Internal exponential stabilization to a NONSTATIONARY SOLUTION FOR 3D NAVIER-Stokes EQUATIONS

Sérgio S. Rodrigues

Presented at mariatrost
bildungshaus

SFB Workshop on Control and Optimization of PDEs

Joint work with:
Viorel Barbu, University "AI. I. Cuza", lași, Romania;
Armen Shirikyan, UMR CNRS 8088, University of Cergy-Pontoise, France.

Outline

(1) The equations

- The Navier-Stokes system
- The task
- The evolutionary equation
(2) Linear PRoblem
- Existence of stabilizing control
- Feedback control
(3) NonLinear system
(4) Acknowledgements
(5) References

The EQUATIONS

The Navier-Stokes system in a 3D bounded domain $\Omega \subseteq \mathbb{R}^{3}$ with boundary Γ reads:

$$
\begin{aligned}
u_{t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p & =h+\zeta \text { in } \Omega ; \\
\nabla \cdot u & =0 \text { in } \Omega ; \\
\left.u\right|_{\Gamma} & =0 ; \\
u(0) & =u_{0} .
\end{aligned}
$$

Functional spaces/REGularity

- To rewrite the equations as an evolutionary equation in H :

$$
\begin{aligned}
& H:=\left\{u \in L^{2}(T \Omega) \mid \nabla \cdot u=0 \quad \& \quad u \cdot \mathbf{n}=0 \text { on } \Gamma\right\} ; \\
& V:=\left\{u \in H^{1}(T \Omega) \mid \nabla \cdot u=0 \quad \& \quad u=0 \text { on } \Gamma\right\} ; \\
& U:=D(L)=H^{2}(T \Omega) \cap V .
\end{aligned}
$$

Functional spaces/REGularity

- To rewrite the equations as an evolutionary equation in H :

$$
\begin{aligned}
& H:=\left\{u \in L^{2}(T \Omega) \mid \nabla \cdot u=0 \quad \& \quad u \cdot \mathbf{n}=0 \text { on } \Gamma\right\} ; \\
& V:=\left\{u \in H^{1}(T \Omega) \mid \nabla \cdot u=0 \quad \& \quad u=0 \text { on } \Gamma\right\} ; \\
& U:=D(L)=H^{2}(T \Omega) \cap V .
\end{aligned}
$$

- Scalar products and norms: let Π be the orthogonal projection in $L^{2}(T \Omega)$ onto H and let $L=-\nu \Pi \Delta$ be the Stokes operator;

$$
\begin{aligned}
(u, v)_{H} & :=(u, v)_{L^{2}(T \Omega)}, \quad(u, v)_{v}:=\langle L u, v\rangle_{v^{\prime}, v,}, \\
(u, v)_{\mathrm{D}(L)} & :=(L u, L v)_{L^{2}(T \Omega)} .
\end{aligned}
$$

The evolutionary equation

Fix a function $h \in L^{2}\left(\mathbb{R}_{+}, H\right)$ and write the system

$$
u_{t}-\nu \Delta u+(u \cdot \nabla) u+\nabla p=h+\zeta, \quad \nabla \cdot u=0 \quad \text { in } \quad \Omega ;
$$

as an evolutionary equation in the space H of divergence free vector fields H:

$$
u_{t}+L u+B u=h+\Pi(\zeta)
$$

GOAL

Fix $\hat{u} \in L^{2}\left(\mathbb{R}_{+}, V\right) \cap \mathcal{W}$ solving the (non-controlled) Navier-Stokes system

$$
\hat{u}_{t}+L \hat{u}+B \hat{u}=h, \quad t>0 ; \quad \hat{u}(0)=\hat{u}_{0}
$$

with $\mathcal{W}:=W^{1, \infty}\left(\mathbb{R}_{+}, W^{1, \infty}(T \Omega)\right)$; an element $u_{0} \in H$ and a sub-domain $\omega \subseteq \Omega$.

GOAL

Fix $\hat{u} \in L^{2}\left(\mathbb{R}_{+}, V\right) \cap \mathcal{W}$ solving the (non-controlled) Navier-Stokes system

$$
\hat{u}_{t}+L \hat{u}+B \hat{u}=h, \quad t>0 ; \quad \hat{u}(0)=\hat{u}_{0}
$$

with $\mathcal{W}:=W^{1, \infty}\left(\mathbb{R}_{+}, W^{1, \infty}(T \Omega)\right)$; an element $u_{0} \in H$ and a sub-domain $\omega \subseteq \Omega$.
Goal: find a finite-dimensional subspace $\mathcal{E} \subset L^{2}(T \omega)$ and a control $\zeta \in L_{\text {loc }}^{2}\left(\mathbb{R}_{+}, \mathcal{E}\right)$ such that the solution of the problem

$$
u_{t}+L u+B u=h+\Pi \zeta, \quad u(0)=u_{0}
$$

is defined for all $t>0$ and converges exponentially to \hat{u}, i.e.,

$$
|u(t)-\hat{u}(t)|_{H} \leq \kappa_{1} e^{-\kappa_{2} t} \quad \text { for } t \geq 0
$$

where κ_{1} and κ_{2} are non-negative constants; in this case, we say that u converges κ_{2}-exponentially to \hat{u}.

Linearization

The difference $v=u-\hat{u}$ solves

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v+B v=\Pi \zeta, \quad t>0 ; \quad v(0)=v_{0}:=u_{0}-\hat{u}_{0} ;
$$

with $\mathbb{B}(\hat{u}) v=B(\hat{u}, v)+B(v, \hat{u})$ so, our goal is to find a finite-dimensional subspace $\mathcal{E} \subset L^{2}(T \omega)$ and a control $\zeta \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+}, \mathcal{E}\right)$ such that

$$
|v(t)|_{H} \leq \kappa_{1} e^{-\kappa_{2} t} \quad \text { for } t \geq 0
$$

Linearization

The difference $v=u-\hat{u}$ solves

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v+B v=\Pi \zeta, \quad t>0 ; \quad v(0)=v_{0}:=u_{0}-\hat{u}_{0} ;
$$

with $\mathbb{B}(\hat{u}) v=B(\hat{u}, v)+B(v, \hat{u})$ so, our goal is to find a finite-dimensional subspace $\mathcal{E} \subset L^{2}(T \omega)$ and a control $\zeta \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+}, \mathcal{E}\right)$ such that

$$
|v(t)|_{H} \leq \kappa_{1} e^{-\kappa_{2} t} \quad \text { for } t \geq 0
$$

We start by considering the linear system

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi \zeta, \quad t>0 ; \quad v(0)=v_{0}:=u_{0}-\hat{u}_{0} ;
$$

with the same goal.

The finite-dimensional space \mathcal{E}

- Let $\left\{\phi_{i} \mid i \in \mathbb{N}_{0}\right\}$ be an orthonormal basis in $L^{2}(T \Omega)$ formed by the eigenfunctions of the Dirichlet Laplacian and let $0<\beta_{1} \leq \beta_{2} \leq \ldots$ be the corresponding eigenvalues;

The finite-dimensional space \mathcal{E}

- Let $\left\{\phi_{i} \mid i \in \mathbb{N}_{0}\right\}$ be an orthonormal basis in $L^{2}(T \Omega)$ formed by the eigenfunctions of the Dirichlet Laplacian and let $0<\beta_{1} \leq \beta_{2} \leq \ldots$ be the corresponding eigenvalues;
- let $\left\{e_{i} \mid i \in \mathbb{N}_{0}\right\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0<\alpha_{1} \leq \alpha_{2} \leq \ldots$ be the corresponding eigenvalues.

The finite-dimensional space \mathcal{E}

- Let $\left\{\phi_{i} \mid i \in \mathbb{N}_{0}\right\}$ be an orthonormal basis in $L^{2}(T \Omega)$ formed by the eigenfunctions of the Dirichlet Laplacian and let $0<\beta_{1} \leq \beta_{2} \leq \ldots$ be the corresponding eigenvalues;
- let $\left\{e_{i} \mid i \in \mathbb{N}_{0}\right\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0<\alpha_{1} \leq \alpha_{2} \leq \ldots$ be the corresponding eigenvalues.
- For each $N \in \mathbb{N}_{0}$, we introduce the N-dimensional subspaces

$$
E_{N}:=\operatorname{span}\left\{\phi_{i} \mid i \leq N\right\} \subset L^{2}(T \Omega), \quad F_{N}:=\operatorname{span}\left\{e_{i} \mid i \leq N\right\} \subset H
$$

and denote by $P_{N}: L^{2}(T \Omega) \rightarrow E_{N}$ and $\Pi_{N}: L^{2}(T \Omega) \rightarrow F_{N}$ the corresponding orthogonal projections.

The finite-dimensional space \mathcal{E}

- Let $\left\{\phi_{i} \mid i \in \mathbb{N}_{0}\right\}$ be an orthonormal basis in $L^{2}(T \Omega)$ formed by the eigenfunctions of the Dirichlet Laplacian and let $0<\beta_{1} \leq \beta_{2} \leq \ldots$ be the corresponding eigenvalues;
- let $\left\{e_{i} \mid i \in \mathbb{N}_{0}\right\}$ be the orthonormal basis in H formed by the eigenfunctions of the Stokes operator and let $0<\alpha_{1} \leq \alpha_{2} \leq \ldots$ be the corresponding eigenvalues.
- For each $N \in \mathbb{N}_{0}$, we introduce the N-dimensional subspaces

$$
E_{N}:=\operatorname{span}\left\{\phi_{i} \mid i \leq N\right\} \subset L^{2}(T \Omega), \quad F_{N}:=\operatorname{span}\left\{e_{i} \mid i \leq N\right\} \subset H
$$

and denote by $P_{N}: L^{2}(T \Omega) \rightarrow E_{N}$ and $\Pi_{N}: L^{2}(T \Omega) \rightarrow F_{N}$ the corresponding orthogonal projections.

- The required control space can be chosen in the form $\mathcal{E}_{M}=\chi E_{M}$, where $\chi \in C_{0}^{\infty}(\Omega)$ is a given function not identically equal to zero, and the integer M is sufficiently large. In particular, $\chi E_{M} \subset C_{0}^{\infty}(T \omega)$ for any sub-domain $\omega \subseteq \Omega$ containing $\operatorname{supp}(\chi)$.

Main result for linear problem

Taking controls in \mathcal{E}_{M} we may rewrite the problem as

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M \eta}\right), \quad v(0)=v_{0} ;
$$

with η taking values in $L^{2}(T \Omega)$

Main result for linear problem

Taking controls in \mathcal{E}_{M} we may rewrite the problem as

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), \quad v(0)=v_{0}
$$

with η taking values in $L^{2}(T \Omega)$

Theorem

For each $v_{0} \in H$ and $\lambda>0$, there is an integer $M=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} \geq 1$ and a control $\eta^{\hat{u}, \lambda}\left(v_{0}\right) \in L^{2}\left(\mathbb{R}_{+}, E_{M}\right)$ such that the solution v of the system satisfies the inequality $|v(t)|_{H}^{2} \leq \kappa\left|v_{0}\right|_{H}^{2} e^{-\lambda t}, \quad t \geq 0$ for some $\kappa=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]}>0$. Moreover, the mapping $v_{0} \mapsto e^{(\tilde{\lambda} / 2) t} \eta^{\hat{u}, \lambda}\left(v_{0}\right)$ is linear and continuous from H to $L^{2}\left(\mathbb{R}_{+}, E_{M}\right)$ for all $0 \leq \tilde{\lambda}<\lambda$. Finally, if $v_{0} \in V$, then $|v(t)|_{V}^{2} \leq \bar{\kappa}\left|v_{0}\right|_{V}^{2} e^{-\lambda t}, \quad t \geq 0$ for some $\kappa=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]}>0$. The constants κ and $\bar{\kappa}$ do not depend on v_{0}.
$\bar{C}_{\left[a_{1}, \ldots, a_{k}\right]}$ denotes a function of non-negative variables a_{j} that increases in each of its arguments.

Auxiliary lemmas

Let us fix $\tau>0$ and denote by $S_{\hat{u}, \tau}\left(w_{0}, \eta\right)$ the operator that takes the pair $\left(w_{0}, \eta\right)$ to the solution of

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in I_{\tau}=(\tau, 1+\tau), \quad v(0)=w_{0}
$$

LEMMA

For each $N \in \mathbb{N}$ there is an integer $M=\bar{C}_{[\lambda,|\hat{u}| \mathcal{W}]} \geq 1$ such that, for every $w_{0} \in H$ and an appropriate control $\eta \in L^{2}\left(I_{\tau}, E_{M}\right)$ we have

$$
\Pi_{N} S_{\hat{u}, \tau}\left(w_{0}, \eta\right)(\tau+1)=0
$$

Moreover, there is a constant C_{χ} depending only on $|\hat{u}|_{\mathcal{W}}$ (but not on N and τ) such that

$$
|\eta|_{L^{2}\left(I_{\tau}, E_{M}\right)}^{2} \leq C_{\chi}\left|w_{0}\right|_{H}^{2} .
$$

For the proof: for $\epsilon>0$ consider the minimization problem.

Problem

Given $M, N \in \mathbb{N}$ and $w_{0} \in H$, find the minimum of the quadratic functional $J_{\epsilon}(v, \eta):=|\eta|_{L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)}^{2}+\frac{1}{\epsilon}\left|\Pi_{N} S_{\hat{u}, M, \tau}\left(w_{0}, \eta\right)(\tau+1)\right|_{H}^{2}$ on the set of functions $(v, \eta) \in W\left(I_{\tau}, V, V^{\prime}\right) \times L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)$ that solve the system.

- The unique minimizer $\left(\bar{v}_{\epsilon}, \bar{\eta}_{\epsilon}\right)$ depends linearly on $w_{0} \in H$.

For the proof: for $\epsilon>0$ consider the minimization problem.

Problem

Given $M, N \in \mathbb{N}$ and $w_{0} \in H$, find the minimum of the quadratic functional $J_{\epsilon}(v, \eta):=|\eta|_{L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)}^{2}+\frac{1}{\epsilon}\left|\Pi_{N} S_{\hat{u}, M, \tau}\left(w_{0}, \eta\right)(\tau+1)\right|_{H}^{2}$ on the set of functions $(v, \eta) \in W\left(I_{\tau}, V, V^{\prime}\right) \times L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)$ that solve the system.

- The unique minimizer $\left(\bar{v}_{\epsilon}, \bar{\eta}_{\epsilon}\right)$ depends linearly on $w_{0} \in H$.
- Using the Karush-Kuhn-Tucker theorem, and making some direct computations, we have that there is a Lagrange multiplier $q^{\epsilon} \in L^{2}\left(I_{\tau}, V\right)$ satisfying the time-backward system

$$
\begin{aligned}
q_{t}^{\epsilon}-L q^{\epsilon}-\mathbb{B}^{*}(\hat{u}) q^{\epsilon} & =0, \quad t \in I_{\tau} ; \\
q^{\epsilon}(\tau+1) & =-2 \epsilon^{-1} \Pi_{N} \bar{v}^{\epsilon}(\tau+1)
\end{aligned}
$$

with $2 \bar{\eta}_{\epsilon}=P_{M}\left(\chi q^{\epsilon}\right)$ and...

$$
\begin{aligned}
\int_{I_{\tau}}\left|P_{M}\left(\chi q^{\epsilon}\right)\right|_{L^{2}(T \Omega)}^{2} \mathrm{~d} t+\epsilon\left|q^{\epsilon}(\tau+1)\right|_{H}^{2} & =-2\left(q^{\epsilon}(\tau), \bar{v}^{\epsilon}(\tau)\right)_{H} \\
& \leq \alpha\left|q^{\epsilon}(\tau)\right|_{H}^{2}+\alpha^{-1}\left|\bar{v}^{\epsilon}(\tau)\right|_{H}^{2}
\end{aligned}
$$

From the truncated observability inequality:

Proposition

For any integer $N \geq 1$ there is $M=\bar{C}_{\left[N,|\hat{u}| \mathcal{W}_{\tau}\right]} \in \mathcal{N}$ such that any solution q for time-backward system $q_{t}-L q-\mathbb{B}^{*}(\hat{u}) q=0, \quad t \in I_{\tau}, q(\tau+1)=q_{1}$, with $q_{1} \in F_{N}=\Pi_{N} H$ satisfies the inequality $|q(\tau)|_{H}^{2} \leq D_{\chi} \int_{I_{\tau}}\left|P_{M}(\chi q)\right|_{L^{2}(T \Omega)}^{2} \mathrm{~d} t$ for a suitable constant D_{χ} depending only on χ.
we obtain, setting $\alpha=\left(2 D_{\chi}\right)^{-1}$,

$$
\int_{I_{\tau}}\left|P_{M}\left(\chi q^{\epsilon}\right)\right|_{L^{2}(T \Omega)}^{2} \mathrm{~d} t+2 \epsilon\left|q^{\epsilon}(\tau+1)\right|_{H}^{2} \leq 4 D_{\chi}\left|w_{0}\right|_{H}^{2} .
$$

Remark: to proof the proposition: use the finite-dimensionality of F_{N} and well known obs. ineq. $|q(\tau)|_{H}^{2} \leq C_{\omega} \int_{l_{\tau}}|q|_{L^{2}(T \omega)}^{2} \mathrm{dt}$ (Imanuvilov, 2001).

- In particular, we derive that the families $\left\{\left.\bar{\eta}^{\epsilon}=\frac{1}{2} P_{M}\left(\chi q^{\epsilon}\right) \right\rvert\, \epsilon>0\right\}$, $\left\{\bar{v}^{\epsilon} \mid \epsilon>0\right\}$ and $\left\{\bar{v}_{t}^{\epsilon} \mid \epsilon>0\right\}$ are bounded in appropriate spaces.
- In particular, we derive that the families $\left\{\left.\bar{\eta}^{\epsilon}=\frac{1}{2} P_{M}\left(\chi q^{\epsilon}\right) \right\rvert\, \epsilon>0\right\}$, $\left\{\bar{v}^{\epsilon} \mid \epsilon>0\right\}$ and $\left\{\bar{v}_{t}^{\epsilon} \mid \epsilon>0\right\}$ are bounded in appropriate spaces.
- A standard limiting argument shows that there is a limit pair $\left(v^{0}, \eta^{0}\right)$ solving
$v_{t}^{0}+L v^{0}+\mathbb{B}(\hat{u}) v^{0}=\Pi\left(\chi P_{M} \eta^{0}\right), t \in I_{\tau}=(\tau, 1+\tau), \quad v^{0}(0)=w_{0}$.
Furthermore, it follows from above equations that

$$
\left|\Pi_{N} \bar{V}^{\epsilon}(\tau+1)\right|_{H}^{2}=\frac{\epsilon^{2}}{4}\left|q^{\epsilon}(\tau+1)\right|_{H}^{2} \leq \frac{\epsilon D_{\chi}}{2}\left|w_{0}\right|_{H}^{2} \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

This convergence implies that $\Pi_{N} v^{0}(\tau+1)=0$.

- In particular, we derive that the families $\left\{\left.\bar{\eta}^{\epsilon}=\frac{1}{2} P_{M}\left(\chi q^{\epsilon}\right) \right\rvert\, \epsilon>0\right\}$, $\left\{\bar{v}^{\epsilon} \mid \epsilon>0\right\}$ and $\left\{\bar{v}_{t}^{\epsilon} \mid \epsilon>0\right\}$ are bounded in appropriate spaces.
- A standard limiting argument shows that there is a limit pair $\left(v^{0}, \eta^{0}\right)$ solving
$v_{t}^{0}+L v^{0}+\mathbb{B}(\hat{u}) v^{0}=\Pi\left(\chi P_{M} \eta^{0}\right), t \in I_{\tau}=(\tau, 1+\tau), \quad v^{0}(0)=w_{0}$.
Furthermore, it follows from above equations that

$$
\left|\Pi_{N} \bar{V}^{\epsilon}(\tau+1)\right|_{H}^{2}=\frac{\epsilon^{2}}{4}\left|q^{\epsilon}(\tau+1)\right|_{H}^{2} \leq \frac{\epsilon D_{\chi}}{2}\left|w_{0}\right|_{H}^{2} \rightarrow 0 \quad \text { as } \quad \epsilon \rightarrow 0
$$

This convergence implies that $\Pi_{N} v^{0}(\tau+1)=0$.

- We also easily find that

$$
\left|\eta^{0}\right|_{L^{2}\left(I_{\tau}, E_{M}\right)}^{2} \leq 4 D_{\chi}\left|w_{0}\right|_{H}^{2}
$$

and D_{χ} may be taken independent of τ and N. This ends the proof of the lemma.

In view of latter lemma, it makes sense to consider:

Problem

Given integers $M, N \geq 1$ and a function $w_{0} \in H$, find the minimum of the quadratic functional $J(\eta):=|\eta|_{L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)}$ on the set of functions
$(v, \eta) \in W\left(I_{\tau}, V, V^{\prime}\right) \times L^{2}\left(I_{\tau}, E_{M}\right)$ satisfying
$v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in I_{\tau}, v(0)=w_{0}$ and $\Pi_{N} v(\tau+1)=0$.

In view of latter lemma, it makes sense to consider:

Problem

Given integers $M, N \geq 1$ and a function $w_{0} \in H$, find the minimum of the quadratic functional $J(\eta):=|\eta|_{L^{2}\left(I_{\tau}, L^{2}(T \Omega)\right)}$ on the set of functions $(v, \eta) \in W\left(I_{\tau}, V, V^{\prime}\right) \times L^{2}\left(I_{\tau}, E_{M}\right)$ satisfying
$v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in I_{\tau}, v(0)=w_{0}$ and $\Pi_{N} v(\tau+1)=0$.

LEMMA

For any $N \in \mathbb{N}$ there is an integer $M=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} \geq 1$ such that for any $w_{0} \in H$ the problem has a unique minimizer $\left(\bar{v}^{\hat{u}, \tau}, \bar{\eta}^{\hat{u}, \tau}\right)$. Moreover, the mapping $w_{0} \mapsto\left(\bar{v}^{\hat{u}, \tau}, \bar{\eta}^{\hat{u}, \tau}\right)$ is linear and continuous in the corresponding spaces, and there is a constant C_{χ} depending only on $|\hat{u}|_{\mathcal{W}}$ (but not on N and τ) such that

$$
\left|\bar{\eta}^{\hat{u}, \tau}\right|_{\mathcal{L}\left(H, L^{2}\left(I_{\tau}, E_{M}\right)\right)}^{2} \leq C_{\chi} .
$$

A stabilizing control for Linearized system

- Fix an initial function $v_{0} \in H$ and an integer $N=N(\lambda) \geq 1$, and set

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, 0}\left(v_{0}\right)(t) \quad \text { for } \quad t \in I_{0} .
$$

Assuming that $\eta^{\hat{u}, \lambda}$ is constructed on the interval $(0, n)$ and denoting by $v(t)$ the corresponding solution on $[0, n]$, we define

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, n}(v(n))(t) \quad \text { for } \quad t \in I_{n} .
$$

- By construction, $\eta^{\hat{u}, \lambda}$ is an E_{M}-valued function square integrable on every bounded interval.

A stabilizing control for Linearized system

- Fix an initial function $v_{0} \in H$ and an integer $N=N(\lambda) \geq 1$, and set

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, 0}\left(v_{0}\right)(t) \quad \text { for } \quad t \in I_{0} .
$$

Assuming that $\eta^{\hat{u}, \lambda}$ is constructed on the interval $(0, n)$ and denoting by $v(t)$ the corresponding solution on $[0, n]$, we define

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, n}(v(n))(t) \quad \text { for } \quad t \in I_{n} .
$$

- By construction, $\eta^{\hat{u}, \lambda}$ is an E_{M}-valued function square integrable on every bounded interval.
- The linearity of $\bar{\eta}^{\hat{u}, \tau}$ implies that $\eta^{\hat{u}, \lambda}$ linearly depends on v_{0}.

A stabilizing control for Linearized system

- Fix an initial function $v_{0} \in H$ and an integer $N=N(\lambda) \geq 1$, and set

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, 0}\left(v_{0}\right)(t) \quad \text { for } \quad t \in I_{0} .
$$

Assuming that $\eta^{\hat{u}, \lambda}$ is constructed on the interval $(0, n)$ and denoting by $v(t)$ the corresponding solution on $[0, n]$, we define

$$
\eta^{\hat{u}, \lambda}(t)=\bar{\eta}^{\hat{u}, n}(v(n))(t) \quad \text { for } \quad t \in I_{n} .
$$

- By construction, $\eta^{\hat{u}, \lambda}$ is an E_{M}-valued function square integrable on every bounded interval.
- The linearity of $\bar{\eta}^{\hat{u}, \tau}$ implies that $\eta^{\hat{u}, \lambda}$ linearly depends on v_{0}.
- We claim that, if $N \in \mathbb{N}$ is sufficiently large, then the solution v of $v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta^{\hat{u}, \lambda}\right), t \in \mathbb{R}^{+}, v(0)=w_{0}$, goes λ-exponentially to 0 as $t \rightarrow+\infty$. Indeed...
- From standard computations we have

$$
\begin{aligned}
|v(1)|_{V}^{2} & \leq \bar{C}_{[|\hat{u}| \mathcal{W}]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2}\left|\bar{\eta}^{\hat{u}, 0}\left(v_{0}\right)\right|_{L^{2}\left(I_{0}, E_{M}\right)}^{2}\right) \\
& \leq \bar{C}_{\left[|\hat{u}|_{\mathcal{W}}\right]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2} C_{\chi}\left|v_{0}\right|_{H}^{2}\right) .
\end{aligned}
$$

- From standard computations we have

$$
\begin{aligned}
|v(1)|_{V}^{2} & \leq \bar{C}_{[|\hat{u}| \mathcal{W}]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2}\left|\eta^{\hat{u}, 0}\left(v_{0}\right)\right|_{L^{2}\left(I_{0}, E_{M}\right)}^{2}\right) \\
& \leq \bar{C}_{\left[|\hat{u}|_{\mathcal{W}}\right]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2} C_{\chi}\left|v_{0}\right|_{H}^{2}\right) .
\end{aligned}
$$

- Since $\Pi_{N} v(1)=0$, we obtain $\alpha_{N}|v(1)|_{H}^{2} \leq|v(1)|_{V}^{2} \leq \bar{C}_{[|\hat{u}| \mathcal{W}]}(\chi)\left|v_{0}\right|^{2}$. Taking N so large that $\alpha_{N} \geq e^{\lambda} \bar{C}_{[|\hat{u}| \mathcal{W}]}(\chi)$, we obtain $|v(1)|_{H}^{2} \leq e^{-\lambda}\left|v_{0}\right|_{H}^{2}$. Similarly $|v(n+1)|_{H}^{2} \leq e^{-\lambda}|v(n)|_{H}^{2}$. By induction, we see that the solution v corresponding to control $\eta=\eta^{\hat{u}, \lambda}$ satisfies the inequality $|v(n)|_{H}^{2} \leq e^{-\lambda n}\left|v_{0}\right|_{H}^{2}$:
- From standard computations we have

$$
\begin{aligned}
|v(1)|_{V}^{2} & \leq \bar{C}_{[|\hat{u}| \mathcal{W}]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2}\left|\bar{\eta}^{\hat{u}, 0}\left(v_{0}\right)\right|_{L^{2}\left(I_{0}, E_{M}\right)}^{2}\right) \\
& \leq \bar{C}_{\left[|\hat{u}|_{\mathcal{W}}\right]}\left(\left|v_{0}\right|_{H}^{2}+3|\chi|_{L^{\infty}(\Omega)}^{2} C_{\chi}\left|v_{0}\right|_{H}^{2}\right) .
\end{aligned}
$$

- Since $\Pi_{N} v(1)=0$, we obtain $\alpha_{N}|v(1)|_{H}^{2} \leq|v(1)|_{V}^{2} \leq \bar{C}_{[|\hat{u}| \mathcal{W}]}(\chi)\left|v_{0}\right|^{2}$. Taking N so large that $\alpha_{N} \geq e^{\lambda} \bar{C}_{[|\hat{u}| \mathcal{W}]}(\chi)$, we obtain $|v(1)|_{H}^{2} \leq e^{-\lambda}\left|v_{0}\right|_{H}^{2}$. Similarly $|v(n+1)|_{H}^{2} \leq e^{-\lambda}|v(n)|_{H}^{2}$. By induction, we see that the solution v corresponding to control $\eta=\eta^{\hat{u}, \lambda}$ satisfies the inequality $|v(n)|_{H}^{2} \leq e^{-\lambda n}\left|v_{0}\right|_{H}^{2}$:
- From this, using some more standard estimates, it is not difficult to derive that $|v(t)|_{H}^{2} \leq \bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} e^{-\lambda t}\left|v_{0}\right|_{H}^{2}$ and, if $v_{0} \in V$, that $|v(t)|_{V}^{2} \leq \bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} e^{-\lambda t}\left|v_{0}\right|_{V}^{2}$.

Finally for any $\tilde{\lambda}<\lambda$, the the continuity of the map $v_{0} \mapsto e^{(\tilde{\lambda} / 2) t} \eta^{\hat{u}, \lambda}$ follows from a simple and direct computation:

$$
\begin{aligned}
\left|e^{(\tilde{\lambda} / 2) t} \eta^{\hat{u}, \lambda}\right|_{L^{2}\left(\mathbb{R}_{+}, E_{M}\right)}^{2} & =\sum_{n \in \mathbb{N}}\left|e^{(\tilde{\lambda} / 2) t} \bar{\eta}^{\hat{u}, n}(v(n))\right|_{L^{2}\left(I_{n}, E_{M}\right)}^{2} \\
& \leq C_{\chi}^{\prime} \sum_{n \in \mathbb{N}} e^{\tilde{\lambda}(n+1)}|v(n)|_{H}^{2} \\
& \leq C_{\chi}^{\prime} e^{\tilde{\lambda}} \sum_{n \in \mathbb{N}} e^{(\tilde{\lambda}-\lambda) n}\left|v_{0}\right|_{H}^{2} \leq C_{\chi, \lambda}\left|v_{0}\right|_{H}^{2}
\end{aligned}
$$

Theorem (Feedback control)

For any $\hat{u} \in \mathcal{W}$ and $\lambda>0$ there is an integer $M=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} \in \mathbb{N}$, a family of continuous operators $K_{\hat{u}}^{\lambda}(t): H \rightarrow \mathcal{E}_{M}$, and a constant $\kappa=\bar{C}_{[\lambda,|\hat{u}| \mathcal{W}]}$ such that the following properties hold.
(i) The function $t \mapsto K_{\hat{u}}^{\lambda}(t)$ is continuous in the weak operator topology, and its operator norm is bounded by κ.
(ii) For any $s \geq 0$ and $v_{0} \in H$, the solution of the problem

$$
v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi K_{\hat{u}}^{\lambda}(t) v, \quad v(s)=v_{0}
$$

exists on the time interval $(s,+\infty)$ and satisfies the inequality

$$
e^{\lambda(t-s)}|v(t)|_{H}^{2}+\int_{s}^{t} e^{\lambda(\tau-s)}\left(|v(\tau)|_{V}^{2}+\left|v_{t}(\tau)\right|_{V^{\prime}}^{2}\right) d \tau \leq \kappa\left|v_{0}\right|_{H}^{2}, \quad t \geq s
$$

. Moreover, if $v_{0} \in V$, then

$$
e^{\lambda(t-s)}|v(t)|_{V}^{2}+\int_{s}^{t} e^{\lambda(\tau-s)}\left(|v(\tau)|_{\mathrm{D}(L)}^{2}+\left|v_{t}(\tau)\right|_{H}^{2}\right) d \tau \leq \kappa\left|v_{0}\right|_{V}^{2}, \quad t \geq s
$$

Problem

Put $E^{\lambda}(X):=\left\{f \in X \mid e^{\lambda t} f \in X\right\}$. Given $s \geq 0, \lambda>0, M \in \mathbb{N}$ and $w_{0} \in H$, find the minimum of the functional

$$
M_{s}^{\lambda}(v, \eta):=\int_{(s,+\infty)} e^{\lambda t}\left(|v|_{V}^{2}+|\eta|_{L^{2}(T \Omega)}^{2}\right) \mathrm{d} t
$$

on the set of functions (v, η) that satisfy
$v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in I_{\tau}, v(s)=w_{0}$ and $(v, \eta) \in E^{\lambda}\left(W\left([s,+\infty), V, V^{\prime}\right)\right) \times E^{\lambda}\left(L^{2}\left([s,+\infty), L^{2}(T \Omega)\right)\right)$

Problem

Put $E^{\lambda}(X):=\left\{f \in X \mid e^{\lambda t} f \in X\right\}$. Given $s \geq 0, \lambda>0, M \in \mathbb{N}$ and $w_{0} \in H$, find the minimum of the functional

$$
M_{s}^{\lambda}(v, \eta):=\int_{(s,+\infty)} e^{\lambda t}\left(|v|_{V}^{2}+|\eta|_{L^{2}(T \Omega)}^{2}\right) \mathrm{d} t
$$

on the set of functions (v, η) that satisfy
$v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in I_{\tau}, v(s)=w_{0}$ and $(v, \eta) \in E^{\lambda}\left(W\left([s,+\infty), V, V^{\prime}\right)\right) \times E^{\lambda}\left(L^{2}\left([s,+\infty), L^{2}(T \Omega)\right)\right)$

LEMMA

For any $\hat{u} \in \mathcal{W}$ and $\lambda>0$ there is an integer $M=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]} \geq 1$ such that the problem has a unique minimizer $\left(v_{s}^{*}, \eta_{s}^{*}\right)$. Moreover, there is a continuous operator $Q_{\hat{u}}^{s, \lambda}: H \rightarrow H$ such that

$$
M_{s}^{\lambda}\left(v_{s}^{*}, \eta_{s}^{*}\right)=\left(Q_{\hat{u}}^{s, \lambda} w_{0}, w_{0}\right), \quad\left|Q_{\hat{u}}^{s, \lambda}\right|_{\mathcal{L}(H)} \leq \bar{C}_{[\lambda,|\hat{u}| \mathcal{W}]} e^{\lambda s}
$$

where $C=\bar{C}_{\left[\lambda,|\hat{u}|_{\mathcal{W}}\right]}>0$ is a constant. Finally, $Q_{\hat{u}}^{s, \lambda}$ continuously depends on s in the weak operator topology.

PROBLEM

Given $\lambda>0$ and $v_{0} \in H$, find the minimum of the functional

$$
N_{s}^{\lambda}(v, \eta):=\int_{(0, s)} e^{\lambda t}\left(|v|_{V}^{2}+|\eta|_{L^{2}(T \Omega)}^{2}\right) \mathrm{d} t+\left(Q_{\hat{u}}^{s, \lambda} v(s), v(s)\right)
$$

on the set of functions $(v, \eta) \in W\left([0, s], V, V^{\prime}\right) \times L^{2}\left((0, s), L^{2}(T \Omega)\right)$ that satisfy $v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in(0, s), v(0)=v_{0}$ and M is the integer constructed in preceding lemma.

PROBLEM

Given $\lambda>0$ and $v_{0} \in H$, find the minimum of the functional

$$
N_{s}^{\lambda}(v, \eta):=\int_{(0, s)} e^{\lambda t}\left(|v|_{V}^{2}+|\eta|_{L^{2}(T \Omega)}^{2}\right) \mathrm{d} t+\left(Q_{\hat{u}}^{s, \lambda} v(s), v(s)\right)
$$

on the set of functions $(v, \eta) \in W\left([0, s], V, V^{\prime}\right) \times L^{2}\left((0, s), L^{2}(T \Omega)\right)$ that satisfy $v_{t}+L v+\mathbb{B}(\hat{u}) v=\Pi\left(\chi P_{M} \eta\right), t \in(0, s), v(0)=v_{0}$ and M is the integer constructed in preceding lemma.

This problem has a unique minimizer $\left(v_{s}^{\bullet}, \eta_{s}^{\bullet}\right)$, which is a linear function of $v_{0} \in H$.

LEMMA

Under the hypotheses of preceding lemma, the restriction of $\left(v_{0}^{*}, \eta_{0}^{*}\right)$ to the interval $(0, s)$ coincides with $\left(v_{s}^{\bullet}, \eta_{s}^{\bullet}\right)$ and the restriction of $\left(v_{0}^{*}, \eta_{0}^{*}\right)$ to the interval $(s,+\infty)$ coincides with $\left(v_{s}^{*}, \eta_{s}^{*}\right)\left(v_{0}(s)\right)$.

The feedback controller

Using the Karush-Kuhn-Tucker theorem we find some equations that must be satisfied by the optimal control and trajectory of the last problem. It turns out that at time s we must have

$$
\eta_{s}^{\bullet}(s)=-e^{-\lambda s} P_{M} \chi Q_{\widehat{u}}^{s, \lambda} v_{s}^{\bullet}(s)
$$

Since s is arbitrary we may conclude that the optimal trajectory v_{0}^{*} solves

$$
v_{t}+L v+B(\hat{u}, v)+B(v, \hat{u})=\Pi\left(K_{\hat{u}}^{\lambda} v\right), \quad t \in \mathbb{R}_{+}, \quad v(0)=v_{0}
$$

where we set

$$
K_{\hat{u}}^{\lambda}(t):=-e^{-\lambda t} \chi P_{M} \chi Q_{\hat{u}}^{t, \lambda} .
$$

Nonlinear system

Let us consider the nonlinear problem

$$
v_{t}+L v+B v+\mathbb{B}(\hat{u}) v=K_{\hat{u}}^{\lambda}(t) v, \quad t \in \mathbb{R}_{+} ; \quad v(0)=v_{0} .
$$

Theorem

Let $\hat{u} \in \mathcal{W}$ be an arbitrary function, let $\lambda>0$, and let $M=\bar{C}_{\left[|\hat{u}|_{\mathcal{W}, \lambda]}\right.}$ the integer constructed in feedback theorem for the linear case. Then there are positive constants ϑ and ϵ depending only on $|\hat{u}|_{\mathcal{W}}$ and λ such that for $\left|v_{0}\right| v \leq \epsilon$ the solution v of the system above is well defined for all $t \geq 0$ and satisfies the inequality

$$
|v(t)|_{V}^{2} \leq \vartheta e^{-\lambda t}\left|v_{0}\right|_{V}^{2} \quad \text { for } t \geq 0
$$

Denote by \mathcal{Z}^{λ} the space of functions $z \in C\left(\mathbb{R}_{+}, V\right) \cap L_{\text {loc }}^{2}\left(\mathbb{R}_{+}, U\right)$ such that

$$
|z|_{\mathcal{Z}^{\lambda}}:=\sup _{t \geq 0}\left(e^{\lambda t}|z(t)|_{V}^{2}+\int_{(t, t+1)} e^{\lambda \tau}|z(\tau)|_{\mathrm{D}(L)}^{2} \mathrm{~d} \tau\right)^{1 / 2}<\infty
$$

For the proof we use the contraction mapping principle. Fix a constant $\vartheta>0$ and a function $v_{0} \in V$ and introduce the following subset of \mathcal{Z}^{λ} :

$$
\mathcal{Z}_{\vartheta}^{\lambda}:=\left\{\left.z \in \mathcal{Z}^{\lambda}\left|z(0)=v_{0},|z|_{\mathcal{Z}^{\lambda}}^{2} \leq \vartheta\right| v_{0}\right|_{V} ^{2}\right\} .
$$

We define a mapping $\equiv: \mathcal{Z}_{\vartheta}^{\lambda} \rightarrow C\left(\mathbb{R}_{+}, V\right) \cap L_{\text {loc }}^{2}\left(\mathbb{R}_{+}, U\right)$ that takes a function $a \in \mathcal{Z}^{\lambda}$ to the solution of the problem

$$
\begin{equation*}
b_{t}+L b+\mathbb{B}(\hat{u}) b=K_{\hat{u}}^{\lambda} b-B a, \quad t \in \mathbb{R}_{+} ; \quad b(0)=v_{0} . \tag{1}
\end{equation*}
$$

The theorem follows from the following proposition, which proof follows by some technical computations we do not present here.

Proposition

Under the hypotheses of theorem, there exists $\vartheta>0$ such that for any $\gamma \in(0,1)$ and an appropriate constant $\epsilon=\epsilon_{\gamma}>0$ the mapping \equiv takes the set Z_{ϑ}^{λ} into itself and satisfies the inequality

$$
\mid \equiv\left(a_{1}\right)-\text { 三 }\left.\left(a_{2}\right)\right|_{\mathcal{Z}^{\lambda}} \leq \gamma\left|a_{1}-a_{2}\right|_{\mathcal{Z}^{\lambda}} \quad \text { for all } \quad a_{1}, a_{2} \in \mathcal{Z}_{\vartheta}^{\lambda}
$$

provided that $\left|v_{0}\right|_{V} \leq \epsilon$.

Acknowledgements

CNRS.
UMR CNRS 8088, University of Cergy-Pontoise.
OAW.
RICAM, Linz.

Some References:

R
V. Barbu, I. Lasiecka, and R. Triggiani, Abstract settings for tangential boundary stabilization of Navier-Stokes equations by high- and low-gain feedback controllers, Nonlinear Anal. 64 (2006), no. 12, 2704-2746.

O
V. Barbu, S. S. Rodrigues, and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3D Navier-Stokes equations, SIAM J. Control Optim. 49 (2011), no. 4, 1454-1478.
(1)
V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers, Indiana Univ. Math. J. 53 (2004), no. 5, 1443-1494.
0
V. Barbu, Feedback stabilization of Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 9 (2003), 197-206 (electronic).

國 O. Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var. 6 (2001), 39-72 (electronic).

J.-P. Raymond, Feedback boundary stabilization of the two-dimensional Navier-Stokes equations, SIAM J. Control Optimisation 45 (2006), no. 3, 790-728.
\qquad , Feedback boundary stabilization of the three-dimensional incompressible Navier-Stokes equations, J. Math. Pures Appl. (9) 87 (2007), no. 6, 627-669.

THANKS FOR YOUR ATTENTION

