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The equations

The Navier-Stokes system in a 3D bounded domain Ω ⊆ R3 with boundary
Γ reads:

ut − ν∆u + (u · ∇)u +∇p = h + ζ in Ω;

∇ · u = 0 in Ω;

u
∣∣
Γ

= 0;

u(0) = u0.
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Functional spaces/regularity

To rewrite the equations as an evolutionary equation in H:

H := {u ∈ L2(TΩ) | ∇ · u = 0 & u · n = 0on Γ};
V := {u ∈ H1(TΩ) | ∇ · u = 0 & u = 0on Γ};
U := D(L) = H2(TΩ) ∩ V .

Scalar products and norms: let Π be the orthogonal projection in
L2(TΩ) onto H and let L = −νΠ∆ be the Stokes operator;

(u, v)H := (u, v)L2(TΩ), (u, v)V := 〈Lu, v〉V ′,V ,

(u, v)D(L) := (Lu, Lv)L2(TΩ).
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The evolutionary equation

Fix a function h ∈ L2(R+, H) and write the system

ut − ν∆u + (u · ∇)u +∇p = h + ζ, ∇ · u = 0 in Ω;

as an evolutionary equation in the space H of divergence free vector fields
H:

ut + Lu + Bu = h + Π(ζ).

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 5 / 26



Goal

Fix û ∈ L2(R+, V )∩W solving the (non-controlled) Navier–Stokes system

ût + Lû + Bû = h, t > 0; û(0) = û0

with W := W 1,∞(R+, W 1,∞(TΩ)); an element u0 ∈ H and a sub-domain
ω ⊆ Ω.

Goal: find a finite-dimensional subspace E ⊂ L2(Tω) and a control
ζ ∈ L2

loc(R+, E) such that the solution of the problem

ut + Lu + Bu = h + Πζ, u(0) = u0

is defined for all t > 0 and converges exponentially to û, i.e.,

|u(t)− û(t)|H ≤ κ1e
−κ2t for t ≥ 0,

where κ1 and κ2 are non-negative constants; in this case, we say that u
converges κ2-exponentially to û.
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Linearization

The difference v = u − û solves

vt + Lv + B(û)v + Bv = Πζ, t > 0; v(0) = v0 := u0 − û0;

with B(û)v = B(û, v) + B(v , û) so, our goal is to find a finite-dimensional
subspace E ⊂ L2(Tω) and a control ζ ∈ L2

loc(R+, E) such that

|v(t)|H ≤ κ1e
−κ2t for t ≥ 0

We start by considering the linear system

vt + Lv + B(û)v = Πζ, t > 0; v(0) = v0 := u0 − û0;

with the same goal.
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The finite-dimensional space E

Let {φi | i ∈ N0} be an orthonormal basis in L2(TΩ) formed by the
eigenfunctions of the Dirichlet Laplacian and let 0 < β1 ≤ β2 ≤ . . .
be the corresponding eigenvalues;

let {ei | i ∈ N0} be the orthonormal basis in H formed by the
eigenfunctions of the Stokes operator and let 0 < α1 ≤ α2 ≤ . . . be
the corresponding eigenvalues.

For each N ∈ N0, we introduce the N-dimensional subspaces

EN := span{φi | i ≤ N} ⊂ L2(TΩ), FN := span{ei | i ≤ N} ⊂ H

and denote by PN : L2(TΩ) → EN and ΠN : L2(TΩ) → FN the
corresponding orthogonal projections.

The required control space can be chosen in the form EM = χEM ,
where χ ∈ C∞

0 (Ω) is a given function not identically equal to zero,
and the integer M is sufficiently large. In particular, χEM ⊂ C∞

0 (Tω)
for any sub-domain ω ⊆ Ω containing supp(χ).
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Main result for linear problem

Taking controls in EM we may rewrite the problem as

vt + Lv + B(û)v = Π(χPMη), v(0) = v0;

with η taking values in L2(TΩ)

Theorem

For each v0 ∈ H and λ > 0, there is an integer M = C [λ,|û|W ] ≥ 1 and a

control ηû,λ(v0) ∈ L2(R+, EM) such that the solution v of the system
satisfies the inequality |v(t)|2H ≤ κ|v0|2He−λt , t ≥ 0 for some

κ = C [λ,|û|W ] > 0. Moreover, the mapping v0 7→ e(λ̃/2)tηû,λ(v0) is linear

and continuous from H to L2(R+, EM) for all 0 ≤ λ̃ < λ. Finally, if
v0 ∈ V , then |v(t)|2V ≤ κ̄|v0|2V e−λt , t ≥ 0 for some κ = C [λ,|û|W ] > 0.
The constants κ and κ̄ do not depend on v0.

C [a1,...,ak ] denotes a function of non-negative variables aj that increases in
each of its arguments.
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Auxiliary lemmas

Let us fix τ > 0 and denote by Sû,τ (w0, η) the operator that takes the
pair (w0, η) to the solution of

vt + Lv + B(û)v = Π(χPMη), t ∈ Iτ = (τ, 1 + τ), v(0) = w0;

Lemma

For each N ∈ N there is an integer M = C [λ,|û|W ] ≥ 1 such that, for every
w0 ∈ H and an appropriate control η ∈ L2(Iτ , EM) we have

ΠNSû,τ (w0, η)(τ + 1) = 0.

Moreover, there is a constant Cχ depending only on |û|W (but not on N
and τ) such that

|η|2L2(Iτ , EM) ≤ Cχ|w0|2H .
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For the proof: for ε > 0 consider the minimization problem.

Problem

Given M,N ∈ N and w0 ∈ H, find the minimum of the quadratic functional
Jε(v , η) := |η|2L2(Iτ , L2(TΩ)) + 1

ε |ΠNSû,M,τ (w0, η)(τ + 1)|2H on the set of

functions (v , η) ∈ W (Iτ , V , V ′)× L2(Iτ , L2(TΩ)) that solve the system.

The unique minimizer (v̄ε, η̄ε) depends linearly on w0 ∈ H.

Using the Karush–Kuhn–Tucker theorem, and making some direct
computations, we have that there is a Lagrange multiplier
qε ∈ L2(Iτ , V ) satisfying the time-backward system

qε
t − Lqε − B∗(û)qε = 0, t ∈ Iτ ;

qε(τ + 1) = −2ε−1ΠN v̄ ε(τ + 1);

with 2η̄ε = PM(χqε) and...
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∫
Iτ

|PM(χqε)|2L2(TΩ) dt + ε|qε(τ + 1)|2H = −2(qε(τ), v̄ ε(τ))H

≤ α|qε(τ)|2H + α−1|v̄ ε(τ)|2H
From the truncated observability inequality:

Proposition

For any integer N ≥ 1 there is M = C [N,|û|Wτ ] ∈ N such that any
solution q for time-backward system
qt − Lq − B∗(û)q = 0, t ∈ Iτ , q(τ + 1) = q1, with q1 ∈ FN = ΠNH
satisfies the inequality |q(τ)|2H ≤ Dχ

∫
Iτ
|PM(χq)|2L2(TΩ) dt for a suitable

constant Dχ depending only on χ.

we obtain, setting α = (2Dχ)−1,∫
Iτ

|PM(χqε)|2L2(TΩ) dt + 2ε|qε(τ + 1)|2H ≤ 4Dχ|w0|2H .

Remark: to proof the proposition: use the finite-dimensionality of FN and
well known obs. ineq. |q(τ)|2H ≤ Cω

∫
Iτ
|q|2L2(Tω) dt (Imanuvilov, 2001).
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In particular, we derive that the families {η̄ε = 1
2PM(χqε) | ε > 0},

{v̄ ε | ε > 0} and {v̄ ε
t | ε > 0} are bounded in appropriate spaces.

A standard limiting argument shows that there is a limit pair (v0, η0)
solving
v0
t + Lv0 + B(û)v0 = Π(χPMη0), t ∈ Iτ = (τ, 1 + τ), v0(0) = w0.

Furthermore, it follows from above equations that

|ΠN v̄ ε(τ + 1)|2H =
ε2

4
|qε(τ + 1)|2H ≤ εDχ

2
|w0|2H → 0 as ε → 0.

This convergence implies that ΠNv0(τ + 1) = 0.

We also easily find that

|η0|2L2(Iτ , EM) ≤ 4Dχ|w0|2H

and Dχ may be taken independent of τ and N. This ends the proof of
the lemma.
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t + Lv0 + B(û)v0 = Π(χPMη0), t ∈ Iτ = (τ, 1 + τ), v0(0) = w0.

Furthermore, it follows from above equations that

|ΠN v̄ ε(τ + 1)|2H =
ε2

4
|qε(τ + 1)|2H ≤ εDχ

2
|w0|2H → 0 as ε → 0.

This convergence implies that ΠNv0(τ + 1) = 0.

We also easily find that

|η0|2L2(Iτ , EM) ≤ 4Dχ|w0|2H

and Dχ may be taken independent of τ and N. This ends the proof of
the lemma.

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 13 / 26



In view of latter lemma, it makes sense to consider:

Problem

Given integers M,N ≥ 1 and a function w0 ∈ H, find the minimum of the
quadratic functional J(η) := |η|2L2(Iτ , L2(TΩ)) on the set of functions

(v , η) ∈ W (Iτ , V , V ′)× L2(Iτ , EM) satisfying
vt + Lv + B(û)v = Π(χPMη), t ∈ Iτ , v(0) = w0 and ΠNv(τ + 1) = 0.

Lemma

For any N ∈ N there is an integer M = C [λ,|û|W ] ≥ 1 such that for any

w0 ∈ H the problem has a unique minimizer (v̄ û,τ , η̄û,τ ). Moreover, the
mapping w0 7→ (v̄ û,τ , η̄û,τ ) is linear and continuous in the corresponding
spaces, and there is a constant Cχ depending only on |û|W (but not on N
and τ) such that

|η̄û,τ |2L(H, L2(Iτ , EM)) ≤ Cχ.
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A stabilizing control for linearized system

Fix an initial function v0 ∈ H and an integer N = N(λ) ≥ 1, and set

ηû,λ(t) = η̄û,0(v0)(t) for t ∈ I0.

Assuming that ηû,λ is constructed on the interval (0, n) and denoting
by v(t) the corresponding solution on [0, n], we define

ηû,λ(t) = η̄û,n(v(n))(t) for t ∈ In.

By construction, ηû,λ is an EM -valued function square integrable on
every bounded interval.

The linearity of η̄û,τ implies that ηû,λ linearly depends on v0.

We claim that, if N ∈ N is sufficiently large, then the solution v of
vt + Lv + B(û)v = Π(χPMηû,λ), t ∈ R+, v(0) = w0, goes
λ-exponentially to 0 as t → +∞.
Indeed...
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From standard computations we have

|v(1)|2V ≤ C [|û|W ](|v0|2H + 3|χ|2L∞(Ω)|η̄
û,0(v0)|2L2(I0, EM))

≤ C [|û|W ](|v0|2H + 3|χ|2L∞(Ω)Cχ|v0|2H).

Since ΠNv(1) = 0, we obtain αN |v(1)|2H ≤ |v(1)|2V ≤ C [|û|W ](χ)|v0|2.
Taking N so large that αN ≥ eλC [|û|W ](χ), we obtain

|v(1)|2H ≤ e−λ|v0|2H . Similarly |v(n + 1)|2H ≤ e−λ|v(n)|2H . By
induction, we see that the solution v corresponding to
control η = ηû,λ satisfies the inequality |v(n)|2H ≤ e−λn|v0|2H :

From this, using some more standard estimates, it is not difficult to
derive that |v(t)|2H ≤ C [λ,|û|W ]e

−λt |v0|2H and, if v0 ∈ V , that

|v(t)|2V ≤ C [λ,|û|W ]e
−λt |v0|2V .
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≤ C [|û|W ](|v0|2H + 3|χ|2L∞(Ω)Cχ|v0|2H).

Since ΠNv(1) = 0, we obtain αN |v(1)|2H ≤ |v(1)|2V ≤ C [|û|W ](χ)|v0|2.
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Finally for any λ̃ < λ, the the continuity of the map v0 7→ e(λ̃/2)tηû,λ

follows from a simple and direct computation:

|e(λ̃/2)tηû,λ|2L2(R+, EM) =
∑
n∈N

|e(λ̃/2)t η̄û,n(v(n))|2L2(In, EM)

≤ C ′
χ

∑
n∈N

e λ̃(n+1)|v(n)|2H

≤ C ′
χe λ̃

∑
n∈N

e(λ̃−λ)n|v0|2H ≤ Cχ,λ|v0|2H .
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Theorem (Feedback control)

For any û ∈ W and λ > 0 there is an integer M = C [λ,|û|W ] ∈ N, a family

of continuous operators Kλ
û (t) : H → EM , and a constant κ = C [λ,|û|W ]

such that the following properties hold.

(i) The function t 7→ Kλ
û (t) is continuous in the weak operator topology,

and its operator norm is bounded by κ.

(ii) For any s ≥ 0 and v0 ∈ H, the solution of the problem

vt + Lv + B(û)v = ΠKλ
û (t)v , v(s) = v0

exists on the time interval (s,+∞) and satisfies the inequality

eλ(t−s)|v(t)|2H +

∫ t

s
eλ(τ−s)

(
|v(τ)|2V + |vt(τ)|2V ′

)
dτ ≤ κ|v0|2H , t ≥ s

. Moreover, if v0 ∈ V , then

eλ(t−s)|v(t)|2V +

∫ t

s
eλ(τ−s)

(
|v(τ)|2D(L)+|vt(τ)|2H

)
dτ ≤ κ|v0|2V , t ≥ s

.
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Problem

Put Eλ(X ) := {f ∈ X | eλt f ∈ X}. Given s ≥ 0, λ > 0, M ∈ N and
w0 ∈ H, find the minimum of the functional

Mλ
s (v , η) :=

∫
(s, +∞)

eλt(|v |2V + |η|2L2(TΩ)) dt

on the set of functions (v , η) that satisfy
vt + Lv + B(û)v = Π(χPMη), t ∈ Iτ , v(s) = w0 and
(v , η) ∈ Eλ(W ([s, +∞), V , V ′))× Eλ(L2([s, +∞), L2(TΩ)))

Lemma

For any û ∈ W and λ > 0 there is an integer M = C [λ,|û|W ] ≥ 1 such that
the problem has a unique minimizer (v∗s , η∗s ). Moreover, there is a

continuous operator Qs,λ
û : H → H such that

Mλ
s (v∗s , η∗s ) =

(
Qs,λ

û w0,w0

)
, |Qs,λ

û |L(H) ≤ C [λ,|û|W ]e
λs ,

where C = C [λ,|û|W ] > 0 is a constant. Finally, Qs,λ
û continuously depends

on s in the weak operator topology.

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 19 / 26



Problem

Put Eλ(X ) := {f ∈ X | eλt f ∈ X}. Given s ≥ 0, λ > 0, M ∈ N and
w0 ∈ H, find the minimum of the functional

Mλ
s (v , η) :=

∫
(s, +∞)

eλt(|v |2V + |η|2L2(TΩ)) dt

on the set of functions (v , η) that satisfy
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Problem

Given λ > 0 and v0 ∈ H, find the minimum of the functional

Nλ
s (v , η) :=

∫
(0, s)

eλt(|v |2V + |η|2L2(TΩ)) dt + (Qs,λ
û v(s), v(s))

on the set of functions (v , η) ∈ W ([0, s], V , V ′)× L2((0, s), L2(TΩ))
that satisfy vt + Lv + B(û)v = Π(χPMη), t ∈ (0, s), v(0) = v0 and M is
the integer constructed in preceding lemma.

This problem has a unique minimizer (v•s , η•s ), which is a linear function
of v0 ∈ H.

Lemma

Under the hypotheses of preceding lemma, the restriction of (v∗0 , η∗0) to
the interval (0, s) coincides with (v•s , η•s ) and the restriction of (v∗0 , η∗0) to
the interval (s,+∞) coincides with (v∗s , η∗s )(v0(s)).
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that satisfy vt + Lv + B(û)v = Π(χPMη), t ∈ (0, s), v(0) = v0 and M is
the integer constructed in preceding lemma.

This problem has a unique minimizer (v•s , η•s ), which is a linear function
of v0 ∈ H.

Lemma

Under the hypotheses of preceding lemma, the restriction of (v∗0 , η∗0) to
the interval (0, s) coincides with (v•s , η•s ) and the restriction of (v∗0 , η∗0) to
the interval (s,+∞) coincides with (v∗s , η∗s )(v0(s)).

S. S. Rodrigues (RICAM-Linz) Exp. feedback stabilization of N-S eq. Graz; October, 2011 20 / 26



The feedback controller

Using the Karush–Kuhn–Tucker theorem we find some equations that
must be satisfied by the optimal control and trajectory of the last problem.
It turns out that at time s we must have

η•s (s) = −e−λsPMχQs,λ
û v•s (s).

Since s is arbitrary we may conclude that the optimal trajectory v∗0 solves

vt + Lv + B(û, v) + B(v , û) = Π(Kλ
û v), t ∈ R+, v(0) = v0,

where we set
Kλ

û (t) := −e−λtχPMχQt,λ
û .
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Nonlinear system

Let us consider the nonlinear problem

vt + Lv + Bv + B(û)v = Kλ
û (t)v , t ∈ R+; v(0) = v0.

Theorem

Let û ∈ W be an arbitrary function, let λ > 0, and let M = C [|û|W ,λ] the
integer constructed in feedback theorem for the linear case. Then there are
positive constants ϑ and ε depending only on |û|W and λ such that for
|v0|V ≤ ε the solution v of the system above is well defined for all t ≥ 0
and satisfies the inequality

|v(t)|2V ≤ ϑe−λt |v0|2V for t ≥ 0.

Denote by Zλ the space of functions z ∈ C (R+, V ) ∩ L2
loc(R+, U) such

that

|z |Zλ := sup
t≥0

(
eλt |z(t)|2V +

∫
(t, t+1)

eλτ |z(τ)|2D(L) dτ

)1/2

< ∞.
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For the proof we use the contraction mapping principle. Fix a
constant ϑ > 0 and a function v0 ∈ V and introduce the following subset
of Zλ:

Zλ
ϑ := {z ∈ Zλ | z(0) = v0, |z |2Zλ ≤ ϑ|v0|2V }.

We define a mapping Ξ : Zλ
ϑ → C (R+,V ) ∩ L2

loc(R+, U) that takes a
function a ∈ Zλ to the solution of the problem

bt + Lb + B(û)b = Kλ
û b − Ba, t ∈ R+; b(0) = v0. (1)

The theorem follows from the following proposition, which proof follows by
some technical computations we do not present here.

Proposition

Under the hypotheses of theorem, there exists ϑ > 0 such that for any
γ ∈ (0, 1) and an appropriate constant ε = εγ > 0 the mapping Ξ takes
the set Zλ

ϑ into itself and satisfies the inequality

|Ξ(a1)− Ξ(a2)|Zλ ≤ γ|a1 − a2|Zλ for all a1, a2 ∈ Zλ
ϑ ,

provided that |v0|V ≤ ε.
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