Prescribing the motion of a set of particles in a perfect fluid

O. Glass (in collaboration with T. Horsin)

Ceremade Université Paris-Dauphine

Workshop on Control and Optimisation of PDEs, Graz, 2011.

I. Introduction

Euler's equation

- We consider a smooth bounded domain $\Omega \subset \mathbb{R}^n$, n = 2, 3.
- Euler equation for perfect incompressible fluids

$$\begin{cases} \partial_t u + (u \cdot \nabla) u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \operatorname{div} u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

- Here, u : [0, T] × Ω → ℝⁿ is the velocity field, p : [0, T] × Ω → ℝ is the pressure field.
- Usual slip condition on the boundary :

$$u \cdot n = 0$$
 on $[0, T] \times \partial \Omega$.

 \blacktriangleright \rightarrow Global (resp. local in 3D) well-posedness, cf. Lichtenstein, Wolibner, Yudovich, Kato, . . .

Boundary control

- We consider a non empty open part Σ of the boundary $\partial \Omega$.
- Non-homogeneous boundary conditions can be chosen as follows :
 - on $\partial \Omega \setminus \Sigma$, the fluid does not cross the boundary, $u \cdot n = 0$.
 - on Σ, we suppose that one can choose the boundary conditions. These can take the following form (Yudovich, Kazhikov) :

 $\begin{array}{ll} u(t,x) \cdot n(x) & \text{on} & [0,T] \times \Sigma, \\ \text{curl } u(t,x) & \text{on} & \Sigma_{T}^{-} := \{(t,x) \in [0,T] \times \Sigma \ / \ u(t,x) \cdot n(x) < 0\} & (2D) \\ \text{curl } u(t,x) \times n & \text{on} & \Sigma_{T}^{-} := \{(t,x) \in [0,T] \times \Sigma \ / \ u(t,x) \cdot n(x) < 0\} & (3D). \end{array}$

This boundary condition is a control which we can choose to influence the system, in order to prescribe its behavior.

The standard problem of controlabillity

Standard problem of exact/approximate controlabillity :

Given two possible states of the system, say u_0 and u_1 , and given a time T > 0, can one find a control such that the corresponding solution of the system starting from u_0 at time t = 0 reaches the target u_1 at time t = T? At least such that

$$\|u(T,\cdot)-u_1\|_X \le \varepsilon? \tag{AC}$$

► Alernative formulation : given u_0 , u_1 and T, can we find a solution of the equation satisfying the constraint on the boundary :

$$u \cdot n = 0$$
 on $[0, T] \times (\partial \Omega \setminus \Sigma)$,

(under-determined system) and driving u_0 to u_1 at time T? Or to $u(T, \cdot)$ satisfying (AC)?

 See Coron, G., for what concerns the boundary controllability of the Euler equation.

Another type of controlabillity

 Another type of controlability is natural for equations from fluid mechanics : is possible to drive a zone in the fluid from a given place to another by using the control? (Based on a suggestion by J.-P. Puel)

- One can think for instance to a polluted zone in the fluid, which we would like to transfer to a zone where it can be treated.
- It is natural, in order to control the fluid zone during the whole diplacement to ask that is remains inside the domain during the whole time interval.
- Cf. Horsin in the case of the Burgers equation.

First definition

- Due to the incompressibility of the fluid, the starting zone and the target zone must have the same area.
- We have also to require that there is no topological obstruction to move a zone to the other one.
- In the sequel, we will consider fluids zones given by the interior (supposed to be inside Ω) of smooth (C[∞]) Jordan curves/surface.

Definition

We will say that the system satisfies the exact Lagrangian controlability property, if given two smooth Jordan curves/surface γ_0 , γ_1 in Ω , homotopic in Ω and surrounding the same area/volume, a time T > 0and an initial datum u_0 , there exists a control such that the flow given by the velocity fluid drives γ_0 to γ_1 , by staying inside the domain.

An objection

The exact controlabillity Lagrangian does not hold in general, indeed :

Let us suppose ω₀ := curl u₀ = 0. In that case if the flow Φ(t, x) maintains γ₀ inside the domain, then for all t,

$$\omega(t,\cdot) = \operatorname{curl} \, u(t,\cdot) = 0,$$

in the neighborhood of $\Phi(t, \gamma_0)$.

- Since div u = 0, locally around γ₀, u is the gradient of a harmonic function; u is therefore analytic in a neighborhood Φ(t, γ₀).
- Hence if γ_0 is analytic, its analyticity is propagated over time.
- If γ₁ is smooth but non analytic, the exact Lagrangian controlabillity cannot hold.

Approximate Lagrangian controllability

Definition

We will say that the system satisfies the property of approximate Lagrangian controlability in C^k , if given two smooth Jordan curves/surface γ_0 , γ_1 in Ω , homotopic in Ω and surrounding the same volume, a time T > 0, an initial datum u_0 and $\varepsilon > 0$, we can find a control such that the flow of the velocity field maintains γ_0 inside Ω for all time $t \in [0, T]$ and satisfies, up to reparameterization :

$$\|\Phi^{u}(T,\gamma_{0})-\gamma_{1}\|_{C^{k}}\leq\varepsilon.$$

Here, $(t, x) \mapsto \Phi^u(t, x)$ is the flow of the vector field u.

The 2-D case

Theorem (G.-Horsin)

Consider two smooth smooth Jordan curves γ_0 , γ_1 in Ω , homotopic in Ω and surrounding the same area. Let $k \in \mathbb{N}$. We consider $u_0 \in C^{\infty}(\overline{\Omega}; \mathbb{R}^2)$ satisfying

$$div(u_0) = 0$$
 in Ω and $u_0 \cdot n = 0$ on $[0, T] \times (\partial \Omega \setminus \Sigma)$.

For any T > 0, $\varepsilon > 0$, there exists a solution u of the Euler equation in $C^{\infty}([0, T] \times \overline{\Omega}; \mathbb{R}^2)$ with

 $u \cdot n = 0$ on $[0, T] \times (\partial \Omega \setminus \Sigma)$ and $u_{|t=0} = u_0$ in Ω ,

and whose flow satisfies

$$\forall t \in [0, T], \Phi^u(t, \gamma_0) \subset \Omega,$$

and up to reparameterization

$$\|\gamma_1 - \Phi^u(T,\gamma_0)\|_{C^k} \leq \varepsilon.$$

A connected result : vortex patches

The starting point is the following.

Theorem (Yudovich, 1961)

For any $u_0 \in C^0(\overline{\Omega}; \mathbb{R}^2)$ such that $div(u_0) = 0$ in Ω , $u_0 \cdot n = 0$ on $\partial\Omega$ and curl $u_0 \in L^{\infty}$, there exists a unique (weak) global solution of the Euler equation starting from u_0 and satisfying $u \cdot n = 0$ on the boundary.

A particular case of initial data with vorticity in L^{∞} is the one of vortex patches.

Definition

A vortex patch is a solution of the Euler equation whose initial datum is the caracteristic function of the interior of a smooth Jordan curve (at least $C^{1,\alpha}$).

Cf. Chemin, Bertozzi-Constantin, Danchin, Depauw, Dutrifoy, Gamblin & Saint-Raymond, Hmidi, Serfati, Sueur,...

Control of the shape of a vortex patch

Theorem (G.-Horsin)

Consider two smooth Jordan curves γ_0 , γ_1 in Ω , homotopic in Ω and surrounding the same area. Suppose also that the control zone Σ is in the exterior of these curves. Let $u_0 \in Lip(\overline{\Omega}; \mathbb{R}^2)$ with $u_0 \cdot n \in C^{\infty}(\partial\Omega)$ a vortex patch initial condition corresponding to γ_0 , i.e.

$$curl(u_0) = \mathbf{1}_{Int(\gamma_0)}$$
 in Ω , $div(u_0) = 0$ in Ω , $u_0 \cdot n = 0$ on $\partial \Omega \setminus \Sigma$.

Then for any T > 0, any $k \in \mathbb{N}$, any $\varepsilon > 0$, the exists $u \in L^{\infty}([0, T]; \mathcal{L}ip(\overline{\Omega}))$ a solution of the Euler equation such that

$$\begin{aligned} & \textit{curl } u = 0 \textit{ on } [0, T] \times \Sigma, \\ & u \cdot n = 0 \textit{ on } [0, T] \times (\partial \Omega \setminus \Sigma) \textit{ and } u_{|t=0} = u_0 \textit{ in } \Omega, \end{aligned}$$

that $\Phi^u(T, 0, \gamma_0)$ does not leave the domain and and that, up to reparameterization, one has

$$\|\gamma_1-\Phi^u(T,0,\gamma_0)\|_{C^k}\leq \varepsilon.$$

Remarks

- ► As long as the patch stays regular, one merely has $u(t, \cdot) \in \mathcal{L}ip(\Omega)$.
- ► Without the regularity of the patch, the velocity field u(t, ·) is log-Lipschitz only :

$$|u(t,x)-u(t,y)| \lesssim |x-y|\log(e+|x-y|).$$

The 3-D case

Theorem (G.-Horsin)

Let $\alpha \in (0,1)$ and $k \in \mathbb{N} \setminus \{0\}$. Consider $u_0 \in C^{k,\alpha}(\Omega; \mathbb{R}^3)$ satisfying

div $u_0 = 0$ in Ω , and $u_0 \cdot n = 0$ on $\partial \Omega \setminus \Gamma$,

let γ_0 and γ_1 two contractible C^∞ embeddings of \mathbb{S}^2 in Ω such that

 γ_0 and γ_1 are diffeotopic in Ω and $|Int(\gamma_0)| = |Int(\gamma_1)|$.

Then for any $\varepsilon > 0$, there exist a time small enough $T_0 > 0$, such that for all $T \leq T_0$, there is a solution (u, p) in $L^{\infty}(0, T; C^{k,\alpha}(\Omega; \mathbb{R}^4))$ of the Euler equation on [0, T] with $u \cdot n = 0$ on $\partial \Omega \setminus \Sigma$ such that

$$\forall t \in [0, T], \ \Phi^{u}(t, 0, \gamma_0) \subset \Omega, \\ \|\Phi^{u}(T, 0, \gamma_0) - \gamma_1\|_{C^{k}(\mathbb{S}^{2})} < \varepsilon,$$

hold (up to reparameterization).

II. Ideas of proof (in the 2D case)

Potential flows

For any $\theta = \theta(t, x)$ which is harmonic with respect to x for all t,

 $v(t,x):=
abla_x heta(t,x)$ is a solution of the Euler equation with $p(t,x)=-(heta_t+|
abla heta|^2/2).$

- ► These are potential flows, which are classical in fluid mechanics.
- The construction of suitable potential flows is also central in the proof of the exact controlabillity of the Euler equation.
- This idea is due to J.-M. Coron, and is connected to the so-called return method.

Main proposition

Proposition

Consider two smooth Jordan curves/surface γ_0 , γ_1 in Ω , diffeotopic in Ω and surrounding the same volume. For any $k \in \mathbb{N}$, T > 0, $\varepsilon > 0$, there exists $\theta \in C_0^{\infty}([0,1]; C^{\infty}(\overline{\Omega}; \mathbb{R}))$ such that

whose flow satisfies

$$\forall t \in [0,1], \ \Phi^{
abla heta}(t,0,\gamma_0) \subset \Omega,$$

and, up to reparameterization,

$$\|\gamma_1 - \Phi^{\nabla \theta}(T, 0, \gamma_0)\|_{C^k} \leq \varepsilon.$$

Ideas of proof for the main proposition

- One seeks a potential flow driving γ_0 to γ_1 (approximately in C^k) and fulfilling the boundary condition on $\partial \Omega \setminus \Sigma$.
- ► This is proven in two parts :
 - Part 1 : find a solenoidal (divergence-free) vector field driving γ_0 to γ_1 .
 - Part 2 : approximate (at each time) the above vector field on the curve (or to be more precise, its normal part), by the gradient of a harmonic function defined on Ω and satisfying the constraint.

Part 1

Proposition

Consider γ_0 and γ_1 two smooth (C^{∞}) Jordan curves/surface diffeotopic in Ω . If γ_0 and γ_1 satisfy

 $|\mathit{Int}(\gamma_0)| = |\mathit{Int}(\gamma_1)|,$

then there exists $v\in {C_0^\infty}((0,1)\times \Omega;\mathbb{R}^2)$ such that

 $\textit{div } v = 0 \textit{ in } (0,1) \times \Omega,$

 $\Phi^{\mathsf{v}}(1,0,\gamma_0) = \gamma_1.$

Idea of proof for Part 1

▶ In 2-D, one can make moves like the ones described below.

But it turns out that a very general result due to A. B. Krygin (and relying on J. Moser's celebrated result on deformation of volume forms) proves the above proposition in any dimension. Part 2

Proposition

Let γ_0 a smooth (C^{∞}) Jordan curve/surface; let $X \in C^0([0,1]; C^{\infty}(\overline{\Omega}))$ a smooth solenoidal vector field, with $X \cdot n = 0$ on $[0,1] \times \partial \Omega$. Then for all $k \in \mathbb{N}$ and $\varepsilon > 0$ there exists $\theta \in C^{\infty}([0,1] \times \overline{\Omega}; \mathbb{R})$ such that

and whose flow satisfies

$$orall t \in [0,1], \ \Phi^{
abla heta}(t,0,\gamma_0) \subset \Omega,$$

and, up to reparameterization,

$$\|\Phi^X(t,0,\gamma_0)-\Phi^{
abla heta}(t,0,\gamma_0)\|_{oldsymbol{C}^{oldsymbol{k}}}\leqarepsilon,~~orall t\in[0,1].$$

Ideas of proof for Part 2

The main idea is to use results from harmonic approximation. There are equivalent of Runge's theorem of approximation of holomorphic functions by rational ones, such as (see e.g. Gardner) :

Theorem

Let \mathcal{O} be an open set in \mathbb{R}^N and let K be a compact set in \mathbb{R}^N such that that $\mathcal{O}^* \setminus K$ is connected, where \mathcal{O}^* is the Alexandroff compactification of \mathcal{O} . Then, for each function u which is harmonic on an open set containing K and each $\varepsilon > 0$, there is a harmonic function v in Ω such that $\|v - u\|_{\infty} < \varepsilon$ on K.

How to deduce the results from the main proposition

- ▶ Let us now prove the main theorem when $u_0 \in C^{\infty}$ is non zero.
- ► The idea (due to Coron) is to get into this situation is to use the time scale invariance of the equation : for λ > 0,

u(t,x) is a solution of the equation defined in $[0, T] \times \Omega$ $\iff u^{\lambda}(t,x) := \lambda u(\lambda t, x)$ is a solution of the equation defined in $[0, T/\lambda] \times \Omega$.

From the main proposition, sequel

• We cut the time interval in the following way : for ν small :

- If we change back the time scale from [T − ν, T] to [0, 1], the evolution is driven by the Euler equation, with :
 - As boundary condition (on the normal trace) the same as abla heta
 - As initial condition $\nu u(T \nu, \cdot)$.
- \blacktriangleright \Rightarrow the initial datum is small !
- ▶ We show that the solution constructed on [0, *T*] :

$$\|\Phi^{u}(T,\gamma_{0})-\gamma_{1}\|_{\mathcal{C}^{k}} \lesssim \nu+\varepsilon.$$

Open problems

Navier-Stokes equations. Can we obtain a similar result for incompressible Navier-Stokes equations?

$$\begin{cases} \partial_t u + (u \cdot \nabla)u - \Delta u + \nabla p = 0 \text{ in } [0, T] \times \Omega, \\ \text{div } u = 0 \text{ in } [0, T] \times \Omega. \end{cases}$$

With Dirichlet's boundary conditions? With Navier's (cf. Coron, Chapouly)?

Stabilization. Can we find a feedback control :

$$\operatorname{control}(t) = f(\gamma(t), u(t)),$$

stabilizing a fluid zone at a fixed place?