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I. Introduction



Euler’s equation
I We consider a smooth bounded domain Ω ⊂ Rn, n = 2, 3.
I Euler equation for perfect incompressible fluids{

∂tu + (u · ∇)u +∇p = 0 in [0,T ]× Ω,
div u = 0 in [0,T ]× Ω.

I Here, u : [0,T ]× Ω→ Rn is the velocity field, p : [0,T ]× Ω→ R is
the pressure field.

I Usual slip condition on the boundary :

u · n = 0 on [0,T ]× ∂Ω.

I → Global (resp. local in 3D) well-posedness, cf. Lichtenstein,
Wolibner, Yudovich, Kato, . . .



Boundary control
I We consider a non empty open part Σ of the boundary ∂Ω.

I Non-homogeneous boundary conditions can be chosen as follows :
I on ∂Ω \ Σ, the fluid does not cross the boundary, u · n = 0.

I on Σ, we suppose that one can choose the boundary conditions.
These can take the following form (Yudovich, Kazhikov) :

u(t, x) · n(x) on [0,T ]× Σ,

curl u(t, x) on Σ−T := {(t, x) ∈ [0,T ]× Σ / u(t, x) · n(x) < 0} (2D)

curl u(t, x)× n on Σ−T := {(t, x) ∈ [0,T ]× Σ / u(t, x) · n(x) < 0} (3D).

I This boundary condition is a control which we can choose to
influence the system, in order to prescribe its behavior.
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The standard problem of controlabillity
I Standard problem of exact/approximate controlabillity :

Given two possible states of the system, say u0 and u1, and given a
time T > 0, can one find a control such that the corresponding
solution of the system starting from u0 at time t = 0 reaches the
target u1 at time t = T ?
At least such that

‖u(T , ·)− u1‖X ≤ ε? (AC)

I Alernative formulation : given u0, u1 and T , can we find a solution
of the equation satisfying the constraint on the boundary :

u · n = 0 on [0,T ]× (∂Ω \ Σ),

(under-determined system) and driving u0 to u1 at time T ? Or to
u(T , ·) satisfying (AC) ?

I See Coron, G., for what concerns the boundary controllability of the
Euler equation.



Another type of controlabillity
I Another type of controlabillity is natural for equations from fluid

mechanics : is possible to drive a zone in the fluid from a given place
to another by using the control ? (Based on a suggestion by J.-P.
Puel)

I One can think for instance to a polluted zone in the fluid, which we
would like to transfer to a zone where it can be treated.

I It is natural, in order to control the fluid zone during the whole
diplacement to ask that is remains inside the domain during the
whole time interval.

I Cf. Horsin in the case of the Burgers equation.



First definition
I Due to the incompressibility of the fluid, the starting zone and the

target zone must have the same area.
I We have also to require that there is no topological obstruction to

move a zone to the other one.

I In the sequel, we will consider fluids zones given by the interior
(supposed to be inside Ω) of smooth (C∞) Jordan curves/surface.

Definition
We will say that the system satisfies the exact Lagrangian controlabillity
property, if given two smooth Jordan curves/surface γ0, γ1 in Ω,
homotopic in Ω and surrounding the same area/volume, a time T > 0
and an initial datum u0, there exists a control such that the flow given by
the velocity fluid drives γ0 to γ1, by staying inside the domain.



An objection

The exact controlabillity Lagrangian does not hold in general, indeed :

I Let us suppose ω0 := curl u0 = 0. In that case if the flow Φ(t, x)
maintains γ0 inside the domain, then for all t,

ω(t, ·) = curl u(t, ·) = 0,

in the neighborhood of Φ(t, γ0).

I Since div u = 0, locally around γ0, u is the gradient of a harmonic
function ; u is therefore analytic in a neighborhood Φ(t, γ0).

I Hence if γ0 is analytic, its analyticity is propagated over time.

I If γ1 is smooth but non analytic, the exact Lagrangian controlabillity
cannot hold.



Approximate Lagrangian controllability

Definition
We will say that the system satisfies the property of approximate
Lagrangian controlabillity in C k , if given two smooth Jordan
curves/surface γ0, γ1 in Ω, homotopic in Ω and surrounding the same
volume, a time T > 0, an initial datum u0 and ε > 0, we can find a
control such that the flow of the velocity field maintains γ0 inside Ω for
all time t ∈ [0,T ] and satisfies, up to reparameterization :

‖Φu(T , γ0)− γ1‖Ck ≤ ε.

Here, (t, x) 7→ Φu(t, x) is the flow of the vector field u.



The 2-D case

Theorem (G.-Horsin)
Consider two smooth smooth Jordan curves γ0, γ1 in Ω, homotopic in Ω
and surrounding the same area. Let k ∈ N. We consider u0 ∈ C∞(Ω;R2)
satisfying

div (u0) = 0 in Ω and u0 · n = 0 on [0,T ]× (∂Ω \ Σ).

For any T > 0, ε > 0, there exists a solution u of the Euler equation in
C∞([0,T ]× Ω;R2) with

u · n = 0 on [0,T ]× (∂Ω \ Σ) and u|t=0 = u0 in Ω,

and whose flow satisfies

∀t ∈ [0,T ], Φu(t, γ0) ⊂ Ω,

and up to reparameterization

‖γ1 − Φu(T , γ0)‖Ck ≤ ε.



A connected result : vortex patches
The starting point is the following.

Theorem (Yudovich, 1961)
For any u0 ∈ C 0(Ω;R2) such that div (u0) = 0 in Ω, u0 · n = 0 on ∂Ω
and curl u0 ∈ L∞, there exists a unique (weak) global solution of the
Euler equation starting from u0 and satisfying u · n = 0 on the boundary.

A particular case of initial data with vorticity in L∞ is the one of vortex
patches.

Definition
A vortex patch is a solution of the Euler equation whose initial datum is
the caracteristic function of the interior of a smooth Jordan curve (at
least C 1,α).

Cf. Chemin, Bertozzi-Constantin, Danchin, Depauw, Dutrifoy, Gamblin &
Saint-Raymond, Hmidi, Serfati, Sueur,. . .



Control of the shape of a vortex patch

Theorem (G.-Horsin)
Consider two smooth Jordan curves γ0, γ1 in Ω, homotopic in Ω and
surrounding the same area. Suppose also that the control zone Σ is in the
exterior of these curves. Let u0 ∈ Lip(Ω;R2) with u0 · n ∈ C∞(∂Ω) a
vortex patch initial condition corresponding to γ0, i.e.

curl (u0) = 1Int(γ0) in Ω, div (u0) = 0 in Ω, u0 · n = 0 on ∂Ω \ Σ.

Then for any T > 0, any k ∈ N, any ε > 0, the exists
u ∈ L∞([0,T ];Lip(Ω)) a solution of the Euler equation such that

curl u = 0 on [0,T ]× Σ,

u · n = 0 on [0,T ]× (∂Ω \ Σ) and u|t=0 = u0 in Ω,

that Φu(T , 0, γ0) does not leave the domain and and that, up to
reparameterization, one has

‖γ1 − Φu(T , 0, γ0)‖Ck ≤ ε.



Remarks

I As long as the patch stays regular, one merely has u(t, ·) ∈ Lip(Ω).
I Without the regularity of the patch, the velocity field u(t, ·) is

log-Lipschitz only :

|u(t, x)− u(t, y)| . |x − y | log(e + |x − y |).



The 3-D case

Theorem (G.-Horsin)
Let α ∈ (0, 1) and k ∈ N \ {0}. Consider u0 ∈ C k,α(Ω;R3) satisfying

div u0 = 0 in Ω, and u0 · n = 0 on ∂Ω \ Γ,

let γ0 and γ1 two contractible C∞ embeddings of S2 in Ω such that

γ0 and γ1 are diffeotopic in Ω and |Int(γ0)| = |Int(γ1)|.

Then for any ε > 0, there exist a time small enough T0 > 0, such that
for all T ≤ T0, there is a solution (u, p) in L∞(0,T ;C k,α(Ω;R4)) of the
Euler equation on [0,T ] with u · n = 0 on ∂Ω \ Σ such that

∀t ∈ [0,T ], Φu(t, 0, γ0) ⊂ Ω,

‖Φu(T , 0, γ0)− γ1‖Ck (S2) < ε,

hold (up to reparameterization).



II. Ideas of proof (in the 2D case)



Potential flows
I For any θ = θ(t, x) which is harmonic with respect to x for all t,

v(t, x) := ∇xθ(t, x) is a solution of the Euler equation with

p(t, x) = −(θt + |∇θ|2/2).

I These are potential flows, which are classical in fluid mechanics.

I The construction of suitable potential flows is also central in the
proof of the exact controlabillity of the Euler equation.

I This idea is due to J.-M. Coron, and is connected to the so-called
return method.



Main proposition

Proposition
Consider two smooth Jordan curves/surface γ0, γ1 in Ω, diffeotopic in Ω
and surrounding the same volume. For any k ∈ N, T > 0, ε > 0, there
exists θ ∈ C∞0 ([0, 1];C∞(Ω;R)) such that

∆xθ(t, ·) = 0 in Ω, for all t ∈ [0, 1],

∂θ

∂n
= 0 on [0, 1]× (∂Ω \ Σ),

whose flow satisfies

∀t ∈ [0, 1], Φ∇θ(t, 0, γ0) ⊂ Ω,

and, up to reparameterization,

‖γ1 − Φ∇θ(T , 0, γ0)‖Ck ≤ ε.



Ideas of proof for the main proposition
I One seeks a potential flow driving γ0 to γ1 (approximately in C k)

and fulfilling the boundary condition on ∂Ω \ Σ.

I This is proven in two parts :

I Part 1 : find a solenoidal (divergence-free) vector field driving γ0 to
γ1.

I Part 2 : approximate (at each time) the above vector field on the
curve (or to be more precise, its normal part), by the gradient of a
harmonic function defined on Ω and satisfying the constraint.



Part 1

Proposition
Consider γ0 and γ1 two smooth (C∞) Jordan curves/surface diffeotopic
in Ω. If γ0 and γ1 satisfy

|Int(γ0)| = |Int(γ1)|,

then there exists v ∈ C∞0 ((0, 1)× Ω;R2) such that

div v = 0 in (0, 1)× Ω,

Φv (1, 0, γ0) = γ1.



Idea of proof for Part 1
I In 2-D, one can make moves like the ones described below.

−→←− γ0

↑
γ1

↓

I But it turns out that a very general result due to A. B. Krygin (and
relying on J. Moser’s celebrated result on deformation of volume
forms) proves the above proposition in any dimension.



Part 2

Proposition
Let γ0 a smooth (C∞) Jordan curve/surface ; let X ∈ C 0([0, 1];C∞(Ω))
a smooth solenoidal vector field, with X · n = 0 on [0, 1]× ∂Ω. Then for
all k ∈ N and ε > 0 there exists θ ∈ C∞([0, 1]× Ω;R) such that

∆xθ(t, ·) = 0 in Ω, for all t ∈ [0, 1],

∂θ

∂n
= 0 on [0, 1]× (∂Ω \ Σ),

and whose flow satisfies

∀t ∈ [0, 1], Φ∇θ(t, 0, γ0) ⊂ Ω,

and, up to reparameterization,

‖ΦX (t, 0, γ0)− Φ∇θ(t, 0, γ0)‖Ck ≤ ε, ∀t ∈ [0, 1].



Ideas of proof for Part 2

The main idea is to use results from harmonic approximation. There are
equivalent of Runge’s theorem of approximation of holomorphic functions
by rational ones, such as (see e.g. Gardner) :

Theorem
Let O be an open set in RN and let K be a compact set in RN such that
that O∗ \ K is connected, where O∗ is the Alexandroff compactification
of O. Then, for each function u which is harmonic on an open set
containing K and each ε > 0, there is a harmonic function v in Ω such
that ‖v − u‖∞ < ε on K.



How to deduce the results from the main proposition

I Let us now prove the main theorem when u0 ∈ C∞ is non zero.

I The idea (due to Coron) is to get into this situation is to use the
time scale invariance of the equation : for λ > 0,

u(t, x) is a solution of the equation defined in [0,T ]× Ω

⇐⇒ uλ(t, x) := λu(λt, x) is a solution of the equation
defined in [0,T/λ]× Ω.



From the main proposition, sequel
I We cut the time interval in the following way : for ν small :

Φ∇θ(1, γ̃0) = γ1

Evolution “without control”

t = 0 t = T − ν t = T

γ̃0 := Φ(T − ν, γ0)

time-scaled, where θ is such that
Control given by ∇θ,

I If we change back the time scale from [T − ν,T ] to [0, 1], the
evolution is driven by the Euler equation, with :

I As boundary condition (on the normal trace) the same as ∇θ
I As initial condition νu(T − ν, ·).

I ⇒ the initial datum is small !

I We show that the solution constructed on [0,T ] :

‖Φu(T , γ0)− γ1‖Ck . ν + ε.



Open problems

I Navier-Stokes equations. Can we obtain a similar result for
incompressible Navier-Stokes equations ?{

∂tu + (u · ∇)u −∆u +∇p = 0 in [0,T ]× Ω,
div u = 0 in [0,T ]× Ω.

With Dirichlet’s boundary conditions ? With Navier’s (cf. Coron,
Chapouly) ?

I Stabilization. Can we find a feedback control :

control(t) = f (γ(t), u(t)),

stabilizing a fluid zone at a fixed place ?


