## A Patchy Dynamic Programming Method for the Numerical Solution of HJB Equations

M. Falcone

in collaboration with: S. Cacace, E. Cristiani, A. Picarelli Dipartimento di Matematica


## SAPTENTMA

Sponsored by AFOSR Grant n. FA9550-10-1-0029 and

## ITN SADCO

Initial Training Network
Sensitivity Analysis for Deterministic Controller Design

Workshop "Control and Optimization of PDEs"
Graz, October 12, 2011

## Outline

(1) Introduction
(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition
(4) Patchy vectorfields
(5) The Patchy Domain Decomposition Method


## Outline

## (1) Introduction

(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition

4) Patchy vectorfields
(5) The Patchy Domain Decomposition Method

## Motivations

The numerical solution of optimal control problems via the Dynamic Programming approach is mainly motivated by the search for feedback controls for generic nonlinear Lipschitz continuous vectorfields and costs.

The solution of the corresponding Bellman equation in high dimension is a computationally intensive task and this bottleneck has limited the applications of this theory to industrial cases.

We want to overcome this technical problem developing new efficient algorithms with limited (and controlled) memory allocations and reasonable CPU times.

## DP's advantages and disadvantages

## PROS

1. The characterization of the value function is valid for all classical problems in any dimension.
2. The approximation is based on a-priori error estimates in $L^{\infty}$, is valid in any dimension and does not require structured grids.
3. The computation of feedback controls is almost built in and there are nice results in low dimension.
$\square$
The "curse of dimensionality" makes the problem difficult to solve in high
dimension due to
4. computational cost
5. huge memory allocations.

## DP's advantages and disadvantages

## PROS

1. The characterization of the value function is valid for all classical problems in any dimension.
2. The approximation is based on a-priori error estimates in $L^{\infty}$, is valid in any dimension and does not require structured grids.
3. The computation of feedback controls is almost built in and there are nice results in low dimension.

## CONS

The "curse of dimensionality" makes the problem difficult to solve in high dimension due to

1. computational cost
2. huge memory allocations.

## Tecnical difficulties

The bottleneck is the approximation of the value function $v$, however this remains the main goal since $v$ allows to get back to feedback controls in a rather simple way.

For control problems

$$
a^{*} \equiv \operatorname{argmin}[f(x, a) \cdot \nabla v(x)+I(x, a)]
$$

For games

$$
\left(a_{e}^{*}, a_{p}^{*}\right) \equiv \operatorname{argminmax}\left[f\left(x, a_{e}, a_{p}\right) \cdot \nabla v(x)+I\left(x, a_{e}, a_{p}\right)\right]
$$

## Control of PDEs via POD and HJB equations

POD decomposition allows to reduce the number of variables to approximate a partial differential equation.

The theory of viscosity solutions allows to characterize the value function as the unique weak solution of the HJB equation.

## Control of PDEs via POD and HJB equations

POD decomposition allows to reduce the number of variables to approximate a partial differential equation.

The theory of viscosity solutions allows to characterize the value function as the unique weak solution of the HJB equation.

Our final goal is to approximate optimal control problems in infinite dimension coupling numerical schemes for HJBs with POD techniques

## Control of PDEs via POD and HJB equations

POD decomposition allows to reduce the number of variables to approximate a partial differential equation.

The theory of viscosity solutions allows to characterize the value function as the unique weak solution of the HJB equation.

Our final goal is to approximate optimal control problems in infinite dimension coupling numerical schemes for HJBs with POD techniques. Refs: Kunisch and Volkwein (2001, ...), Kunisch, Volkwein and Xie (2004)

## Outline

(1) Introduction
(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition
(4) Patchy vectorfields
(5) The Patchy Domain Decomposition Method


## Proper Orthogonal Decomposition and SVD

Given $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$, let $V=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{R}^{m}$

We look for an orthonormal basis $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ in $\mathbb{R}^{m}$ with $\ell \leq \operatorname{dim} V$ such that

## reaches a minimum

## Proper Orthogonal Decomposition and SVD

Given $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$, let $V=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{R}^{m}$

We look for an orthonormal basis $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ in $\mathbb{R}^{m}$ with $\ell \leq \operatorname{dim} V$ such that

$$
J\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{\ell}<y_{j}, \psi_{i}>\psi_{i}\right\|
$$

reaches a minimum.
Constrained Problem

## Proper Orthogonal Decomposition and SVD

Given $y_{1}, \ldots, y_{n} \in \mathbb{R}^{m}$, let $V=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\} \subset \mathbb{R}^{m}$
We look for an orthonormal basis $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ in $\mathbb{R}^{m}$ with $\ell \leq \operatorname{dim} V$ such that

$$
J\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{\ell}<y_{j}, \psi_{i}>\psi_{i}\right\|
$$

reaches a minimum.

## Constrained Problem

$$
\min J\left(\psi_{1}, \ldots, \psi_{\ell}\right) \quad \text { subject to }<\psi_{i}, \psi_{j}>=\delta_{i j}
$$

## Theorem (Kunisch, Volkwein)

Let $Y=\left[y_{1}, \ldots, y_{n}\right] \in \mathbb{R}^{m \times n}$ be a given matrix with rank $d \leq \min \{m, n\}$. Further, let $Y=\Psi \Sigma V^{T}$ be the SVD of $Y$, where
$\Psi=\left[\psi_{1}, \ldots, \psi_{m}\right] \in \mathbb{R}^{m \times m}, V=\left[v_{1}, \ldots, v_{n}\right] \in \mathbb{R}^{n \times n}$ are orthogonal matrices and the matrix $\Sigma \in \mathbb{R}^{m \times n}$ is diagonal.
Then, for any $\ell \in\{1, \ldots, d\}$ the solution to

$$
\min J\left(\psi_{1}, \ldots, \psi_{\ell}\right)=\sum_{j=1}^{n}\left\|y_{j}-\sum_{i=1}^{\ell}<y_{j}, \psi_{i}>\psi_{i}\right\|
$$

$$
\text { such that }<\psi_{i}, \psi_{j}>=\delta_{i j} \text { per } 1 \leq i, j \leq \ell
$$

is given by the singular vectors $\left\{\psi_{i}\right\}_{i=1}^{\ell}$, i.e, by the first $\ell$ columns of $\psi$.

## Definition

For $\ell \in\{1, \ldots, d\}$, the vectors $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ are called $P O D$ basis of rank $\ell$.

## Computation of POD basis

If $n<m$

$$
Y Y^{\top} v_{i}=\lambda_{i} v_{i}
$$

$$
\text { for } i=1, \ldots, \ell
$$

## Reference

S. Volkw in. Model Reduction using Proper Orthogonal

Decomposition, 2007 http://www.math.uni-
konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

## Definition

For $\ell \in\{1, \ldots, d\}$, the vectors $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ are called $P O D$ basis of rank $\ell$.

## Computation of POD basis

If $n<m$

$$
Y Y^{\top} v_{i}=\lambda_{i} v_{i} \quad \text { for } i=1, \ldots, \ell
$$

and setting $\psi_{i}=\frac{1}{\sqrt{\lambda}} Y v_{i}$.

## Reference

S. Volkwein. Model Reduction using Proper Orthogonal

Decomposition, 2007 http://www.math.uni-
konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

## Definition

For $\ell \in\{1, \ldots, d\}$, the vectors $\left\{\psi_{i}\right\}_{i=1}^{\ell}$ are called $P O D$ basis of rank $\ell$.

## Computation of POD basis

If $n<m$

$$
Y Y^{T} v_{i}=\lambda_{i} v_{i} \quad \text { for } i=1, \ldots, \ell
$$

and setting $\psi_{i}=\frac{1}{\sqrt{\lambda}_{i}} Y v_{i}$.

## Reference

S. Volkwein. Model Reduction using Proper Orthogonal

Decomposition, 2007 http://www.math.uni-
konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

## A typical application

Let us consider the following ODEs system:

$$
\left\{\begin{array}{l}
\dot{y}(t)=A y(t)+f(t, y(t)), t \in(0, T]  \tag{1}\\
y(0)=y_{0}
\end{array}\right.
$$

where $y_{0} \in \mathbb{R}^{m}, A \in \mathbb{R}^{m \times m}$ and $f:[0, T] \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is continuous and locally Lipschitz.
Let us suppose to know that the solution at each time $t_{j}$, with $0 \leq t_{1} \leq \ldots \leq t_{n} \leq T$, verifies

Snapshots

$$
y_{j}=y\left(t_{j}\right)=e^{t_{j} A} y_{0}+\int_{0}^{t_{j}} e^{\left(t_{j}-s\right) A} f(s, y(s)) d s \quad j \in\{1, \ldots, n\}
$$

Let $\left\{\psi_{j}\right\}_{j=1}^{\ell}$ be a POD basis, we make the following ansatz:

$$
y^{\ell}(t)=\sum_{j=1}^{\ell} y_{j}^{\ell}(t) \psi_{j}=\sum_{j=1}^{\ell}<y^{\ell}(t), \psi_{j}>\psi_{j}, \quad \forall t \in[0, T]
$$

## Reduced-Order Modelling



Let $\left\{\psi_{j}\right\}_{j=1}^{\ell}$ be a POD basis, we make the following ansatz:

$$
y^{\ell}(t)=\sum_{j=1}^{\ell} y_{j}^{\ell}(t) \psi_{j}=\sum_{j=1}^{\ell}<y^{\ell}(t), \psi_{j}>\psi_{j}, \quad \forall t \in[0, T]
$$

## Reduced-Order Modelling

$$
\left\{\begin{array}{l}
\sum_{j=1}^{\ell} y_{j}^{\ell}(t) \psi_{j}=\sum_{j=1}^{\ell} y_{j}^{\ell}(t) A \psi_{j}+f\left(t, y^{\ell}(t)\right), \quad t \in(0, T] \\
\sum_{j=1}^{\ell} y_{j}^{\ell}(0) \psi_{j}=y_{0}
\end{array}\right.
$$

From the reduced model, it follows

$$
\dot{y}_{i}^{\ell}(t)=\sum_{j=1}^{\ell} y_{j}^{\ell}(t)<A \psi_{j}, \psi_{i}>+<f\left(t, y^{\ell}(t)\right), \psi_{i}>
$$

and with compact notations:

$$
\left\{\begin{array}{l}
\dot{y}^{\ell}(t)=A^{\ell} y^{\ell}(t)+F\left(t, y^{\ell}(t)\right) \\
y^{\ell}(0)=y_{0}^{\ell}
\end{array}\right.
$$

where:

$$
\begin{aligned}
& A^{\ell} \in \mathbb{R}^{\ell \times \ell} \quad \text { with }\left(A^{\ell}\right)_{i j}=<A \psi_{i}, \psi_{j}>, \\
& y^{\ell}=\left(\begin{array}{c}
y_{1}^{\ell} \\
\vdots \\
y_{\ell}^{\ell}
\end{array}\right):[0, T] \rightarrow \mathbb{R}^{\ell}
\end{aligned}
$$

$$
\begin{gathered}
F=\left(F_{1}, \ldots, F_{\ell}\right)^{T}:[0, T] \times \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{\ell} \\
F_{i}(t, y)=\left\langle f\left(t, \sum_{j=1}^{\ell} y_{j} \psi_{j}\right), \psi_{i}\right\rangle \text { for } t \in[0, T] y=\left(y_{1}, \ldots y_{\ell}\right) \in \mathbb{R}^{\ell} . \\
y_{0}^{\ell}=\left(\begin{array}{c}
<y_{0}, \psi_{1}> \\
\vdots \\
<y_{0}, \psi_{\ell}>
\end{array}\right) \in \mathbb{R}^{\ell} .
\end{gathered}
$$

## Remark

We obtain system of ODEs approximating evolutive PDEs by finite differences or finite elements schemes.

## TEST 1

## A Parabolic Problem

$$
\begin{cases}\frac{d}{d t} y(x, t)=\frac{1}{60} \frac{d^{2}}{d x^{2}} y(x, t), & x \in[-1,1], t \in(0,5] \\ y(-1, t)=y(1, t)=0, & y(x, 0)=1-|x|\end{cases}
$$

## Snapshots Parameters <br> $\Delta x=0.02, \Delta t=0.012, N r=100$

## TEST 1

## HEAT EQUATION (snapshots)

HEAT EQUATION SOLVED WITH 2 POD BASES


HEAT EQUATION SOLVED WITH 1 POD BASE


HEAT EQUATION SOLVED WITH 3 POD BASES


## TEST 2

## An Hyperbolic Problem

$$
\left\{\begin{array}{l}
\frac{d}{d t} y(x, t)+\frac{d}{d x} y(x, t)=0, x \in \mathbb{R}, t \in(0, T] \\
y(x, 0)=\max \{1-|x|, 0\}
\end{array}\right.
$$

## Snapshots Parameters

$\Delta x=0.01, \Delta t=0.01, N r=1400$

## TEST 2

TRANSPORT EQUATION - ANALYTIC SOLUTION


TRANSPORT EQUATION SOLVED WITH 20 POD BASES


TRANSPORT EQUATION SOLVED WITH 11 POD BASES


TRANSPORT EQUATION SOLVED WITH 91 POD BASES


| $P O D$ | $\mathcal{E}(\ell)$ | $L^{1}$ | $L^{2}$ |
| :---: | :---: | :---: | :---: |
| 1 | 0.9661 | 0.0647 | 0.0554 |
| 2 | 0.9941 | 0.0164 | 0.0156 |
| 3 | 0.9983 | 0.0062 | 0.0062 |
| 5 | 0.9996 | 0.0015 | 0.0016 |
| 20 | 1 | $1.9493 \mathrm{e}-004$ | 0.0014 |

Table: $L^{1}$ and $L^{2}$ errors for TEST 1 (parabolic)

| $P O D$ | $\mathcal{E}(\ell)$ | $L^{1}$ | $L^{2}$ |
| :---: | :---: | :---: | :---: |
| 11 | 0.9082 | 0.1150 | 0.0636 |
| 20 | 0.9511 | 0.0442 | 0.0258 |
| 91 | 0.9901 | 0.0028 | 0.0022 |

Table: $L^{1}$ and $L^{2}$ errors for TEST 2 (hyperbolic)

## Patchy decomposition

Main Idea
Since the patches are invariant with respect to the patchy vector fields, we can split the computation of the solution in $D$ sub-problems, each corresponding to a patchy sub-domain and use a parallel algorithm to compute the value function in the whole domain.

This patchy domain decomposition method has shown to be more efficient with respect to standard (static) domain decomposition techniques as we will show by some numerical tests.

Previous works based on Al'brekht series expansion by Krener and Navasca (2007,..), Hunt (PhD thesis, 2011).

## Outline

(1) Introduction
(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition

4 Patchy vectorfields
(5) The Patchy Domain Decomposition Method

## The model problem

Let us consider, for example, the infinite horizon optimal control problem which leads to the Hamilton-Jacobi-Bellman equation

$$
\lambda v(x)+\max _{a \in A}\{-f(x, a) \cdot \nabla v(x)-I(x, a)\}=0, \quad x \in \Omega
$$

where $A$ is a compact subset of $\mathbb{R}^{m}$ and $f, l$ are given functions, $\lambda>0$.

## The infinite horizon problem

Dynamics

$$
\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), \alpha(t)) \quad t>0 \\
y(0)=x
\end{array}\right.
$$

Admissible controls

$$
\alpha(\cdot) \in \mathcal{A} \equiv\{\alpha:[0,+\infty[\rightarrow A, \text { measurable }\}
$$

Cost

$$
J(x, \alpha(\cdot))=\int_{0}^{\infty} I(y(t), \alpha(t)) \mathrm{e}^{-\lambda t} d t
$$

Value function

$$
v(x)=\inf _{\alpha(\cdot) \in \mathcal{A}} J(x, \alpha(\cdot))
$$

## The infinite horizon problem

For numerical purposes we have to deal the problem in a bounded domain $\Omega$

$$
\lambda v(x)+\max _{u \in U}\{-f(x, u) \cdot \nabla v(x)-I(x, u)\}=0, \quad x \in \Omega
$$

Domain splitting
Let us consider a splitting of $\Omega$ into $D$ subdomains $\Omega_{d}, d=1, \ldots, D$

$$
\Omega=\cup_{d} \Omega_{d}
$$

and a grid $G$ with a number of nodes $N_{\Omega}$

$$
N_{\Omega} \approx N_{1}+\ldots+N_{D}
$$

## Sketch of Classical DD

## MAIN CICLE REPEAT

## STEP 1

Compute one iteration of the numerical operator $S$ restricted to every domain $\Omega_{d}, d=1, \ldots, D$

STEP 2
Couple the information on the overlapping zones (Transmission Conditions)
UNTIL a stopping rule is satisfied

## Sketch of Classical DD

## MAIN CICLE REPEAT <br> STEP 1

Compute one iteration of the numerical operator $S$ restricted to every domain $\Omega_{d}, d=1, \ldots, D$

## STEP 2

Couple the information on the overlapping zones (Transmission Conditions)
UNTIL a stopping rule is satisfied

## Transmission Conditions



The correct transmission condition is the min operator

$$
\min \left\{S_{1}, S_{2}, \ldots, S_{D}\right\}
$$

## Outline

(1) Introduction
(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition

4 Patchy vectorfields
(5) The Patchy Domain Decomposition Method

## Main goal

We want to construct a domain decomposition which is based on the patches defined by Ancona and Bressan.
PROS patches are invariant with respect to the optimal dynamics CONS we need a dynamic construction of the patches.

Let be $\Omega \subset \mathbb{R}^{n}$ an open domain with smooth boundary $\partial \Omega$ and $g$ a smooth vector field defined on a neighborhood of $\bar{\Omega}$.

## Definition

We say that the pair $(\Omega, g)$ is a patch if $\Omega$ is a positive-invariant region for $g$, i.e. at every boundary point $x \in \partial \Omega$ the inner product of $g$ with the outer normal $n$ satisfies

$$
\langle g(x), n(x)\rangle<0
$$

## Patchy vectorfields

A patchy vector field on a domain $\Omega \subset \mathbb{R}^{n}$ is a superposition of patches, as reported in the following

## Definition

We say that $g: \Omega \rightarrow \mathbb{R}^{n}$ is a patchy vector field if there exists a family of patches $\left\{\left(\Omega_{\alpha}, g_{\alpha}\right): \alpha \in \mathcal{I}\right\}$ such that

- $\mathcal{I}$ is a totally ordered index set,
- the open sets $\Omega_{\alpha}$ form a locally finite covering of $\Omega$,
- the vector field $g$ can be written in the form

$$
g(x)=g_{\alpha}(x) \quad \text { if } \quad x \in \Omega_{\alpha} \backslash \bigcup_{\beta>\alpha} \Omega_{\beta}
$$

## Outline

(1) Introduction
(2) A sketch of the POD Method

- POD and SVD
- Reduced-order modelling (ROM)
- Numerical Tests (by A. Alla)
(3) Classical Domain decomposition
(4) Patchy vectorfields
(5) The Patchy Domain Decomposition Method


## Goal

To build a domain decomposition such that

- the solution in each patch does not depend on the solution in other patches;
- there is no transmission condition through the boundaries of the patches.
In this way the computation can be fully parallelized. The final solution is obtained by merging all the patches at the end.

To this end we need an a-priori knowledge of characteristics which is not available $\Rightarrow$ PRE-COMPUTATIONS

## The Patchy Algorithm

Step1. (Computation on the coarse grid). We solve the equation on a coarse grid $G_{\text {coarse }}$ by means of the classical domain decomposition technique. This leads to the function $u_{\text {coarse }}$.
Step2. (Interpolation on a fine grid). We compute a first approximation $u^{(0)}$ of the solution on a fine grid $G_{\text {fine }}$ by means of a simple bilinear interpolation of the values $u_{\text {coarse }}$.
We also compute the optimal control

$$
a_{\text {coarse }}^{*}\left(x_{i}\right)=\arg \max _{a}\left\{-f\left(x_{i}, a\right) \cdot \nabla u^{(0)}\left(x_{i}\right)\right\}, \quad x_{i} \in G_{\text {fine }}
$$

Note that $a_{\text {coarse }}^{*}$ is defined on $G_{\text {fine }}$.

## The Patchy Algorithm

Step3. (Partition of target). On $G_{\text {fine }}$, we divide the target in $N_{p}$ parts denoted by $\Omega_{0}^{j}, j=1, \ldots, N_{p}$.
Step4. (Main cycle) For any $j=1, \ldots, N_{p}$,
Step4.1. (Creation of $j$-th patch). We use the (coarse) optimal control $a_{\text {coarse }}^{*}$ to find the nodes of the grid $G_{\text {fine }}$ which have $\Omega_{0}^{j}$ in their numerical domain of dependence. This procedure defines the $j$-th patch. (NEXT SLIDE)
Step4.2. (Computation in patches). We solve iteratively the equation in the $j$-th patch until convergence is reached, imposing state constraints boundary conditions.
Step5. (Merge). All the solutions computed in the $N_{p}$ patches are assembled in the grid $G_{f i n e}$.

## The Patchy Algorithm: creation of a patch

For $j=1, \ldots, N_{p}$
(1) (Initialization) Set

$$
\phi_{i}=\left\{\begin{array}{ll}
1, & x_{i} \in \Omega_{0}^{j} \\
0, & x_{i} \in G_{\text {fine }} \backslash \Omega_{0}^{j}
\end{array}, \quad i=1, \ldots, N .\right.
$$

(2) (Iteration) Solve iteratively the following ad hoc numerical scheme, until convergence is reached.

$$
\phi_{i}=\phi\left(x_{i}+h_{i} f\left(x_{i}, a_{\text {coarse }}^{*}\left(x_{i}\right)\right)\right), \quad i=1, \ldots, N .
$$

Note that the solution $\phi$ takes values in $[0,1]$.
(3) (Projection) Project the color $j$ into a binary value

$$
\phi_{i}=\left\{\begin{array}{ll}
1, & \phi\left(x_{i}\right) \geq \frac{1}{2} \\
0, & \phi\left(x_{i}\right)<\frac{1}{2}
\end{array}, \quad i=1, \ldots, N .\right.
$$

The sub-domain $P_{j}=\left\{x_{i}: \phi\left(x_{i}\right)=1\right\}$ is the $j$-th patch.

## The Patchy Algorithm: creation of a patch



Initialization


Iteration


Projection

## The Patchy Algorithm: invariant domain decomposition



## Numerical Tests

## Numerical Tests in dimension 2

## Test 1: Eikonal

$$
f\left(x_{1}, x_{2}, a\right)=a, \quad A=B(0,1), \quad \Omega_{0}=B(0,0.5) .
$$



Patchy domain decomposition (8 patches)

## Test 1: Eikonal - Patchy Error

We compute the difference between the patchy solution and the DD solution. Since the scheme is the same, this error is due to the fact that patches are not perfectly independent.

Error table in norm $\|\cdot\|_{1}\left(\|\cdot\|_{\infty}\right)$ depending on the space steps $k_{\text {coarse }}$ and $k_{\text {fine }}$.

|  | $k_{f}=0.08$ | $k_{f}=0.04$ | $k_{f}=0.02$ | $k_{f}=0.01$ | $k_{f}=0.005$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $k_{C}=0.08$ | $0.436(0.960)$ | $0.275(1.856)$ | $0.102(0.048)$ | $0.065(0.034)$ | $0.048(0.026)$ |
| $k_{C}=0.04$ | - | $0.088(0.046)$ | $0.029(0.023)$ | $0.014(0.042)$ | $0.005(0.008)$ |
| $k_{C}=0.02$ | - | - | $0.038(0.029)$ | $0.012(0.013)$ | $0.004(0.008)$ |
| $k_{C}=0.01$ | - | - | - | $0.011(0.016)$ | $0.006(0.010)$ |
| $k_{C}=0.005$ | - | - | - | $0.004(0.008)$ |  |

$A=B(0,1)$ is discretized with 32 points and the number of patches is 16.

## Test 1: Eikonal

## Patchy solution



The subsolutions merge quite well!

## Test 1: Eikonal

## Patchy error



The error is localized on the boundaries of the patches!

## Test 1: Eikonal

## Patchy method vs classical Domain Decomposition

CPU times (in seconds) depending on the number of processors and the number of patches

Controls: 16. Grid: $100^{2} \rightarrow 800^{2}$

|  | 2 domains | 4 domains | 8 domains | 16 domains | Best DD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 proc | 1547 | 1076 | 1058 | 933 | 1571 |
| 2 procs | 845 | 595 | 574 | 504 | 820 |
| 4 procs | 459 | 325 | 317 | 271 | 415 |

Controls: 32. Grid: $100^{2} \rightarrow 800^{2}$

|  | 2 domains | 4 domains | 8 domains | 16 domains | Best DD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 proc | 2702 | 1897 | 1843 | 1623 | 2785 |
| 2 procs | 1462 | 998 | 968 | 872 | 1430 |
| 4 procs | 771 | 532 | 514 | 435 | 716 |

## Test 2: Fan

$$
f\left(x_{1}, x_{2}, a\right)=\left|x_{1}+x_{2}+0.1\right| a, \quad A=B(0,1), \quad \Omega_{0}=\left\{x_{1}=0\right\} .
$$



Patchy domain decomposition (8 patches)

## Test 2: Fan

## Patchy error

Error table in norm $\|\cdot\|_{1}\left(\|\cdot\|_{\infty}\right)$ depending on the space steps $k_{\text {coarse }}$ and $k_{\text {fine }}$.

|  | $k_{f}=0.08$ | $k_{f}=0.04$ | $k_{f}=0.02$ | $k_{f}=0.01$ | $k_{f}=0.005$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $k_{c}=0.08$ | $1.393(3.023)$ | $0.123(1.507)$ | $0.037(0.315)$ | $0.017(0.263)$ | $0.011(0.263)$ |
| $k_{c}=0.04$ | - | $0.114(1.502)$ | $0.032(0.149)$ | $0.011(0.095)$ | $0.006(0.095)$ |
| $k_{c}=0.02$ | - | - | $0.032(0.111)$ | $0.011(0.061)$ | $0.004(0.037)$ |
| $k_{c}=0.01$ | - | - | - | $0.011(0.079)$ | $0.004(0.037)$ |
| $k_{c}=0.005$ | - | - | - | $0.004(0.037)$ |  |

$A=B(0,1)$ is discretized with 32 points and the number of patches is 16.

## Test 2: Fan

## Patchy Error



The error is localized on the boundaries of the patches!

## Test 2: Fan

## Patchy method vs classical Domain Decomposition

CPU times (in seconds) depending on the number of processors and the number of patches

Controls: 32. Grid: $100^{2} \rightarrow 800^{2}$

|  | 2 domains | 4 domains | 8 domains | 16 domains | Best DD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 proc | 3712 | 3322 | 3049 | 3172 | 4163 |
| 2 procs | 2020 | 1746 | 1596 | 1559 | 2124 |
| 4 procs | 1032 | 900 | 841 | 852 | 1069 |

## Test 3: Zermelo

$$
f\left(x_{1}, x_{2}, a\right)=2.1 a+(2,0), \quad A=B(0,1), \quad \Omega_{0}=B(0,0.5) .
$$



Patchy domain decomposition (8 patches)

## Test 3: Zermelo

## Patchy Error

Error table in norm $\|\cdot\|_{1}\left(\|\cdot\|_{\infty}\right)$ depending on the space steps $k_{\text {coarse }}$ and $k_{\text {fine }}$.

|  | $k_{f}=0.08$ | $k_{f}=0.04$ | $k_{f}=0.02$ | $k_{f}=0.01$ | $k_{f}=0.005$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $k_{C}=0.08$ | $0.171(0.293)$ | $0.159(0.059)$ | $0.097(0.057)$ | $0.026(0.027)$ | $0.006(0.016)$ |
| $k_{C}=0.04$ | - | $0.101(0.063)$ | $0.033(0.041)$ | $0.011(0.023)$ | $0.004(0.016)$ |
| $k_{C}=0.02$ | - | - | $0.039(0.039)$ | $0.012(0.023)$ | $0.004(0.016)$ |
| $k_{C}=0.01$ | - | - | - | $0.011(0.020)$ | $0.005(0.015)$ |
| $k_{C}=0.005$ | - | - | - | $0.004(0.016)$ |  |

$A=B(0,1)$ is discretized with 32 points and the number of patches is 16.

## Test 3: Zermelo

## Patchy Error



The error is localized on the boundaries of the patches!

## Test 3: Zermelo

## Patchy method vs classical Domain Decomposition

Cpu times (in seconds) depending on the number of processors and the number of patches

Controls: 32. Grid: $100^{2} \rightarrow 800^{2}$

|  | 2 domains | 4 domains | 8 domains | 16 domains | Best DD |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 proc | 3113 | 2675 | 2126 | 2018 | 3209 |
| 2 procs | 1651 | 1404 | 1111 | 1054 | 1640 |
| 4 procs | 871 | 721 | 584 | 545 | 825 |

## Numerical Tests

## Numerical Tests in dimension 3

Here several add-on's are enabled!<br>(ordering of the nodes (FMM-like), reduced controls, ...)

## Test 1: Eikonal

$$
f\left(x_{1}, x_{2}, x_{3}, a\right)=a, \quad A=B(0,1), \quad \Omega_{0}=B(0,0.5) .
$$

| dynamics | grid size | CPU time | Error $L^{1}$ | Error $L^{\infty}$ |
| :---: | :---: | :---: | :---: | :---: |
| Eikonal 3D | $50^{3} \rightarrow 100^{3}$ | 183 | 0.033 | 0.035 |
| Eikonal 3D | $50^{3} \rightarrow 200^{3}$ | 1217 | 0.029 | 0.042 |

$A=B(0,1)$ is discretized with 189 points (then reduced when working on the fine grid) and the number of patches is 8 . Processors are 4.

## Test 1: Eikonal

## One level set of the patchy solution



The error is localized on the boundaries of the patches!

## Test 2: Fan

$f\left(x_{1}, x_{2}, x_{3}, a\right)=\left|x_{1}+x_{2}+x_{3}+0.1\right| a, \quad A=B(0,1), \quad \Omega_{0}=\left\{x_{1}=0\right\}$.

| dynamics | grid size | CPU time | Error $L^{1}$ | Error $L^{\infty}$ |
| :---: | :---: | :---: | :---: | :---: |
| Fan 3D | $50^{3} \rightarrow 100^{3}$ | 165 | 0.064 | 0.187 |
| Fan 3D | $50^{3} \rightarrow 200^{3}$ | 1269 | 0.056 | 0.305 |

$A=B(0,1)$ is discretized with 189 points (then reduced when working on the fine grid) and the number of patches is 8 . Processors are 4.

## Test 2: Fan

Patchy domain decomposition (8 patches) and level sets of the patchy solution


## Test 2: Fan

Some optimal trajectories to the target


## Conclusions and future directions

We developed an approximation method for the solution of Hamilton-Jacobi equations which combines a patchy decomposition of the domain and a dynamic programming scheme.
The method can handle:

- more general control problems (minimum time, finite horizon, ...)
- state constraints
- pursuit evasion games

The numerical tests show a very small and localized error (on the patches boundaries).

## Future directions

We want to analyze the method (convergence, error estimates) and combine this technique with efficient fast marching techniques. Efficient coupling of this method with POD techniques for the control of PDEs (ongoing with A. Alla).

## References

- M. Falcone, R. Ferretti, Semi-Lagrangian approximation schemes for linear and Hamilton-Jacobi equations, SIAM, book in preparation
- S. Cacace, E. Cristiani, M. Falcone, A. Picarelli, A patchy domain decomposition method for a class of Hamilton-Jacobi-Bellman equations, preprint 2011, submitted to SIAM J. Sci. Comp. available at http://arxiv.org/pdf/1109.3577v1
- M. Falcone, P. Lanucara, and A. Seghini, A splitting algorithm for Hamilton-Jacobi-Bellman equations, Applied Numerical Mathematics, 15 (1994), pp. 207-218.

