Adaptive Space-Time Finite Elements for Optimal Control of Second Order Hyperbolic Equations

Axel Kröner

Johann Radon Institute for Computational and Applied Mathematics
Austrian Academy of Sciences

Control and Optimization of PDEs
Graz, October 13th, 2011
Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Dual weighted residual method (DWR) for optimal control

- Becker & Rannacher 2001
- Meidner 2008
- Meidner & Vexler 2007
- Benedix, Günther, Hintermüller, Hinze, Hoppe, Wollner, ...

DWR for wave equations

- Bangerth & Rannacher 1999, 2001
- Bangerth & Geiger & Rannacher 2010
- Rademacher 2009
- ...

DWR for parabolic equations

- Schmich & Vexler 2008
- ...

Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Optimal control problem

Minimize \(J(u, y), \quad u \in U, \quad y \in Y, \quad s.t. \)

\[
y_{tt} - A(u, y) = f \quad \text{in} \quad (0, T) \times \Omega,
\]

\[
y(0) = y_0(u) \quad \text{in} \quad \Omega,
\]

\[
y_t(0) = y_1(u) \quad \text{in} \quad \Omega.
\]

<table>
<thead>
<tr>
<th>continuous problem:</th>
<th>solution ((u, y))</th>
<th>estimator (\eta_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>semi-discretization in time:</td>
<td>((u_k, y_k))</td>
<td>(\eta_h)</td>
</tr>
<tr>
<td>semi-discretization in space:</td>
<td>((u_{kh}, y_{kh}))</td>
<td>(\eta_d)</td>
</tr>
<tr>
<td>discretization of the control:</td>
<td>((u_\sigma, y_\sigma))</td>
<td>(\eta_d)</td>
</tr>
</tbody>
</table>

\[
J(u, y) - J(u_\sigma, y_\sigma) \approx \eta_k + \eta_h + \eta_d
\]
V, H Hilbert spaces with $V \hookrightarrow H \hookrightarrow V^*$ being a Gelfand triple
(e.g. $V = \{ v \in H^1(\Omega) | v|_{\Gamma_D} = 0 \}, \quad H = L^2(\Omega)$),

$I = (0, T)$ for given $T > 0$, $U \subset L^2(I, Q)$ for a Hilbert space Q

Inner product in H: $(\cdot, \cdot)_H$, $(\cdot, \cdot)_I = \int_0^T (\cdot, \cdot)_H dt$
We introduce a semilinear form

\[\bar{a} : Q \times V \times V \to \mathbb{R} \]

for a differential operator \(A : Q \times V \to V^* \) by

\[\bar{a}(u, y)(\xi) = \langle A(u, y), \xi \rangle_{V^*, V} \]

and define the form \(a(\cdot, \cdot)(\cdot) \) on \(U \times X \times X \) by

\[a(u, y)(\xi) = \int_0^T \bar{a}(u(t), y(t))(\xi(t)) \, dt \]
State equation as a system

The function \((y^1, y^2) \in Y\) is a solution of the state equation, if

\[
(y_t^2, \xi^1)_I + a(u, y^1)(\xi^1) + (y^2(0) - y_1(u), \xi^1(0))_H = (f, \xi^1)_I \quad \forall \xi^1 \in X,
\]

\[
(y_t^1, \xi^2)_I - (y^2, \xi^2)_I - (y_0(u) - y^1(0), \xi^2(0))_H = 0 \quad \forall \xi^2 \in \bar{X}
\]

with \(y_0(u) \in V, y_1(u) \in H, f \in L^2(I, H)\).

Idea: Set \(y^1 = y\) and \(y^2 = y_t\)
Three times Fréchet differentiable functionals:

\[J_1 : H \to \mathbb{R}, \quad J_2 : H \to \mathbb{R} \]

Cost functional:

\[
J(u, y^1) = \int_0^T J_1(y^1(t)) \, dt + J_2(y^1(T)) + \frac{\alpha}{2} \| u \|^2_U,
\]

\[\alpha > 0, \; u \in U, \; y^1 \in X. \]

Control problem

Minimize \(J(u, y^1) \) for \((u, y^1) \in U \times X\), s.t. the state equation
Define the Lagrangian $\mathcal{L}: U \times Y \times Y \to \mathbb{R}$

$$
\mathcal{L}(u, y, p) = J(u, y^1) + (f - y_t^2, p^1)_I - a(u, y^1)(p^1) - (y_t^1 - y^2, p^2)_I \\
- (y^2(0) - y_1(u), p^1(0))_H + (y_0(u) - y^1(0), p^2(0))_H
$$

for $y = (y^1, y^2)$ and $p = (p^1, p^2)$.

\[\begin{align*}
\mathcal{L}'_p(u, y, p)(\delta p) &= 0 \quad \forall \delta p \in Y \quad \text{(state equation)}, \\
\mathcal{L}'_y(u, y, p)(\delta y) &= 0 \quad \forall \delta y \in Y \quad \text{(adjoint equation)}, \\
\mathcal{L}'_u(u, y, p)(\delta u) &= 0 \quad \forall \delta u \in U \quad \text{(optimality condition)}.
\end{align*} \]
Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Time discretization

- Petrov-Galerkin scheme
 - continuous ansatz functions
 - discontinuous test functions

- Time points: \(0 = t_0 < t_1 < \cdots < t_{M-1} < t_M = T \)

- Partition: \(\bar{I} = [0, T] = \{0\} \cup I_1 \cup \ldots \cup I_M \) with \(I_m = (t_{m-1}, t_m], k_m = |I_m| \)

- Semi-discrete spaces:

\[
\begin{align*}
X^r_k &= \{ v_k \in C(\bar{I}, H) | v_k|_{I_m} \in \mathcal{P}_r(I_m, V) \}, \\
\tilde{X}^{r-1}_k &= \{ v_k \in L^2(I, V) | v_k|_{I_m} \in \mathcal{P}_{r-1}(I_m, V) \text{ and } v_k(0) \in H \}
\end{align*}
\]
Time discretization

Semi-discrete state equation \((E_k)\)

The function \((y^1_k, y^2_k) \in X^r_k \times X^r_k\) is a solution of the (in time) discretized state equation, if

\[
\sum_{m=1}^{M} (\partial_t y^2_k, \xi^1) I_m + a(u_k, y^1_k)(\xi^1) + (y^2_k(0) - y^1(u_k), \xi^1(0)) H = (f, \xi^1) I
\]

\[
\forall \xi^1 \in \tilde{X}^{r-1}_k
\]

\[
\sum_{m=1}^{M} (\partial_t y^1_k, \xi^2) I_m - (y^2_k, \xi^2) I - (y_0(u_k) - y^1_k(0), \xi^2(0)) H = 0
\]

\[
\forall \xi^2 \in \tilde{X}^{r-1}_k
\]

Semi-discrete control problem

Minimize \(J(u_k, y^1_k)\) for \((u_k, y^1_k) \in U \times X^r_k\), s.t. \((E_k)\)
Space discretization

- Conforming finite elements
- Discrete space:
 \[V_h^s = \{ v \in V \mid v|_K \in Q^s(K) \text{ for } K \in \mathcal{T}_h \}, \quad s \in \mathbb{N}^+ \]
- Associate with \(t_m \) a mesh \(\mathcal{T}_h^m \) and a finite element space \(V_h^{s,m} \)
- Let \(\{\tau_0, \ldots, \tau_r\} \) be a basis of \(\mathcal{P}_r(I_m, \mathbb{R}) \) with
 \[\tau_0(t_{m-1}) = 1, \quad \tau_0(t_m) = 0, \quad \tau_i(t_{m-1}) = 0, \quad i = 1, \ldots, r, \]
 then define

\[
X_{k,h}^{r,s,m} = \text{span} \left\{ \tau_i v_i \mid v_0 \in V_{h,m-1}^s, \quad v_i \in V_{h,m}^s, \quad i = 1, \ldots, r \right\} \subset \mathcal{P}_r(I_m, V),
\]
\[
X_{k,h}^{r,s} = \left\{ v_{kh} \in C(\overline{I}, H) \mid v_{kh}|_{I_m} \in X_{k,h}^{r,s,m} \right\},
\]
\[
\tilde{X}_{k,h}^{r-1,s} = \left\{ v_{kh} \in L^2(I, V) \mid v_{kh}|_{I_m} \in \mathcal{P}_{r-1}(I_m, V_{h,m}^s) \text{ and } v_{kh}(0) \in V_{h,0}^s \right\}
\]

- We obtain a \(cG(r)cG(s) \) discretization

Schmich & Vexler 2008
Space discretization

Space and time discretized state equation \((E_{kh})\)

The function \((y_{1, kh}, y_{2, kh}) \in X_{k, h}^{r, s} \times X_{k, h}^{r, s}\) is a solution of the (in time and space) discretized state equation, if

\[
\sum_{m=1}^{M} (\partial_t y_{kh}^2, \xi^1)_m + a(u_{kh}, y_{kh})(\xi^1) + (y_{kh}^2(0) - y_1(u_{kh}), \xi^1(0))_H = (f, \xi^1)_I
\]

\[
\forall \xi^1 \in \tilde{X}_{k, h}^{r-1, s}
\]

\[
\sum_{m=1}^{M} (\partial_t y_{kh}^1, \xi^2)_m - (y_{kh}^2, \xi^2)_I - (y_0(u_{kh}) - y_{kh}^1(0), \xi^2(0))_H = 0
\]

\[
\forall \xi^2 \in \tilde{X}_{k, h}^{r-1, s}
\]

Semi-discrete control problem

Minimize \(J(u_{kh}, y_{kh}^1), \quad u_{kh} \in U, \quad y_{kh}^1 \in X_{k, h}^{r, s}\) s.t. \((E_{kh})\)
Control discretization: \(U_d \subset U \)

Fully-discrete control problem

Minimize \(J(u_\sigma, y_{\sigma}^1) \), \(u_\sigma \in U \), \(y_{\sigma}^1 \in X_{k,h}^{r,s} \), subject to the fully discretized state equation.
Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Error in the cost functional

\[J(u, y^1) - J(u_\sigma, y_\sigma^1) = (J(u, y^1) - J(u_k, y_k^1)) + (J(u_k, y_k^1) - J(u_{kh}, y_{kh}^1)) + (J(u_{kh}, y_{kh}^1) - J(u_\sigma, y_\sigma^1)) \]

\[\approx \eta_k + \eta_h + \eta_d \]
For stationary points there holds

\[\mathcal{L}'(u, y, p)(\delta u, \delta y, \delta p) = 0 \]
\[\forall (\delta u, \delta y, \delta p) \in U \times Y \times Y, \]

\[\mathcal{L}'(u_k, y_k, p_k)(\delta u_k, \delta y_k, \delta p_k) = 0 \]
\[\forall (\delta u_k, \delta y_k, \delta p_k) \in U \times (X^r_k)^2 \times (\tilde{X}^{r-1}_k)^2, \]

\[\mathcal{L}'(u_{kh}, y_{kh}, p_{kh})(\delta u_{kh}, \delta y_{kh}, \delta p_{kh}) = 0 \]
\[\forall (\delta u_{kh}, \delta y_{kh}, \delta p_{kh}) \in U \times (X^r_{k,h})^2 \times (\tilde{X}^{r-1}_{k,h})^2, \]

\[\mathcal{L}'(u_\sigma, y_\sigma, p_\sigma)(\delta u_\sigma, \delta y_\sigma, \delta p_\sigma) = 0 \]
\[\forall (\delta u_\sigma, \delta y_\sigma, \delta p_\sigma) \in U_d \times (X^r_{k,h})^2 \times (\tilde{X}^{r-1}_{k,h})^2. \]
Hence, we have

\[
J(u, y^1) - J(u_k, y_k^1) = \frac{1}{2} \mathcal{L}'(u_k, y_k, p_k)(u - \hat{u}_k, y - \hat{y}_k, p - \hat{p}_k) + \mathcal{R}_k,
\]

\[
J(u_k, y_k^1) - J(u_{kh}, y_{kh}^1) = \frac{1}{2} \mathcal{L}'(u_{kh}, y_{kh}, p_{kh})(u_k - \hat{u}_{kh}, y_k - \hat{y}_{kh}, p_k - \hat{p}_{kh}) + \mathcal{R}_h,
\]

\[
J(u_{kh}, y_{kh}^1) - J(u_\sigma, y_\sigma^1) = \frac{1}{2} \mathcal{L}'(u_\sigma, y_\sigma, p_\sigma)(u_{kh} - \hat{u}_\sigma, y_{kh} - \hat{y}_\sigma, p_{kh} - \hat{p}_\sigma) + \mathcal{R}_d
\]

with

\[
(\hat{u}_k, \hat{y}_k, \hat{p}_k) \in U \times (X^r_k)^2 \times (\tilde{X}^{r-1}_k)^2,
\]

\[
(\hat{u}_{kh}, \hat{y}_{kh}, \hat{p}_{kh}) \in U \times (X^r_{k,h})^2 \times (\tilde{X}^{r-1,s}_{k,h})^2,
\]

\[
(\hat{u}_\sigma, \hat{y}_\sigma, \hat{p}_\sigma) \in U_d \times (X^r_{k,h})^2 \times (\tilde{X}^{r-1,s}_{k,h})^2
\]

arbitrarily chosen.

Becker & Rannacher 2002, Meidner 2008
The statement can be reduced to

\[
J(u, y_1) - J(u_k, y_k^1) \approx \frac{1}{2} \left(\mathcal{L}_y'(u_k, y_k, p_k)(y - \hat{y}_k) + \mathcal{L}_p'(u_k, y_k, p_k)(p - \hat{p}_k) \right),
\]

\[
J(u_k, y_k^1) - J(u_{kh}, y_{kh}^1) \approx \frac{1}{2} \left(\mathcal{L}_y'(u_{kh}, y_{kh}, p_{kh})(y_k - \hat{y}_{kh}) + \mathcal{L}_p'(u_{kh}, y_{kh}, p_{kh})(p_k - \hat{p}_{kh}) \right),
\]

\[
J(u_{kh}, y_{kh}^1) - J(u_{\sigma}, y_{\sigma}^1) \approx \frac{1}{2} \mathcal{L}_u'(u_{\sigma}, y_{\sigma}, p_{\sigma})(u_{kh} - \hat{u}_{\sigma}).
\]
We replace the weights by interpolations in higher-order finite element spaces

\[
\begin{align*}
 y - \hat{y}_k & \approx P^y_k y_k, \\
 p - \hat{p}_k & \approx P^p_k p_k, \\
 u_{kh} - \hat{u}_\sigma & \approx P_d u_\sigma, \\
 y_k - \hat{y}_{kh} & \approx P_h y_{kh}, \\
 p_k - \hat{p}_{kh} & \approx P_h p_{kh}.
\end{align*}
\]

Further, we replace the continuous and semi-discrete functions by the fully discrete functions

\[
\begin{align*}
 J(u, y^1) - J(u_k, y^1_k) & \approx \frac{1}{2} \left(\mathcal{L}'_y(u_\sigma, y_\sigma, p_\sigma)(P_{k}^{(2)} y_\sigma) + \mathcal{L}'_p(u_\sigma, y_\sigma, p_\sigma)(P_{k}^{(1)} p_\sigma) \right), \\
 J(u_k, y^1_k) - J(u_{kh}, y^1_{kh}) & \approx \frac{1}{2} \left(\mathcal{L}'_y(u_\sigma, y_\sigma, p_\sigma)(P_{h}^{(2)} y_\sigma) + \mathcal{L}'_p(u_\sigma, y_\sigma, p_\sigma)(P_{h}^{(2)} p_\sigma) \right), \\
 J(u_{kh}, y^1_{kh}) - J(u_\sigma, y^1_\sigma) & \approx \frac{1}{2} \mathcal{L}'_u(u_\sigma, y_\sigma, p_\sigma)(P_d u_\sigma).
\end{align*}
\]

Becker & Rannacher 2001

Meidner & Vexler 2007

Schmich & Vexler 2008
Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Dynamical Lamé system

\[
\begin{cases}
 y_{tt} - \text{div}(\sigma(y)) = f & \text{in } I \times \Omega, \\
 y(0) = y_0 & \text{in } \Omega, \\
 y_t(0) = y_1 & \text{in } \Omega, \\
 y = 0 & \text{in } I \times \partial\Omega.
\end{cases}
\]

- initial data: \(y_0 \in H^1_0(\Omega)^d, \ y_1 \in L^2(\Omega)^d, \ f \in L^2(I, L^2(\Omega)^d) \)
- strain tensor: \(\varepsilon(y) = \frac{1}{2} (\nabla y)^T + \nabla y \)
- stress tensor: \(\sigma_{ij}(y) = \lambda \delta_{ij} \text{tr}(\varepsilon(y)) + 2\mu\varepsilon_{ij}(y), \ \lambda, \mu > 0 \)
- Proof for existence of a solution in \(X \) uses Korn’s first inequality.
Optimal control of the Lamé system

Minimize

$$J(u, y) = \frac{1}{2} \|y - y_d\|^2_{L^2(I, L^2(\Omega)^d)} + \frac{\alpha}{2} \|u\|^2_U,$$

$$u \in U = L^2(I, \mathbb{R}^m), \quad y \in X, \quad \text{s.t.}$$

$$y_{tt} - \text{div}(\sigma(y)) = Bu \quad \text{in } Q,$$

$$y(0) = y_0 \quad \text{in } \Omega,$$

$$y_t(0) = y_1 \quad \text{in } \Omega,$$

$$y = 0 \quad \text{in } \Sigma.$$

- spaces: $U = L^2(I, \mathbb{R}^m)$, $m \in \mathbb{N}$
- initial data: $y_0 \in H^1_0(\Omega)^d$, $y_1 \in L^2(\Omega)^d$, $f \in L^2(I, L^2(\Omega)^d)$
- operator: $B: U \rightarrow L^2(I, L^2(\Omega)^d)$, $Bu = \sum_{i=1}^m u_i(t)g_i(x)$, $g_i \in L^2(\Omega)^d$
Data

\[y_0(x) = \begin{cases}
(\sin(8\pi(x_1 - 0.125)) \sin(8\pi(x_2 - 0.125)), 0)^T, & 0.125 < x_1, x_2 < 0.25, \\
(0, 0)^T, & \text{else},
\end{cases} \]

\[y_1(x) = (0, 0)^T, \quad y_d(t, x) = 0, \]

\[g_1(x) = \begin{cases}
(1, 1)^T, & \text{for } x_1 < 0, \\
(0, 0)^T, & \text{else}
\end{cases}, \quad g_2(x) = \begin{cases}
(1, 1)^T, & \text{for } x_1 > 0, \\
(0, 0)^T, & \text{else}
\end{cases} \]

\(\alpha = 0.001, \quad d = 2, \quad \lambda = 1, \quad \mu = 1, \quad m = 2 \)

\((t, x) = (t, x_1, x_2) \in [0, T] \times \Omega = [0, 0.5] \times [-1, 1]^2. \)

Discretization: \(cG(1)cG(1), U_d: \) piecewise constants in time with values in \(\mathbb{R}^2 \)
Numerical example

Error for adaptive and uniform refinement
Numerical Example

Comparison of the CPU-time for uniform and adaptive refinement

<table>
<thead>
<tr>
<th>Refinement</th>
<th>CPU-time</th>
<th>dof</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniform</td>
<td>100%</td>
<td>100%</td>
<td>$6.6 \cdot 10^{-8}$</td>
</tr>
<tr>
<td>Adaptive</td>
<td>34%</td>
<td>15%</td>
<td>$6.5 \cdot 10^{-8}$</td>
</tr>
</tbody>
</table>
Overview

1. Optimal control problem
2. Discretization
3. A posteriori error estimates
4. Numerical example
5. Behaviour of the energy
Energy

- Rademacher 2009, Eriksson et al. 1996

- Wave equation for $y_0 \in H^1_0(\Omega)$ and $y_1 \in L^2(\Omega)$:

$$
\begin{cases}
 y_{tt} - \Delta y = 0 & \text{in } Q, \\
 y(0) = y_0 & \text{in } \Omega, \\
 y_t(0) = y_1 & \text{in } \Omega, \\
 y = 0 & \text{on } \Sigma
\end{cases}
$$

- Energy:

$$
E(t) = \frac{1}{2}(\|y_t(t)\|^2 + \|\nabla y(t)\|^2) = \frac{1}{2}(\|y_1\|^2 + \|\nabla y_0\|^2) = E(0)
$$
Discrete energy

- Discrete equation as a time stepping scheme

\[
(Y^1_0, \xi) = (y_0, \xi), \quad (Y^2_0, \xi) = (y_1, \xi) \quad \forall \xi \in V^{1,0}_h,
\]

\[
(Y^2_m, \xi^1) + \frac{k_m}{2} (\nabla Y^1_m, \nabla \xi^1) = (Y^2_{m-1}, \xi^1) - \frac{k_m}{2} (\nabla Y^1_{m-1}, \nabla \xi^1) \quad \forall \xi^1 \in V^{1,m}_h,
\]

\[
(Y^1_m, \xi^2) - \frac{k_m}{2} (Y^2_m, \xi^2) = (Y^1_{m-1}, \xi^2) + \frac{k_m}{2} (Y^2_{m-1}, \xi^2) \quad \forall \xi^2 \in V^{1,m}_h.
\]

\[Y^i_m = y^i_\sigma(t_m) \quad (i = 1, 2) \text{ and for } m = 1, \ldots, M.\]

- Discrete energy

\[
E_{k,h}(t_m) = \frac{1}{2} \left(\| Y^2_m \|^2 + \| \nabla Y^1_m \|^2 \right) \quad m = 0, \ldots, M.
\]
Refinement

Space refinement

Level 1

Level 2

Level 3

Level \(n \)

Time refinement
Behaviour of the energy

Theorem

Let \(\pi_m : V_h^{1,m-1} \to V_h^{1,m} \) for \(m = 1, \ldots, M \). Then

\[
E_{k,h}(t_m) = E_{k,h}(t_{m-1}) - \frac{1}{k_m} (Y_{m-1}^1 - \pi_m Y_{m-1}^1, Y_m - Y_{m-1}^2)
\]

\[
- \frac{1}{k_m} (\pi_m Y_{m-1}^2 - Y_{m-1}^2, Y_m^1 - Y_{m-1}^1) - \frac{1}{2} (Y_{m-1}^2 - \pi_m Y_{m-1}^2, Y_m^2 + Y_{m-1}^2)
\]

\[
- \frac{1}{2} (\nabla Y_m^1 + \nabla Y_{m-1}^1, \nabla(Y_{m-1}^1 - \pi_m Y_{m-1}^1)).
\]

Corollary

On a given discretization level there holds

\[
E_{k,h}(t_m) = E_{k,h}(t_{m-1}) \quad \text{for } m = 1, \ldots, M
\]

independent of the size of \(k_m \), if for all steps from \(t_m \) to \(t_{m+1} \) the spatial mesh is only refined and not coarsened.
Spatial meshes

(a) \mathcal{T}_1 (b) \mathcal{T}_2 (c) \mathcal{T}_3 (d) \mathcal{T}_4 (e) \mathcal{T}_5

<table>
<thead>
<tr>
<th>Time point</th>
<th>t_0</th>
<th>t_1</th>
<th>t_2</th>
<th>t_3</th>
<th>t_4</th>
<th>t_5</th>
<th>t_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>\mathcal{T}_1</td>
<td>\mathcal{T}_1</td>
<td>\mathcal{T}_1</td>
<td>\mathcal{T}_2</td>
<td>\mathcal{T}_2</td>
<td>\mathcal{T}_3</td>
<td>\mathcal{T}_3</td>
</tr>
<tr>
<td>Energy</td>
<td>2.5327</td>
<td>2.5327</td>
<td>2.5327</td>
<td>2.5361</td>
<td>2.5361</td>
<td>2.5346</td>
<td>2.5346</td>
</tr>
</tbody>
</table>

Time point

<table>
<thead>
<tr>
<th>t_7</th>
<th>t_8</th>
<th>t_9</th>
<th>t_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesh</td>
<td>\mathcal{T}_4</td>
<td>\mathcal{T}_4</td>
<td>\mathcal{T}_5</td>
</tr>
<tr>
<td>Energy</td>
<td>2.5441</td>
<td>2.5441</td>
<td>2.5441</td>
</tr>
</tbody>
</table>

Energy on a sequence of spatial meshes
Summary

- DWR method for optimal control of second order hyperbolic equations
- Separating the influence of time, space, and control discretization
- Better accuracy of the discrete solution
- Behaviour of the energy

Software

- Software package: RoDoBo, www.rodobo.uni-hd.de

Reference

- A. Kröner,
 Adaptive finite element methods for optimal control of second order hyperbolic equations
Thank you for your attention.