The evolutionary equation
- LINEAR PROBLEM
 - Existence of stabilizing control
 - Feedback control
- **3** Nonlinear system
- ACKNOWLEDGEMENTS
- References

The Navier-Stokes system in a 3D bounded domain $\Omega\subseteq \mathbb{R}^3$ with boundary Γ reads:

$$u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p = h + \zeta \quad \text{in} \quad \Omega;$$

$$\nabla \cdot u = 0 \quad \text{in} \quad \Omega;$$

$$u|_{\Gamma} = 0;$$

$$u(0) = u_0.$$

(E) (E)

FUNCTIONAL SPACES/REGULARITY

• To rewrite the equations as an evolutionary equation in *H*:

$$H := \{ u \in L^2(T\Omega) \mid \nabla \cdot u = 0 \& u \cdot \mathbf{n} = 0 \text{ on } \Gamma \};$$

$$V := \{ u \in H^1(T\Omega) \mid \nabla \cdot u = 0 \& u = 0 \text{ on } \Gamma \};$$

$$U := D(L) = H^2(T\Omega) \cap V.$$

< <
 <

 </

FUNCTIONAL SPACES/REGULARITY

• To rewrite the equations as an evolutionary equation in *H*:

$$H := \{ u \in L^2(T\Omega) \mid \nabla \cdot u = 0 \& u \cdot \mathbf{n} = 0 \text{ on } \Gamma \};$$

$$V := \{ u \in H^1(T\Omega) \mid \nabla \cdot u = 0 \& u = 0 \text{ on } \Gamma \};$$

$$U := D(L) = H^2(T\Omega) \cap V.$$

• Scalar products and norms: let Π be the orthogonal projection in $L^2(T\Omega)$ onto H and let $L = -\nu \Pi \Delta$ be the Stokes operator;

$$(u, v)_H := (u, v)_{L^2(T\Omega)}, \quad (u, v)_V := \langle Lu, v \rangle_{V',V},$$

$$(u, v)_{D(L)} := (Lu, Lv)_{L^2(T\Omega)}.$$

Fix a function $h \in L^2(\mathbb{R}_+, H)$ and write the system

 $u_t - \nu \Delta u + (u \cdot \nabla)u + \nabla p = h + \zeta, \qquad \nabla \cdot u = 0 \quad \text{in} \quad \Omega;$

as an evolutionary equation in the space H of divergence free vector fields H:

 $u_t + Lu + Bu = h + \Pi(\zeta).$

ロト (日) (日) (日) (日) (日) (日)

Goal

Fix $\hat{u} \in L^2(\mathbb{R}_+, V) \cap \mathcal{W}$ solving the (non-controlled) Navier–Stokes system

 $\hat{u}_t + L\hat{u} + B\hat{u} = h, \quad t > 0; \quad \hat{u}(0) = \hat{u}_0$

with $\mathcal{W} := W^{1,\infty}(\mathbb{R}_+, W^{1,\infty}(T\Omega))$; an element $u_0 \in H$ and a sub-domain $\omega \subseteq \Omega$.

(日) (同) (日) (日) (日) (日)

GOAL

Fix $\hat{u} \in L^2(\mathbb{R}_+, V) \cap \mathcal{W}$ solving the (non-controlled) Navier–Stokes system

 $\hat{u}_t + L\hat{u} + B\hat{u} = h, \quad t > 0; \quad \hat{u}(0) = \hat{u}_0$

with $\mathcal{W} := W^{1,\infty}(\mathbb{R}_+, W^{1,\infty}(T\Omega))$; an element $u_0 \in H$ and a sub-domain $\omega \subseteq \Omega$. Goal: find a finite-dimensional subspace $\mathcal{E} \subset L^2(T\omega)$ and a control $\zeta \in L^2_{loc}(\mathbb{R}_+, \mathcal{E})$ such that the solution of the problem

 $u_t + Lu + Bu = h + \Pi\zeta, \quad u(0) = u_0$

is defined for all t > 0 and converges exponentially to \hat{u} , i.e.,

 $|u(t) - \hat{u}(t)|_H \leq \kappa_1 e^{-\kappa_2 t}$ for $t \geq 0$,

where κ_1 and κ_2 are non-negative constants; in this case, we say that u converges κ_2 -exponentially to \hat{u} .

・ロ・・ 「日・・ ヨ・・ ヨ・ うへつ

LINEARIZATION

The difference $v = u - \hat{u}$ solves

 $v_t + Lv + \mathbb{B}(\hat{u})v + Bv = \Pi\zeta, \quad t > 0; \quad v(0) = v_0 := u_0 - \hat{u}_0;$

with $\mathbb{B}(\hat{u})v = B(\hat{u}, v) + B(v, \hat{u})$ so, our goal is to find a finite-dimensional subspace $\mathcal{E} \subset L^2(T\omega)$ and a control $\zeta \in L^2_{loc}(\mathbb{R}_+, \mathcal{E})$ such that

 $|v(t)|_H \le \kappa_1 e^{-\kappa_2 t}$ for $t \ge 0$

LINEARIZATION

The difference $v = u - \hat{u}$ solves

 $v_t + Lv + \mathbb{B}(\hat{u})v + Bv = \Pi\zeta, \quad t > 0; \quad v(0) = v_0 := u_0 - \hat{u}_0;$

with $\mathbb{B}(\hat{u})v = B(\hat{u}, v) + B(v, \hat{u})$ so, our goal is to find a finite-dimensional subspace $\mathcal{E} \subset L^2(T\omega)$ and a control $\zeta \in L^2_{loc}(\mathbb{R}_+, \mathcal{E})$ such that

$$|v(t)|_H \le \kappa_1 e^{-\kappa_2 t}$$
 for $t \ge 0$

We start by considering the linear system

 $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi\zeta, \quad t > 0; \quad v(0) = v_0 := u_0 - \hat{u}_0;$

with the same goal.

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 7 / 26

ロト (日) (日) (日) (日) (日) (日)

The finite-dimensional space ${\cal E}$

Let {φ_i | i ∈ N₀} be an orthonormal basis in L²(TΩ) formed by the eigenfunctions of the Dirichlet Laplacian and let 0 < β₁ ≤ β₂ ≤ ... be the corresponding eigenvalues;

イヨトイヨト

The finite-dimensional space ${\mathcal E}$

- Let {φ_i | i ∈ N₀} be an orthonormal basis in L²(TΩ) formed by the eigenfunctions of the Dirichlet Laplacian and let 0 < β₁ ≤ β₂ ≤ ... be the corresponding eigenvalues;
- let $\{e_i \mid i \in \mathbb{N}_0\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0 < \alpha_1 \le \alpha_2 \le \ldots$ be the corresponding eigenvalues.

The finite-dimensional space ${\mathcal E}$

- Let {φ_i | i ∈ N₀} be an orthonormal basis in L²(TΩ) formed by the eigenfunctions of the Dirichlet Laplacian and let 0 < β₁ ≤ β₂ ≤ ... be the corresponding eigenvalues;
- let $\{e_i \mid i \in \mathbb{N}_0\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0 < \alpha_1 \le \alpha_2 \le \ldots$ be the corresponding eigenvalues.
- For each $N \in \mathbb{N}_0$, we introduce the N-dimensional subspaces

 $E_N := span\{\phi_i \mid i \leq N\} \subset L^2(T\Omega), \quad F_N := span\{e_i \mid i \leq N\} \subset H$

and denote by $P_N : L^2(T\Omega) \to E_N$ and $\Pi_N : L^2(T\Omega) \to F_N$ the corresponding orthogonal projections.

The finite-dimensional space ${\cal E}$

- Let {φ_i | i ∈ N₀} be an orthonormal basis in L²(TΩ) formed by the eigenfunctions of the Dirichlet Laplacian and let 0 < β₁ ≤ β₂ ≤ ... be the corresponding eigenvalues;
- let $\{e_i \mid i \in \mathbb{N}_0\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0 < \alpha_1 \le \alpha_2 \le \ldots$ be the corresponding eigenvalues.
- For each $N \in \mathbb{N}_0$, we introduce the N-dimensional subspaces

 $E_N := span\{\phi_i \mid i \leq N\} \subset L^2(T\Omega), \quad F_N := span\{e_i \mid i \leq N\} \subset H$

and denote by $P_N : L^2(T\Omega) \to E_N$ and $\Pi_N : L^2(T\Omega) \to F_N$ the corresponding orthogonal projections.

• The required control space can be chosen in the form $\mathcal{E}_M = \chi E_M$, where $\chi \in C_0^{\infty}(\Omega)$ is a given function not identically equal to zero, and the integer M is sufficiently large. In particular, $\chi E_M \subset C_0^{\infty}(T\omega)$ for any sub-domain $\omega \subseteq \Omega$ containing $\operatorname{supp}(\chi)$.

MAIN RESULT FOR LINEAR PROBLEM

Taking controls in \mathcal{E}_M we may rewrite the problem as

 $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), \quad v(0) = v_0;$

with η taking values in $L^2(T\Omega)$

▲目▶▲目▶ 目 わえで

MAIN RESULT FOR LINEAR PROBLEM

Taking controls in \mathcal{E}_M we may rewrite the problem as

$$v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), \quad v(0) = v_0;$$

with η taking values in $L^2(T\Omega)$

Theorem

For each $v_0 \in H$ and $\lambda > 0$, there is an integer $M = \overline{C}_{[\lambda, |\hat{u}|_W]} \ge 1$ and a control $\eta^{\hat{u}, \lambda}(v_0) \in L^2(\mathbb{R}_+, E_M)$ such that the solution v of the system satisfies the inequality $|v(t)|_H^2 \le \kappa |v_0|_H^2 e^{-\lambda t}$, $t \ge 0$ for some $\kappa = \overline{C}_{[\lambda, |\hat{u}|_W]} > 0$. Moreover, the mapping $v_0 \mapsto e^{(\tilde{\lambda}/2)t}\eta^{\hat{u}, \lambda}(v_0)$ is linear and continuous from H to $L^2(\mathbb{R}_+, E_M)$ for all $0 \le \tilde{\lambda} < \lambda$. Finally, if $v_0 \in V$, then $|v(t)|_V^2 \le \bar{\kappa} |v_0|_V^2 e^{-\lambda t}$, $t \ge 0$ for some $\kappa = \overline{C}_{[\lambda, |\hat{u}|_W]} > 0$. The constants κ and $\bar{\kappa}$ do not depend on v_0 .

 $\overline{C}_{[a_1,...,a_k]}$ denotes a function of non-negative variables a_j that increases in each of its arguments.

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 9 / 26

AUXILIARY LEMMAS

Let us fix $\tau > 0$ and denote by $S_{\hat{u},\tau}(w_0, \eta)$ the operator that takes the pair (w_0, η) to the solution of

 $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in I_{\tau} = (\tau, 1 + \tau), \quad v(0) = w_0;$

LEMMA

For each $N \in \mathbb{N}$ there is an integer $M = \overline{C}_{[\lambda, |\hat{u}|_{W}]} \ge 1$ such that, for every $w_0 \in H$ and an appropriate control $\eta \in L^2(I_\tau, E_M)$ we have

 $\Pi_N S_{\hat{u},\tau}(w_0, \eta)(\tau+1) = 0.$

Moreover, there is a constant C_{χ} depending only on $|\hat{u}|_{\mathcal{W}}$ (but not on N and τ) such that

$$|\eta|^2_{L^2(I_{\tau}, E_M)} \le C_{\chi} |w_0|^2_H$$

For the proof: for $\epsilon > 0$ consider the minimization problem.

Problem

Given $M, N \in \mathbb{N}$ and $w_0 \in H$, find the minimum of the quadratic functional $J_{\epsilon}(v, \eta) := |\eta|^2_{L^2(I_{\tau}, L^2(T\Omega))} + \frac{1}{\epsilon} |\Pi_N S_{\hat{u}, M, \tau}(w_0, \eta)(\tau + 1)|^2_H$ on the set of functions $(v, \eta) \in W(I_{\tau}, V, V') \times L^2(I_{\tau}, L^2(T\Omega))$ that solve the system.

• The unique minimizer $(\bar{v}_{\epsilon}, \bar{\eta}_{\epsilon})$ depends linearly on $w_0 \in H$.

For the proof: for $\epsilon > 0$ consider the minimization problem.

Problem

Given $M, N \in \mathbb{N}$ and $w_0 \in H$, find the minimum of the quadratic functional $J_{\epsilon}(v, \eta) := |\eta|^2_{L^2(I_{\tau}, L^2(T\Omega))} + \frac{1}{\epsilon} |\Pi_N S_{\hat{u}, M, \tau}(w_0, \eta)(\tau + 1)|^2_H$ on the set of functions $(v, \eta) \in W(I_{\tau}, V, V') \times L^2(I_{\tau}, L^2(T\Omega))$ that solve the system.

- The unique minimizer $(\bar{v}_{\epsilon}, \bar{\eta}_{\epsilon})$ depends linearly on $w_0 \in H$.
- Using the Karush-Kuhn-Tucker theorem, and making some direct computations, we have that there is a Lagrange multiplier q^ϵ ∈ L²(I_τ, V) satisfying the time-backward system

$$egin{aligned} q^\epsilon_t - L q^\epsilon &- \mathbb{B}^*(\hat{u}) q^\epsilon = 0, \quad t \in I_ au; \ q^\epsilon(au+1) = -2\epsilon^{-1} \Pi_N ar{v}^\epsilon(au+1) \end{aligned}$$

with $2\bar{\eta}_{\epsilon} = P_M(\chi q^{\epsilon})$ and...

$$\begin{split} \int_{I_{\tau}} |P_{M}(\chi q^{\epsilon})|^{2}_{L^{2}(T\Omega)} \,\mathrm{d}t + \epsilon |q^{\epsilon}(\tau+1)|^{2}_{H} &= -2(q^{\epsilon}(\tau), \, \bar{v}^{\epsilon}(\tau))_{H} \\ &\leq \alpha |q^{\epsilon}(\tau)|^{2}_{H} + \alpha^{-1} |\bar{v}^{\epsilon}(\tau)|^{2}_{H} \end{split}$$

From the truncated observability inequality:

PROPOSITION

For any integer $N \ge 1$ there is $M = \overline{C}_{[N,|\hat{u}|_{\mathcal{W}_{\tau}}]} \in \mathcal{N}$ such that any solution q for time-backward system $q_t - Lq - \mathbb{B}^*(\hat{u})q = 0, \quad t \in I_{\tau}, \ q(\tau + 1) = q_1, \text{ with } q_1 \in F_N = \prod_N H$ satisfies the inequality $|q(\tau)|_H^2 \le D_{\chi} \int_{I_{\tau}} |P_M(\chi q)|_{L^2(T\Omega)}^2 dt$ for a suitable constant D_{χ} depending only on χ .

we obtain, setting $\alpha = (2D_{\chi})^{-1}$,

$$\int_{I_{\tau}} |P_{\mathcal{M}}(\chi q^{\epsilon})|^2_{L^2(T\Omega)} \,\mathrm{d}t + 2\epsilon |q^{\epsilon}(\tau+1)|^2_{\mathcal{H}} \leq 4D_{\chi} |w_0|^2_{\mathcal{H}}.$$

Remark: to proof the proposition: use the finite-dimensionality of F_N and well known obs. ineq. $|q(\tau)|_H^2 \leq C_\omega \int_{I_\tau} |q|_{L^2(T\omega)}^2 dt$ (Imanuvilov, 2001).

• In particular, we derive that the families $\{\bar{\eta}^{\epsilon} = \frac{1}{2}P_{M}(\chi q^{\epsilon}) \mid \epsilon > 0\}, \{\bar{v}^{\epsilon} \mid \epsilon > 0\}$ and $\{\bar{v}^{\epsilon}_{t} \mid \epsilon > 0\}$ are bounded in appropriate spaces.

ロト 不得下 不足下 不足下

-

- In particular, we derive that the families $\{\bar{\eta}^{\epsilon} = \frac{1}{2}P_M(\chi q^{\epsilon}) \mid \epsilon > 0\}$, $\{\bar{v}^{\epsilon} \mid \epsilon > 0\}$ and $\{\bar{v}^{\epsilon}_t \mid \epsilon > 0\}$ are bounded in appropriate spaces.
- A standard limiting argument shows that there is a limit pair (v^0 , η^0) solving

 $v_t^0 + Lv^0 + \mathbb{B}(\hat{u})v^0 = \Pi(\chi P_M \eta^0), t \in I_{\tau} = (\tau, 1 + \tau), v^0(0) = w_0.$ Furthermore, it follows from above equations that

$$|\Pi_N \bar{v}^\epsilon(\tau+1)|_H^2 = \frac{\epsilon^2}{4} |q^\epsilon(\tau+1)|_H^2 \leq \frac{\epsilon D_\chi}{2} |w_0|_H^2 \to 0 \quad \text{as} \quad \epsilon \to 0.$$

This convergence implies that $\Pi_N v^0(\tau + 1) = 0$.

- In particular, we derive that the families $\{\bar{\eta}^{\epsilon} = \frac{1}{2}P_M(\chi q^{\epsilon}) \mid \epsilon > 0\}$, $\{\bar{v}^{\epsilon} \mid \epsilon > 0\}$ and $\{\bar{v}^{\epsilon}_t \mid \epsilon > 0\}$ are bounded in appropriate spaces.
- A standard limiting argument shows that there is a limit pair (v^0 , η^0) solving

 $v_t^0 + Lv^0 + \mathbb{B}(\hat{u})v^0 = \Pi(\chi P_M \eta^0), t \in I_{\tau} = (\tau, 1 + \tau), v^0(0) = w_0.$ Furthermore, it follows from above equations that

$$|\Pi_N \bar{v}^\epsilon(\tau+1)|_H^2 = \frac{\epsilon^2}{4} |q^\epsilon(\tau+1)|_H^2 \leq \frac{\epsilon D_\chi}{2} |w_0|_H^2 \to 0 \quad \text{as} \quad \epsilon \to 0.$$

This convergence implies that $\Pi_N v^0(\tau + 1) = 0$.

• We also easily find that

$$|\eta^{0}|^{2}_{L^{2}(I_{\tau}, E_{M})} \leq 4D_{\chi}|w_{0}|^{2}_{H}$$

and D_{χ} may be taken independent of τ and N. This ends the proof of the lemma.

・ロット (日) ・ヨット (ヨット・ヨー くりつ)

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 13 / 26

In view of latter lemma, it makes sense to consider:

Problem

Given integers $M, N \ge 1$ and a function $w_0 \in H$, find the minimum of the quadratic functional $J(\eta) := |\eta|_{L^2(I_{\tau}, L^2(T\Omega))}^2$ on the set of functions $(v, \eta) \in W(I_{\tau}, V, V') \times L^2(I_{\tau}, E_M)$ satisfying $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in I_{\tau}, v(0) = w_0$ and $\Pi_N v(\tau + 1) = 0$.

In view of latter lemma, it makes sense to consider:

Problem

Given integers $M, N \ge 1$ and a function $w_0 \in H$, find the minimum of the quadratic functional $J(\eta) := |\eta|_{L^2(I_{\tau}, L^2(T\Omega))}^2$ on the set of functions $(v, \eta) \in W(I_{\tau}, V, V') \times L^2(I_{\tau}, E_M)$ satisfying $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in I_{\tau}, v(0) = w_0$ and $\Pi_N v(\tau + 1) = 0$.

Lemma

For any $N \in \mathbb{N}$ there is an integer $M = \overline{C}_{[\lambda, |\hat{u}|_{\mathcal{W}}]} \geq 1$ such that for any $w_0 \in H$ the problem has a unique minimizer $(\overline{v}^{\hat{u},\tau}, \overline{\eta}^{\hat{u},\tau})$. Moreover, the mapping $w_0 \mapsto (\overline{v}^{\hat{u},\tau}, \overline{\eta}^{\hat{u},\tau})$ is linear and continuous in the corresponding spaces, and there is a constant C_{χ} depending only on $|\hat{u}|_{\mathcal{W}}$ (but not on N and τ) such that

$$|ar{\eta}^{\hat{u}, au}|^2_{\mathcal{L}(H,\,L^2(I_ au,\,\mathcal{E}_\mathcal{M}))} \leq \mathcal{C}_\chi$$

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 14 / 26

(日) (同) (目) (日) (日) (日)

A STABILIZING CONTROL FOR LINEARIZED SYSTEM

• Fix an initial function $v_0 \in H$ and an integer $N = N(\lambda) \ge 1$, and set

 $\eta^{\hat{u},\lambda}(t)=ar{\eta}^{\hat{u},0}(v_0)(t) \quad ext{for} \quad t\in I_0.$

Assuming that $\eta^{\hat{u},\lambda}$ is constructed on the interval (0, n) and denoting by v(t) the corresponding solution on [0, n], we define

 $\eta^{\hat{u},\lambda}(t) = ar{\eta}^{\hat{u},n}(v(n))(t) \quad ext{for} \quad t \in I_n.$

• By construction, $\eta^{\hat{u},\lambda}$ is an E_M -valued function square integrable on every bounded interval.

A STABILIZING CONTROL FOR LINEARIZED SYSTEM

• Fix an initial function $v_0 \in H$ and an integer $N = N(\lambda) \ge 1$, and set

 $\eta^{\hat{u},\lambda}(t) = ar{\eta}^{\hat{u},0}(v_0)(t) \quad ext{for} \quad t \in I_0.$

Assuming that $\eta^{\hat{u},\lambda}$ is constructed on the interval (0, n) and denoting by v(t) the corresponding solution on [0, n], we define

 $\eta^{\hat{u},\lambda}(t) = ar{\eta}^{\hat{u},n}(v(n))(t) \quad ext{for} \quad t \in I_n.$

- By construction, $\eta^{\hat{u},\lambda}$ is an E_M -valued function square integrable on every bounded interval.
- The linearity of $\bar{\eta}^{\hat{u},\tau}$ implies that $\eta^{\hat{u},\lambda}$ linearly depends on v_0 .

A STABILIZING CONTROL FOR LINEARIZED SYSTEM

• Fix an initial function $v_0 \in H$ and an integer $N = N(\lambda) \ge 1$, and set

 $\eta^{\hat{u},\lambda}(t) = ar{\eta}^{\hat{u},0}(v_0)(t) \quad ext{for} \quad t \in I_0.$

Assuming that $\eta^{\hat{u},\lambda}$ is constructed on the interval (0, n) and denoting by v(t) the corresponding solution on [0, n], we define

 $\eta^{\hat{u},\lambda}(t) = ar{\eta}^{\hat{u},n}(v(n))(t) \quad ext{for} \quad t \in I_n.$

- By construction, $\eta^{\hat{u},\lambda}$ is an E_M -valued function square integrable on every bounded interval.
- The linearity of $\bar{\eta}^{\hat{u},\tau}$ implies that $\eta^{\hat{u},\lambda}$ linearly depends on v_0 .
- We claim that, if $N \in \mathbb{N}$ is sufficiently large, then the solution v of $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta^{\hat{u},\lambda}), t \in \mathbb{R}^+, v(0) = w_0$, goes λ -exponentially to 0 as $t \to +\infty$. Indeed...

• From standard computations we have

$$\begin{split} |v(1)|_{V}^{2} &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}|\bar{\eta}^{\hat{u},0}(v_{0})|_{L^{2}(I_{0},\,E_{M})}^{2}) \\ &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}C_{\chi}|v_{0}|_{H}^{2}). \end{split}$$

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 16 / 26

イロン 不同と 不同と 不同と

From standard computations we have

$$\begin{split} |v(1)|_{V}^{2} &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}|\bar{\eta}^{\hat{u},0}(v_{0})|_{L^{2}(I_{0},\,E_{M})}^{2}) \\ &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}\mathcal{C}_{\chi}|v_{0}|_{H}^{2}). \end{split}$$

• Since $\prod_N v(1) = 0$, we obtain $\alpha_N |v(1)|_H^2 \leq |v(1)|_V^2 \leq \overline{C}_{[|\hat{u}|_W]}(\chi) |v_0|^2$. Taking N so large that $\alpha_N \geq e^{\lambda} \overline{C}_{[|\hat{u}|_W]}(\chi)$, we obtain $|v(1)|_H^2 \leq e^{-\lambda} |v_0|_H^2$. Similarly $|v(n+1)|_H^2 \leq e^{-\lambda} |v(n)|_H^2$. By induction, we see that the solution v corresponding to control $\eta = \eta^{\hat{u},\lambda}$ satisfies the inequality $|v(n)|_H^2 \leq e^{-\lambda n} |v_0|_H^2$. From standard computations we have

$$\begin{split} |v(1)|_{V}^{2} &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}|\bar{\eta}^{\hat{u},0}(v_{0})|_{L^{2}(I_{0},\,E_{M})}^{2}) \\ &\leq \overline{C}_{[|\hat{u}|_{\mathcal{W}}]}(|v_{0}|_{H}^{2} + 3|\chi|_{L^{\infty}(\Omega)}^{2}C_{\chi}|v_{0}|_{H}^{2}). \end{split}$$

- Since $\prod_N v(1) = 0$, we obtain $\alpha_N |v(1)|_H^2 \leq |v(1)|_V^2 \leq \overline{C}_{[|\hat{u}|_W]}(\chi) |v_0|^2$. Taking N so large that $\alpha_N \geq e^{\lambda} \overline{C}_{[|\hat{u}|_W]}(\chi)$, we obtain $|v(1)|_H^2 \leq e^{-\lambda} |v_0|_H^2$. Similarly $|v(n+1)|_H^2 \leq e^{-\lambda} |v(n)|_H^2$. By induction, we see that the solution v corresponding to control $\eta = \eta^{\hat{u},\lambda}$ satisfies the inequality $|v(n)|_H^2 \leq e^{-\lambda n} |v_0|_H^2$:
- From this, using some more standard estimates, it is not difficult to derive that $|v(t)|_{H}^{2} \leq \overline{C}_{[\lambda,|\hat{u}|_{W}]}e^{-\lambda t}|v_{0}|_{H}^{2}$ and, if $v_{0} \in V$, that $|v(t)|_{V}^{2} \leq \overline{C}_{[\lambda,|\hat{u}|_{W}]}e^{-\lambda t}|v_{0}|_{V}^{2}$.

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 16 / 26

Finally for any $\tilde{\lambda} < \lambda$, the the continuity of the map $v_0 \mapsto e^{(\tilde{\lambda}/2)t} \eta^{\hat{u},\lambda}$ follows from a simple and direct computation:

$$\begin{split} |e^{(\tilde{\lambda}/2)t}\eta^{\hat{u},\lambda}|_{L^{2}(\mathbb{R}_{+},E_{M})}^{2} &= \sum_{n\in\mathbb{N}} |e^{(\tilde{\lambda}/2)t}\bar{\eta}^{\hat{u},n}(v(n))|_{L^{2}(I_{n},E_{M})}^{2} \\ &\leq C_{\chi}'\sum_{n\in\mathbb{N}} e^{\tilde{\lambda}(n+1)}|v(n)|_{H}^{2} \\ &\leq C_{\chi}'e^{\tilde{\lambda}}\sum_{n\in\mathbb{N}} e^{(\tilde{\lambda}-\lambda)n}|v_{0}|_{H}^{2} \leq C_{\chi,\lambda}|v_{0}|_{H}^{2}. \end{split}$$

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 17 / 26

(E) < E)</p>

-

THEOREM (FEEDBACK CONTROL)

For any $\hat{u} \in \mathcal{W}$ and $\lambda > 0$ there is an integer $M = \overline{C}_{[\lambda, |\hat{u}|_{\mathcal{W}}]} \in \mathbb{N}$, a family of continuous operators $K_{\hat{u}}^{\lambda}(t) : H \to \mathcal{E}_{M}$, and a constant $\kappa = \overline{C}_{[\lambda, |\hat{u}|_{\mathcal{W}}]}$ such that the following properties hold.

- (i) The function $t \mapsto K_{\hat{u}}^{\lambda}(t)$ is continuous in the weak operator topology, and its operator norm is bounded by κ .
- (ii) For any $s \ge 0$ and $v_0 \in H$, the solution of the problem

 $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi K_{\hat{u}}^{\lambda}(t)v, \quad v(s) = v_0$

exists on the time interval $(s, +\infty)$ and satisfies the inequality

$$e^{\lambda(t-s)}|v(t)|_{H}^{2}+\int_{s}^{t}e^{\lambda(au-s)}ig(|v(au)|_{V}^{2}+|v_{t}(au)|_{V'}^{2}ig)d au\leq\kappa|v_{0}|_{H}^{2},\quad t\geq s$$

. Moreover, if $v_0 \in V$, then

$$\frac{e^{\lambda(t-s)}|v(t)|_V^2 + \int_s^t e^{\lambda(\tau-s)} (|v(\tau)|_{\mathrm{D}(L)}^2 + |v_t(\tau)|_H^2) d\tau \le \kappa |v_0|_V^2, \quad t \ge s}{\text{S. S. Rodrigues (RICAM-LINZ)}}$$

Put $E^{\lambda}(X) := \{ f \in X \mid e^{\lambda t} f \in X \}$. Given $s \ge 0$, $\lambda > 0$, $M \in \mathbb{N}$ and $w_0 \in H$, find the minimum of the functional

$$M_s^{\lambda}(\boldsymbol{v},\eta) := \int_{(s,+\infty)} e^{\lambda t} (|\boldsymbol{v}|_V^2 + |\eta|_{L^2(T\Omega)}^2) \,\mathrm{d}t$$

on the set of functions (v, η) that satisfy $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in I_\tau, v(s) = w_0$ and $(v, \eta) \in E^{\lambda}(W([s, +\infty), V, V')) \times E^{\lambda}(L^2([s, +\infty), L^2(T\Omega)))$

물 에서 물 에 드릴

Put $E^{\lambda}(X) := \{ f \in X \mid e^{\lambda t} f \in X \}$. Given $s \ge 0$, $\lambda > 0$, $M \in \mathbb{N}$ and $w_0 \in H$, find the minimum of the functional

$$M_s^{\lambda}(\boldsymbol{v},\eta) := \int_{(s,+\infty)} e^{\lambda t} (|\boldsymbol{v}|_V^2 + |\eta|_{L^2(T\Omega)}^2) \, \mathrm{d}t$$

on the set of functions (v, η) that satisfy $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in I_\tau, v(s) = w_0$ and $(v, \eta) \in E^{\lambda}(W([s, +\infty), V, V')) \times E^{\lambda}(L^2([s, +\infty), L^2(T\Omega)))$

LEMMA

For any $\hat{u} \in \mathcal{W}$ and $\lambda > 0$ there is an integer $M = \overline{C}_{[\lambda, |\hat{u}|_{\mathcal{W}}]} \ge 1$ such that the problem has a unique minimizer (v_s^*, η_s^*) . Moreover, there is a continuous operator $Q_{\hat{u}}^{s,\lambda} : H \to H$ such that

 $M_{s}^{\lambda}(v_{s}^{*},\eta_{s}^{*})=\big(Q_{\hat{u}}^{s,\lambda}w_{0},w_{0}\big), \qquad |Q_{\hat{u}}^{s,\lambda}|_{\mathcal{L}(H)}\leq \overline{C}_{[\lambda,|\hat{u}|_{\mathcal{W}}]}e^{\lambda s},$

where $C = \overline{C}_{[\lambda,|\hat{u}|_{W}]} > 0$ is a constant. Finally, $Q_{\hat{u}}^{s,\lambda}$ continuously depends on s in the weak operator topology.

Given $\lambda > 0$ and $v_0 \in H$, find the minimum of the functional

$$N_s^{\lambda}(v,\eta) := \int_{(0,s)} e^{\lambda t} (|v|_V^2 + |\eta|_{L^2(T\Omega)}^2) \,\mathrm{d}t + (Q_{\hat{u}}^{s,\lambda}v(s), v(s))$$

on the set of functions $(v, \eta) \in W([0, s], V, V') \times L^2((0, s), L^2(T\Omega))$ that satisfy $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in (0, s), v(0) = v_0$ and M is the integer constructed in preceding lemma.

(소문) 소문) 문

Given $\lambda > 0$ and $v_0 \in H$, find the minimum of the functional

$$N_s^{\lambda}(v,\eta) := \int_{(0,s)} e^{\lambda t} (|v|_V^2 + |\eta|_{L^2(T\Omega)}^2) \,\mathrm{d}t + (Q_{\hat{u}}^{s,\lambda}v(s), v(s))$$

on the set of functions $(v, \eta) \in W([0, s], V, V') \times L^2((0, s), L^2(T\Omega))$ that satisfy $v_t + Lv + \mathbb{B}(\hat{u})v = \Pi(\chi P_M \eta), t \in (0, s), v(0) = v_0$ and M is the integer constructed in preceding lemma.

This problem has a unique minimizer $(v_s^{\bullet}, \eta_s^{\bullet})$, which is a linear function of $v_0 \in H$.

LEMMA

Under the hypotheses of preceding lemma, the restriction of (v_0^*, η_0^*) to the interval (0, s) coincides with $(v_s^\bullet, \eta_s^\bullet)$ and the restriction of (v_0^*, η_0^*) to the interval $(s, +\infty)$ coincides with $(v_s^\bullet, \eta_s^*)(v_0(s))$.

・ロン ・回 と ・ ヨン ・ ヨー

Using the Karush–Kuhn–Tucker theorem we find some equations that must be satisfied by the optimal control and trajectory of the last problem. It turns out that at time s we must have

$$\eta_{s}^{\bullet}(s) = -e^{-\lambda s} P_{M} \chi Q_{\hat{u}}^{s,\lambda} v_{s}^{\bullet}(s).$$

Since s is arbitrary we may conclude that the optimal trajectory v_0^* solves

 $v_t + Lv + B(\hat{u}, v) + B(v, \hat{u}) = \Pi(K_{\hat{u}}^{\lambda}v), \quad t \in \mathbb{R}_+, \quad v(0) = v_0,$

where we set

$$K_{\hat{u}}^{\lambda}(t) := -e^{-\lambda t} \chi P_M \chi Q_{\hat{u}}^{t,\lambda}.$$

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 21 / 26

NONLINEAR SYSTEM

Let us consider the nonlinear problem

 $v_t + Lv + Bv + \mathbb{B}(\hat{u})v = K_{\hat{u}}^{\lambda}(t)v, \quad t \in \mathbb{R}_+; \quad v(0) = v_0.$

Theorem

Let $\hat{u} \in \mathcal{W}$ be an arbitrary function, let $\lambda > 0$, and let $M = \overline{C}_{[|\hat{u}|_{\mathcal{W}},\lambda]}$ the integer constructed in feedback theorem for the linear case. Then there are positive constants ϑ and ϵ depending only on $|\hat{u}|_{\mathcal{W}}$ and λ such that for $|v_0|_{\mathcal{V}} \leq \epsilon$ the solution v of the system above is well defined for all $t \geq 0$ and satisfies the inequality

$$|v(t)|_V^2 \leq artheta e^{-\lambda t} |v_0|_V^2 \quad \textit{for } t \geq 0.$$

Denote by \mathbb{Z}^{λ} the space of functions $z \in C(\mathbb{R}_+, V) \cap L^2_{loc}(\mathbb{R}_+, U)$ such that

$$|z|_{\mathcal{Z}^{\lambda}} := \sup_{t \ge 0} \left(e^{\lambda t} |z(t)|_{V}^{2} + \int_{(t, t+1)} e^{\lambda \tau} |z(\tau)|_{\mathrm{D}(L)}^{2} \mathrm{d}\tau \right)^{1/2} < \infty.$$

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 22 / 26

For the proof we use the contraction mapping principle. Fix a constant $\vartheta > 0$ and a function $v_0 \in V$ and introduce the following subset of \mathcal{Z}^{λ} :

 $\mathcal{Z}^{\lambda}_{\vartheta} := \{ z \in \mathcal{Z}^{\lambda} \mid z(0) = v_0, |z|_{\mathcal{Z}^{\lambda}}^2 \leq \vartheta |v_0|_V^2 \}.$

We define a mapping $\Xi : \mathbb{Z}_{\vartheta}^{\lambda} \to C(\mathbb{R}_+, V) \cap L^2_{loc}(\mathbb{R}_+, U)$ that takes a function $a \in \mathbb{Z}^{\lambda}$ to the solution of the problem

 $b_t + Lb + \mathbb{B}(\hat{u})b = K_{\hat{u}}^{\lambda}b - Ba, \quad t \in \mathbb{R}_+; \qquad b(0) = v_0.$ (1)

The theorem follows from the following proposition, which proof follows by some technical computations we do not present here.

PROPOSITION

Under the hypotheses of theorem, there exists $\vartheta > 0$ such that for any $\gamma \in (0, 1)$ and an appropriate constant $\epsilon = \epsilon_{\gamma} > 0$ the mapping Ξ takes the set Z_{ϑ}^{λ} into itself and satisfies the inequality

 $|\Xi(a_1)-\Xi(a_2)|_{\mathcal{Z}^\lambda}\leq \gamma |a_1-a_2|_{\mathcal{Z}^\lambda} \quad \textit{for all} \quad a_1,\,a_2\in \mathcal{Z}^\lambda_\vartheta,$

provided that $|v_0|_V \leq \epsilon$.

CNRS.

UMR CNRS 8088, University of Cergy-Pontoise.

OAW.

RICAM, Linz.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

Some References:

- V. Barbu, I. Lasiecka, and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal. 64 (2006), no. 12, 2704–2746.
- V. Barbu, S. S. Rodrigues, and A. Shirikyan, *Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations*, SIAM J. Control Optim. 49 (2011), no. 4, 1454–1478.
- V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J. 53 (2004), no. 5, 1443–1494.
- V. Barbu, *Feedback stabilization of Navier-Stokes equations*, ESAIM Control Optim. Calc. Var. **9** (2003), 197–206 (electronic).
- O. Yu. Imanuvilov, *Remarks on exact controllability for the Navier-Stokes equations*, ESAIM Control Optim. Calc. Var. **6** (2001), 39–72 (electronic).
- J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optimisation 45 (2006), no. 3, 790–728.
 - _____, Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. (9) 87 (2007), no. 6, 627–669

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 25 / 26

THANKS FOR YOUR ATTENTION

S. S. RODRIGUES (RICAM-LINZ) EXP. FEEDBACK STABILIZATION OF N-S EQ. GRAZ; OCTOBER, 2011 26 / 26

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●