

Bang Bang control of elliptic PDEs

M. Hinze

Fachbereich Mathematik Optimierung und Approximation, Universität Hamburg

(joint work with Klaus Deckelnick)

Mariatrost, October 11, 2011

ESF Summerschool and Workshop

Adaptivity and Model Order Reduction in PDE Constrained Optimization

Organisers Michael Hinze, Kunibert G. Siebert, and Winnifried Wollner

Hamburg, July 23-27

Model problem

$$(\mathbb{P})^{\alpha} \quad \begin{cases} \min_{u \in U_{ad}} J(u) = \frac{1}{2} \int_{\Omega} |y - y_0|^2 + \frac{\alpha}{2} ||u||_{L^2}^2 \\ \text{subject to } y = \mathcal{G}(u). \end{cases}$$

Here, $\alpha \geq 0$ and we are interested in the solution for $\alpha = 0$.

$$U_{ad} := \{ v \in L^2(\Omega); a \leq u \leq b \} \subseteq L^2(\Omega)$$

with a < b constants, and $y = \mathcal{G}(u)$ iff

$$-\Delta y = u$$
 in Ω , and $y = 0$ on $\partial \Omega$.

More general elliptic operators may be considered, and also control operators which map abstract controls to feasible right-hand sides of the elliptic equation.

Existence and uniqueness, optimality conditions

The optimal control problem admits a unique solution.

The function $u \in U_{ad}$ is a solution of the optimal control problem iff there exists an adjoint state p such that $y = \mathcal{G}(u)$, $p = \mathcal{G}(y - y_0)$ and

$$(\alpha u + p, v - u) \geq 0$$
 for all $v \in U_{ad}$.

There holds
$$u = P_{U_{ad}}\left(-\frac{1}{\alpha}p\right)$$
 for $\alpha > 0$,
 $u = \begin{cases} a, & \alpha u + p > 0, \\ -\frac{1}{\alpha}p, & \alpha u + p = 0, \\ b, & \alpha u + p < 0, \end{cases}$ if $\alpha > 0$, and $u \begin{cases} = a, & p > 0, \\ \in [a, b] & p = 0, \\ = b, & p < 0, \end{cases}$ if $\alpha = 0$.

Variational discretization

Discrete optimal control problem:

$$(\mathbb{P})_h^{\alpha} \begin{cases} \min_{u \in U_{ad}} J(u) = \frac{1}{2} \int_{\Omega} |y_h - y_0|^2 + \frac{\alpha}{2} ||u||_{L^2}^2 \\ \text{subject to } y_h = \mathcal{G}_h(u). \end{cases}$$

Here, $\mathcal{G}_h(u)$ denotes the piecewise linear and continuous finite element approximation to y(u), i.e.

$$a(y_h, v_h) := (\nabla y_h, \nabla v_h) = (u, v_h)$$
 for all $v_h \in X_h$,

where with the triangulation \mathcal{T}_h

$$X_h := \{ w \in C^0(\bar{\Omega}); w_{|_{\partial\Omega}} = 0, w_{|_{\mathcal{T}}} ext{ linear for all } \mathcal{T} \in \mathcal{T}_h \}.$$

This problem is still ∞ -dimensional.

Ritz projection $R_h : H^1_0(\Omega) \to X_h$, $a(R_h w, v_h) = a(w, v_h)$ for all $v_h \in X_h$

Existence and uniqueness, optimality conditions for discrete problem

The variational-discrete optimal control problems admits a solution $u_h \in U_{ad}$, which is unique in the case $\alpha > 0$. The state y_h is unique (also in the case $\alpha = 0$).

Let $u_h \in U_{ad}$ be a solution of the optimal control problem. Then there exists a unique adjoint state p_h such that $y_h = \mathcal{G}_h(u_h)$, $p_h = \mathcal{G}_h(y_h - y_0)$ and

$$(\alpha u_h + p_h, v - u_h) \geq 0$$
 for all $v \in U_{ad}$.

There holds $u_h = P_{U_{ad}}\left(-\frac{1}{\alpha}p_h\right)$ for $\alpha > 0$, $u_h = \begin{cases} a, & \alpha u_h + p_h > 0, \\ -\frac{1}{\alpha}p_h, & \alpha u_h + p_h = 0, \\ b, & \alpha u_h + p_h < 0, \end{cases}$ if $\alpha > 0$, and $u_h \begin{cases} = a, & p_h > 0, \\ \in [a, b] & p_h = 0, \\ = b, & p_h < 0, \end{cases}$ if $\alpha = 0$.

Error estimates

It is well known that

$$\|y - y_h\| + \alpha \|u - u_h\| \sim \|y - y_h(u)\| + \|p - p_h(y(u))\|$$

So one expects estimates for $y - y_h$ also in the case $\alpha = 0$. Estimates for $||u - u_h||$?

Estimate for the states (S := $\overline{\{x \in \Omega \mid p(x) \neq 0\}} \subset \overline{\Omega}$)

$$\|y - y_h\| \leq C \left(h^2 + (b - a)\|p - R_h p\|_{L^1(\Omega \setminus S)} + \|p - R_h p\|_{L^{\infty}} \|u - u_h\|_{L^1(S)}\right), \\ \|p - p_h\|_{L^{\infty}} \leq C \|y - y_h\| + \|p - R_h p\|_{L^{\infty}},$$

follow from

•
$$0 \le (p - p_h, u_h - u) = (R_h p - p_h, u_h - u) + (p - R_h p, u_h - u) \equiv I + II.$$

• $I \le -\frac{1}{2} ||y - y_h||^2 + \frac{1}{2} ||y - R_h y||^2$
• $II = \int_{\Omega \setminus S} (p - R_h p)(u_h - u) + \int_S (p - R_h p)(u_h - u).$

Error estimates

Structural assumption

$$\exists C > 0 \forall \epsilon > 0 : \mathcal{L}(\{x \in \bar{\Omega}; |p(x)| \leq \epsilon\}) \leq C \epsilon^{\beta}$$

for the solution u at lpha=0 with some $eta\in(0,1]$ yields

$$\begin{aligned} \|\mathbf{y} - \mathbf{y}_h\| + \|\mathbf{p} - \mathbf{p}_h\|_{L^{\infty}} &\leq C\left(h^2 + \|\mathbf{p} - \mathbf{R}_h\mathbf{p}\|_{L^{\infty}}^{\frac{1}{2-\beta}}\right); \\ \|\mathbf{u} - \mathbf{u}_h\|_{L^1} &\leq C\left(h^{2\beta} + \|\mathbf{p} - \mathbf{R}_h\mathbf{p}\|_{L^{\infty}}^{\frac{\beta}{2-\beta}}\right). \end{aligned}$$

Sketch of proof for $\beta = 1$

$$\|u - u_h\|_{L^1}, \|y - y_h\|, \|p - p_h\|_{L^{\infty}} \leq C \left\{ h^2 + \|p - R_h p\|_{L^{\infty}} \right\}$$

Sketch of proof:

•
$$0 \le (p - p_h, u_h - u) = (R_h p - p_h, u_h - u) + (p - R_h p, u_h - u) \equiv I + II.$$

• $I \le -\frac{1}{2} ||y - y_h||^2 + \frac{1}{2} ||y - R_h y||^2$
• $II = \int_S (p - R_h p)(u_h - u).$ Combine now
• $||u - u_h||_{L^1} \le (b - a)\mathcal{L}(\{p > 0, p_h \le 0\} \cup \{p < 0, p_h \ge 0\})$
• $\{p > 0, p_h \le 0\} \cup \{p < 0, p_h \ge 0\} \subseteq \{|p(x)| \le ||p - p_h||_{\infty}\} \Rightarrow$
• $\mathcal{L}(\{|p(x)| \le ||p - p_h||_{\infty}\}) \le C ||p - p_h||_{\infty}$
• $||u - u_h||_{L^1} \le C ||p - R_h p||_{\infty} + ||R_h p - p_h||_{\infty}$
• $||R_h p - p_h||_{\infty} \le C ||y - y_h||$

to estimate II.

Special cases

1.
$$u_0 \in U_{ad}$$
 exists such that $y_0 = \mathcal{G}(u_0)$. Then

$$\|\boldsymbol{y}-\boldsymbol{y}_h\|+\|\boldsymbol{p}-\boldsymbol{p}_h\|_{L^{\infty}}\leq Ch^2.$$

2. If
$$p \in C^1(\overline{\Omega})$$
 satisfies

 $\min_{x\in \mathcal{K}} |\nabla p(x)| > 0, \quad \text{ where } \mathcal{K} = \{x\in \bar{\Omega} \,|\, p(x) = 0\}.$

Then, the structural assumption is satisfied with $\beta = 1$.

3. If $p \in W^{2,\infty}(\Omega)$ and satisfies the structural assumption, then $\|y - y_h\| + \|p - p_h\|_{L^{\infty}} + \|u - u_h\|_{L^1} \le Ch^2 |\log h|^{\gamma(d)}.$

Algorithms for \mathbb{P}^{α}_{h}

Define

$$G_h(u) = u - P_{U_{ad}}\left(-\frac{1}{\alpha}p_h(y_h(u))\right).$$

The optimality condition reads $G_h(u) = 0$ and motivates the fix-point iteration

• u given, do until convergence

$$u^+ = P_{U_{ad}}\left(-\frac{1}{\alpha}p_h(y_h(u))\right), \quad u = u^+.$$

1. Is this algorithm numerically implementable?

Yes, whenever for given u it is possible to numerically evaluate the expression

$$P_{U_{ad}}\left(-\frac{1}{lpha}p_h(y_h(u))
ight)$$

in the i - th iteration, with an numerical overhead which is *independent* of the iteration counter of the algorithm.

Semi–smooth Newton algorithm for $lpha > \mathbf{0}$

2. Does the fix-point algorithm converge?

Yes, if $\alpha > \|RB^*S_h^*S_hB\|_{\mathcal{L}(U)}$, since $P_{U_{ad}}$ is non-expansive.

Condition too restrictive for our purpose \rightarrow semi-smooth Newton method applied to $G_h(u) = 0$:

• u given, solve until convergence

$$G'_{h}(u)u^{+} = -G_{h}(u) + G'_{h}(u)u, \quad u = u^{+}.$$

1. This algorithm is implementable whenever the fix-point iteration is, since

$$-G_{h}(u) + G'_{h}(u)u =$$

= $-P_{U_{ad}}\left(-\frac{1}{\alpha}p_{h}(u)\right) - \frac{1}{\alpha}P'_{U_{ad}}\left(-\frac{1}{\alpha}p_{h}(u)\right)S_{h}^{*}S_{h}u.$

2. For every $\alpha > 0$ this algorithm is locally fast convergent (H. (COAP 2005), Vierling).

Numerical example with 2 switching points, fix-point iteration

Experimental order of convergence:

- $||u u_h||_{L^1}$: 3.00077834
- Function values 1.99966106
- $\|p p_h\|_{L^{\infty}}$: 1.99979367
- $\|y y_h\|_{L^{\infty}}$: 1.9997965
- $\|p p_h\|_{L^2}$: 1.99945711

Homotopy in lpha with semi-smooth Newton, Tröltzsch checkerboard

D. & G. Wachsmuth (ESAIM: COCV 2011 (Preprint 2009)), von Daniels (Diploma Thesis 2010):

• $\|u_0 - u_\alpha\| \sim \sqrt{\alpha}$,

•
$$\|u_{lpha} - u_{lpha,h}\| \sim h^2 lpha^{-1}$$
, thus

•
$$\|u_0 - u_{\alpha,h}\| \sim h^{\frac{2}{3}}$$

$$u(x) = -\operatorname{sign} p(x), p(x) = -\frac{1}{128\pi^2} \sin(8\pi x_1) \sin(8\pi x_2), y(x) = \sin(\pi x_1) \sin(\pi x_2).$$

Loop i	$ u - u_h _{L^1}$	$\ u - u_h\ _{L^2}$	$EOC_{L^1}(u)$	$EOC_{L^2}(u)$	Nit
3	2.5008e-001	4.7416e-001	1.10	0.61	4
4	1.2045e-001	3.4864e-001	1.05	0.44	5
5	3.6487e-002	1.9368e-001	1.72	0.85	4
6	5.8124e-003	6.2070e-002	1.33	0.82	3
7	2.1287e-003	3.7590e-002	1.45	0.72	3
mean			1.33	0.69	

Numerical example by Nicolaus von Daniels

Checkerboard example, plots

Related approaches, next steps

Related approaches

- In a recent talk Walter Alt for linear–quadratic optimal control problems with ODEs proposed to use the zeros of the discrete switching function to define the control \rightarrow
- This relates to post-processing of Meyer/Rösch combined with piecewise constant control approximations in the present situation. Structural assumptions on *p* imply the required *regularity* of the discrete active set.

Next steps:

• Parabolic problems

Thank you very much for your attention!

Related approaches, next steps

Related approaches

- In a recent talk Walter Alt for linear–quadratic optimal control problems with ODEs proposed to use the zeros of the discrete switching function to define the control \rightarrow
- This relates to post-processing of Meyer/Rösch combined with piecewise constant control approximations in the present situation. Structural assumptions on *p* imply the required *regularity* of the discrete active set.

Next steps:

Parabolic problems

Thank you very much for your attention!