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numerics
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Typical Configuration in Linear Elasticity

g = 0

ΓD ΓN

g
f

Material laws and boundary conditions

C−1σ = ε(u) in Ω Hooke’s Law

∇ · σ = −f in Ω equilibrium condition

u = 0 on ΓD displacement b/c

σ · n = g on ΓN stress b/c

Cijkl = λ δij δkl + µ (δik δjl + δil δjk)

Variables

σ stress tensor

u displacement vector

ε(u) lin. strain tensor

ε(u) = 1
2 (∇u +∇u>)
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Elasticity & Plasticity: Energy Minimization

Linear elasticity

Minimize 1
2 a(σ ,σ)

, Σ = (σ,χ)

s.t. b(σ , v) = 〈`, v〉 for all v ∈ V

and Σ ∈ K (convex)

Bilinear and linear forms

a(σ , τ ) =

∫
Ω
σ : C−1τ dx

+

∫
Ω
χ : H−1µ dx

b(σ , v) = −
∫

Ω
σ : ε(v) dx

, ε(u) = 1
2 (∇u +∇u>)

〈`, v〉 = −
∫

Ω
f · v dx −

∫
ΓN

g · v ds ε(u)

σ

χ,

σ ∈ S = L2(Ω; Rd×d
sym ), u ∈ V = H1

ΓD
(Ω; Rd),

[
u = 0 on ΓD

]
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Elasticity & Plasticity: Energy Minimization

Static plasticity (linear kinematic hardening)

Minimize 1
2 a(Σ,Σ), Σ = (σ,χ)

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

and Σ ∈ K (convex)

Bilinear and linear forms

a(Σ,T) =

∫
Ω
σ : C−1τ dx +

∫
Ω
χ : H−1µ dx

b(Σ, v) = −
∫

Ω
σ : ε(v) dx , ε(u) = 1

2 (∇u +∇u>)

〈`, v〉 = −
∫

Ω
f · v dx −

∫
ΓN

g · v ds ε(u)

σ

χ,σ ∈ S = L2(Ω; Rd×d
sym ), u ∈ V = H1

ΓD
(Ω; Rd),

[
u = 0 on ΓD

]
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Kinematic Hardening Model: Yield Condition

Von Mises yield condition (linear kinematic hardening)

K =
{

(σ,χ) ∈ Rd×d
sym : |σD + χD |Frob ≤ σ̃0 :=

√
2/3σ0

}
K = {Σ = (σ,χ) ∈ S × S : (σ(x),χ(x)) ∈ K a.e. in Ω}

AD = A− 1
d (trace A) I

DΣ = σD + χD
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Two Ways to Write the Forward Problem

The unique minimizer (σ,χ,u) ∈ S × S × V is characterized by Σ ∈ K,

a(Σ,T−Σ) + b(T−Σ,u) ≥ 0 for all T = (τ ,µ) ∈ K
b(Σ, v) = 〈`, v〉 for all v ∈ V

c(λ,Σ,T) =

∫
Ω
λ DΣ :DT dx

L2 L∞ L2
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Comparison to the Obstacle Problem

Static Plasticity Problem

a(Σ,T−Σ) + b(τ − σ, u) ≥ 0 ∀T ∈ K
b(σ, v) = 〈`, v〉 ∀v ∈ V

with 〈`, v〉 = −
`
f, v
´

Ω
−
`
g, v
´

ΓN

K =
˘

Σ = (σ,χ) : |DΣ| ≤ eσ0

¯

Obstacle Problem

a(y , z − y) ≥ (f , z − y)Ω ∀z ∈ K

with a(y , z) =
`
∇y ,∇z

´
Ω

K =
˘
y ∈ H1

0 (Ω) : y ≥ 0
¯

VI in mixed form

a algebraic, b 1st order

no regularity gain:
L2 3 f 7→ Σ ∈ L2

admissible set K more involved

Lagr. multiplier λ non-trivial

elliptic VI

a 2nd order

substantial regularity gain:
L2 3 f 7→ y ∈ H1

0 or even H2

admissible set K simple

Lagr. multiplier λ := f +4y
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Application: Control of Springback

Deep drawing

car body parts

plane body parts

packings

Springback

release of stored elastic energy once the
loads are withdrawn

partial restoration away from the desired
shape
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A Control Problem in Plasticity

Upper-level problem

Minimize 1
2 ‖u− ud‖2

L2(Ω;Rd )
+ ν1

2 ‖f‖
2
L2(Ω;Rd )

+ ν2
2 ‖g‖

2
L2(ΓN ;Rd )

s.t. 〈`, v〉 = −
∫

Ω f · v dx −
∫

ΓN
g · v ds and · · ·

Lower-level problem

Minimize 1
2 a(Σ,Σ), Σ ∈ K

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

MPEC: Non-smooth control-to-state map. MPCC: Classical Lagrange
multiplier approach for upper-level problem unsuitable, several stationarity
concepts exist.
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Upper-level problem

Minimize 1
2 ‖u− ud‖2

L2(Ω;Rd )
+ ν1

2 ‖f‖
2
L2(Ω;Rd )

+ ν2
2 ‖g‖

2
L2(ΓN ;Rd )

s.t. 〈`, v〉 = −
∫

Ω f · v dx −
∫

ΓN
g · v ds and · · ·

K = {Σ : φ(Σ) ≤ 0}

Variational inequality

a(Σ,T−Σ) + b(T−Σ,u) ≥ 0

for all T = (τ ,µ) ∈ K
b(Σ, v) = 〈`, v〉 for all v ∈ V

MPEC

K = {Σ : φ(Σ) ≤ 0}

Complementarity system

a(Σ,T) + b(T,u) + (λφ′(Σ),T) = 0

for all T = (τ ,µ) ∈ S × S

b(Σ, v) = 〈`, v〉 for all v ∈ V

0 ≤ λ ⊥ φ(Σ) ≤ 0

MPCC

MPEC: Non-smooth control-to-state map. MPCC: Classical Lagrange
multiplier approach for upper-level problem unsuitable, several stationarity
concepts exist.
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MPECs & MPCCs in Function Space

Contributors:

Mignot, Puel

Barbu

Bermúdez, Saguez

Bonnans, Casas

Bergounioux

Mordukhovich

Ito, Kunisch

Hintermüller, Kopacka, Rautenberg, Surowiec, Tber, Wegner

D. Wachsmuth

Farshbaf-Shaker
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Example (MPCC)

Minimize f (x) s.t. x1 ≥ 0, x2 ≥ 0, x1 x2 = 0

∇x

L(x , µ, λ) =

∇

f (x)− µ>x + λ x1x2

singly active point

Tlin( ) = TX ( )x∗ x∗

Tlin( )◦ = TX ( )◦x∗ x∗

∇f (x∗)−
(

0
µ2

)
+ λ

(
0

x∗1

)
= 0

bi-active point

Tlin( ) ) TX ( )x∗ x∗

Tlin( )◦ = TX ( )◦x∗ x∗

∇f (x∗)−
(
µ1

µ2

)
+ λ

(
0
0

)
= 0

redundant multiplier λ, MFCQ does not hold
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Some Stationarity Concepts for MPCCs

Minimize f (x) s.t. x1 ≥ 0, x2 ≥ 0, x1 x2 = 0

KKT conditions

L = f (x)− µ>x + λ x1x2

∇xL = ∇f (x)−
(
µ1

µ2

)
+ λ

(
x2

x1

)
µ1 ≥ 0, x1 ≥ 0, µ1 x1 = 0

µ2 ≥ 0, x2 ≥ 0, µ2 x2 = 0

MPCC:

weak

stationarity

L̂ = f (x)− µ̂>x

∇x L̂ = ∇f (x)−
(
µ̂1

µ̂2

)
µ̂1 ∈ R, x1 ≥ 0, µ̂1 x1 = 0

µ̂2 ∈ R, x2 ≥ 0, µ̂2 x2 = 0

MPCC stationarity concepts

strong stat. ⇒ M-stationarity ⇒ C-stationarity ⇒

weak stat.

differ only in conditions for µ̂1, µ̂2, if x1 = x2 = 0

”Limits of regularized MPCCs satisfy C-(or M-)stationarity”

Roland Herzog Optimality Conditions in Plasticity Control

[Scheel, Scholtes (2000)

; Kanzow, Schwartz (2010)

]
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Regularization by Penalization

Lower level (forward) problem

Minimize 1
2 a(Σ,Σ), Σ ∈ K

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

Regularized optimality conditions

a(Σ,T) + b(T,u) + I ′γ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Iγ(Σ) = γ
2‖Σ− PK(Σ)‖2 — Moreau-Yosida regularization

I ′γ(Σ) = γ (Σ− PK(Σ))

= γ max
{

0, 1− σ̃0 |σD + χD |−1
} (σD + χD

σD + χD

)
Jγ(Σ) = maxε

{
0, γ (1− σ̃0 |DΣ|−1)

}
D?DΣ

DΣ = σD + χD D?σ =

(
σD

σD

)

Roland Herzog Optimality Conditions in Plasticity Control



Regularization by Penalization

Lower level (forward) problem

Minimize 1
2 a(Σ,Σ) + Iγ(Σ) (penalize constraint violation)

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

Regularized optimality conditions

a(Σ,T) + b(T,u) + I ′γ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Iγ(Σ) = γ
2‖Σ− PK(Σ)‖2 — Moreau-Yosida regularization

I ′γ(Σ) = γ (Σ− PK(Σ))

= γ max
{

0, 1− σ̃0 |σD + χD |−1
} (σD + χD

σD + χD

)
Jγ(Σ) = maxε

{
0, γ (1− σ̃0 |DΣ|−1)

}
D?DΣ

DΣ = σD + χD D?σ =

(
σD

σD

)

Roland Herzog Optimality Conditions in Plasticity Control



Regularization by Penalization

Lower level (forward) problem

Minimize 1
2 a(Σ,Σ) + Iγ(Σ) (penalize constraint violation)

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

Regularized optimality conditions

a(Σ,T) + b(T,u) + I ′γ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Iγ(Σ) = γ
2‖Σ− PK(Σ)‖2 — Moreau-Yosida regularization

I ′γ(Σ) = γ (Σ− PK(Σ))

= γ max
{

0, 1− σ̃0 |σD + χD |−1
} (σD + χD

σD + χD

)
Jγ(Σ) = maxε

{
0, γ (1− σ̃0 |DΣ|−1)

}
D?DΣ

DΣ = σD + χD D?σ =

(
σD

σD

)

Roland Herzog Optimality Conditions in Plasticity Control



Regularization by Penalization

Lower level (forward) problem

Minimize 1
2 a(Σ,Σ) + Iγ(Σ) (penalize constraint violation)

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

Regularized optimality conditions

a(Σ,T) + b(T,u) + I ′γ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Iγ(Σ) = γ
2‖Σ− PK(Σ)‖2 — Moreau-Yosida regularization

I ′γ(Σ) = γ (Σ− PK(Σ))

= γ max
{

0, 1− σ̃0 |σD + χD |−1
} (σD + χD

σD + χD

)
Jγ(Σ) = maxε

{
0, γ (1− σ̃0 |DΣ|−1)

}
D?DΣ

DΣ = σD + χD D?σ =

(
σD

σD

)

Roland Herzog Optimality Conditions in Plasticity Control



Regularization by Penalization

Lower level (forward) problem

Minimize 1
2 a(Σ,Σ) + Iγ(Σ) (penalize constraint violation)

s.t. b(Σ, v) = 〈`, v〉 for all v ∈ V

Regularized optimality conditions

a(Σ,T) + b(T,u) + I ′γ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Iγ(Σ) = γ
2‖Σ− PK(Σ)‖2 — Moreau-Yosida regularization

I ′γ(Σ) = γ (Σ− PK(Σ)) = γ max
{

0, 1− σ̃0 |σD + χD |−1
} (σD + χD

σD + χD

)

Jγ(Σ) = maxε
{

0, γ (1− σ̃0 |DΣ|−1)
}

D?DΣ

DΣ = σD + χD D?σ =

(
σD

σD

)

Roland Herzog Optimality Conditions in Plasticity Control



Regularization by Penalization

This regularization corresponds to a visco-plastic model!
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Differentiability of the Control-to-State Map

Regularized optimality conditions

a(Σ,T) + b(T,u) + Jγ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Facts

Quasi-linear elasticity system

Jγ : S2 → S2 is a Nemytskii operator, differentiable Lp → L2, p > 2

The control to state map G : `→ (Σ,u) is Lipschitz to Lp ×W 1,p

Derivative

The derivative (δΣ, δu) of (Σ,u) in the direction δ` solves the system

a(δΣ,T) + b(T, δu) + J ′γ(Σ)(δΣ,T) = 0 for all T = (τ ,µ) ∈ S2

b(δΣ, v) = 〈δ`, v〉 for all v ∈ V

Roland Herzog Optimality Conditions in Plasticity Control

[Herzog, Meyer, Wachsmuth (JMAA, 2011)]
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a(Σ,T) + b(T,u) + Jγ(Σ) T = 0 for all T = (τ ,µ) ∈ S2

b(Σ, v) = 〈`, v〉 for all v ∈ V

Facts

Quasi-linear elasticity system

Jγ : S2 → S2 is a Nemytskii operator, differentiable Lp → L2, p > 2

The control to state map G : `→ (Σ,u) is Lipschitz to Lp ×W 1,p

Derivative

The derivative (δΣ, δu) of (Σ,u) in the direction δ` solves the system

a(δΣ,T) + b(T, δu) + J ′γ(Σ)(δΣ,T) = 0 for all T = (τ ,µ) ∈ S2

b(δΣ, v) = 〈δ`, v〉 for all v ∈ V
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Optimality Cond. for Regularized Problem

Regularized optimal control problem

Minimize 1
2 ‖u− ud‖2

L2(Ω;Rd )
+ ν

2‖g‖
2
L2(ΓN ;Rd )

s.t. the regularized static plasticity problem

with 〈`, v〉 = −
∫

ΓN

g · v ds =: R g

(Pγ)

Optimality Conditions

AΣγ + Jγ(Σγ) + B?uγ = 0

BΣγ = R gγ

(A + J ′γ(Σγ))Υγ + B?wγ = 0

BΥγ = uγ − ud

R?wγ + ν gγ = 0
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Approximability of Solutions

Global Minimizers

If {gk} are global solutions to regularized problems with

γk →∞ and εk → 0 as k →∞
then every weak accumulation point g is a global minimizer of the
unregularized problem (and in fact a strong accumulation point).

Strict Local Minimizers

If g is a strict local minimizer of the unregularized problem, then there
exists a sequence {gk} of local optimal solutions to regularized problems
which converges to g.

Local Minimizers

If g is a local minimizer of the unregularized problem then there exists a
sequence {gk} of local optimal solutions to a perturbed and regularized
problem which converges to g.
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Passage to the Limit

AΥ + λD?DΥ + θD?DΣ + B?w = 0 LΣ = 0

BΥ = u− ud Lu = 0

DΥ :DΣ− µ = 0 Lλ = 0

AΣ + λD?DΣ + B?u = 0

BΣ = R g

0 ≤ λ ⊥ φ(Σ) ≤ 0

⊥ ⊥
µ θ ≥ 0 C-stationarity

R?w + ν g = 0 Lg = 0

DΣ := σD + χD , 〈R g, v〉 := −
∫

ΓN
g · v ds
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Some Remarks on the Proof

derive bounds on adjoint states and ’regularized multipliers’:

‖Υγ‖S2 + ‖wγ‖V ≤ C (‖(fγ , gγ)‖U + 1)

‖θγ‖L2(Ω) ≤ 1√
2

γ+ε
σ̃0 γ
‖Qγ‖S2 where Qγ = −AΥγ − B?wγ

‖θγ D?DΣγ‖2
S2 + ‖λγ D?DΥγ‖2

S2 ≤ ‖Qγ‖2
S2

‖λγ µγ‖L1(Ω) ≤ C (ε+ γ−1) ‖(fγ , gγ)‖U
(
‖DΥγ‖S + ‖Qγ‖S2

)
‖θγ φ(Σγ)‖L1(Ω) ≤ C ε2

γ2 ‖θγ‖L2(A0
γ) + C γ−1‖(fγ , gγ)‖U ‖Qγ‖S2

it is particularly hard to prove the C-stationarity relation

µ θ ≥ 0 a.e. in Ω

since only µk ⇀ µ and θk ⇀ θ in L2(Ω)
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Differentiability of the Control-to-State Map?

Optimal control problem

Minimize 1
2 ‖u− ud‖2

L2(Ω;Rd )
+ ν

2‖g‖
2
L2(ΓN ;Rd )

s.t. the static plasticity problem

with 〈`, v〉 = −
∫

ΓN

g · v ds

(P)

Unregularized forward problem

〈AΣ, T−Σ〉+ 〈B?u, T−Σ〉 ≥ 0 for all T = (τ ,µ) ∈ K
〈BΣ, v〉 = 〈`, v〉 for all v ∈ V

MPEC point of view (implicit approach):

exploit properties of the control-to-state map ` 7→ (Σ,u)
to show that the reduced objective j is directionally differentiable
then B-stationarity holds:

δj(g; g − g) ≥ 0 for all g admissible
Roland Herzog Optimality Conditions in Plasticity Control



Weak Directional Differentiability

Theorem

For some p > 2, the map

W−1,p
ΓD

(Ω; R3) 3 ` 7→ (Σ,u) ∈ S2 × V

is weakly directionally differentiable (even for all directions δ` ∈ V ′).

This derivative is the unique solution (Σ′,u′) ∈ S` × V of

〈AΣ′, T−Σ′〉+ 〈B?u′, T−Σ′〉+
(
λ,DΣ′ :D(T−Σ′)

)
Ω
≥ 0

BΣ′ = δ`

for all T in the convex cone

S` := {T ∈ S2 :
√
λDT ∈ S , DΣ :DT ≤ 0 where φ(Σ) = λ = 0,

DΣ :DT = 0 where λ > 0}.
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B-Stationarity

Theorem (B-stationariy)

Let ḡ be a local optimal solution of (P). Then∫
Ω

(
u− ud

)
· u′ dx + ν

∫
ΓN

g · (g − g) ds ≥ 0 for all g admissible,

where (Σ′,u′) solves the derivative problem with δ` generated by g − g.

Remark

purely primal concept

equivalent to notion of B-stationarity, e.g., in [Scheel, Scholtes]

weak directional derivative of ` 7→ λ exists as well

algorithmic exploitation unknown
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Concluding Remarks

Conclusions

optimal control problem for a static plasticity problem

regularization (γ) and smoothing (ε) of the lower-level problem

passage to the limit ; optimality conditions of C-stationary type

analysis more involved than for obstacle control problems

B-stationarity based on weak directional differentiability of the
control-to-state map

Both results required extra regularity for nonlinear elasticity systems shown
in [Herzog, Meyer, Wachsmuth (JMAA, 2011)].

This talk: static (incremental) setting
See talk by Gerd Wachsmuth (Tue, 9:30) for quasi-static setting and
numerics
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