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Motivations

The numerical solution of optimal control problems via the Dynamic
Programming approach is mainly motivated by the search for feedback
controls for generic nonlinear Lipschitz continuous vectorfields and costs.

The solution of the corresponding Bellman equation in high dimension is a
computationally intensive task and this bottleneck has limited the
applications of this theory to industrial cases.

We want to overcome this technical problem developing new efficient
algorithms with limited (and controlled) memory allocations and
reasonable CPU times.
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DP’s advantages and disadvantages

PROS

1. The characterization of the value function is valid for all classical
problems in any dimension.
2. The approximation is based on a-priori error estimates in L∞, is valid in
any dimension and does not require structured grids.
3. The computation of feedback controls is almost built in and there are
nice results in low dimension.

CONS

The ”curse of dimensionality” makes the problem difficult to solve in high
dimension due to
1. computational cost
2. huge memory allocations.
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Tecnical difficulties

The bottleneck is the approximation of the value function v , however this
remains the main goal since v allows to get back to feedback controls in a
rather simple way.

For control problems

a∗ ≡ argmin[f (x , a) · ∇v(x) + l(x , a)]

For games

(a∗e , a
∗
p) ≡ argminmax[f (x , ae , ap) · ∇v(x) + l(x , ae , ap)]
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Control of PDEs via POD and HJB equations

POD decomposition allows to reduce the number of variables to
approximate a partial differential equation.

The theory of viscosity solutions allows to characterize the value function
as the unique weak solution of the HJB equation.

Our final goal is to approximate optimal control problems in infinite
dimension coupling numerical schemes for HJBs with POD techniques.

Refs: Kunisch and Volkwein (2001, ...), Kunisch, Volkwein and Xie (2004)
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Proper Orthogonal Decomposition and SVD

Given y1, . . . , yn ∈ Rm, let V =span{y1, . . . , yn} ⊂ Rm

We look for an orthonormal basis {ψi}`i=1 in Rm with ` ≤ dim V such that

J(ψ1, . . . , ψ`) =
n∑

j=1

∥∥∥∥∥yj −
∑̀
i=1

< yj , ψi > ψi

∥∥∥∥∥
reaches a minimum.

Constrained Problem

min J(ψ1, . . . , ψ`) subject to < ψi , ψj >= δij
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Theorem (Kunisch, Volkwein)

Let Y = [y1, . . . , yn] ∈ Rm×n be a given matrix with rank d ≤ min{m, n}.
Further, let Y = ΨΣV T be the SVD of Y , where
Ψ = [ψ1, . . . , ψm] ∈ Rm×m, V = [v1, . . . , vn] ∈ Rn×n are orthogonal
matrices and the matrix Σ ∈ Rm×n is diagonal.
Then, for any ` ∈ {1, . . . , d} the solution to

min J(ψ1, . . . , ψ`) =
n∑

j=1

∥∥∥∥∥yj −
∑̀
i=1

< yj , ψi > ψi

∥∥∥∥∥
such that < ψi , ψj >= δij per 1 ≤ i , j ≤ `

is given by the singular vectors {ψi}`i=1, i.e, by the first ` columns of Ψ.
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Definition

For ` ∈ {1, . . . , d}, the vectors {ψi}`i=1 are called POD basis of rank `.

Computation of POD basis

If n < m
YY T vi = λivi for i = 1, . . . , `

and setting ψi =
1√
λi

Yvi .

Reference

S. Volkwein. Model Reduction using Proper Orthogonal
Decomposition, 2007 http://www.math.uni-

konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 11 / 59



Definition

For ` ∈ {1, . . . , d}, the vectors {ψi}`i=1 are called POD basis of rank `.

Computation of POD basis

If n < m
YY T vi = λivi for i = 1, . . . , `

and setting ψi =
1√
λi

Yvi .

Reference

S. Volkwein. Model Reduction using Proper Orthogonal
Decomposition, 2007 http://www.math.uni-

konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 11 / 59



Definition

For ` ∈ {1, . . . , d}, the vectors {ψi}`i=1 are called POD basis of rank `.

Computation of POD basis

If n < m
YY T vi = λivi for i = 1, . . . , `

and setting ψi =
1√
λi

Yvi .

Reference

S. Volkwein. Model Reduction using Proper Orthogonal
Decomposition, 2007 http://www.math.uni-

konstanz.de/numerik/personen/volkwein/teaching/POD-Vorlesung.pdf

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 11 / 59



A typical application

Let us consider the following ODEs system:
ẏ(t) = Ay(t) + f (t, y(t)), t ∈ (0,T ]

y(0) = y0

(1)

where y0 ∈ Rm,A ∈ Rm×m and f : [0,T ]× Rm → Rm is continuous and
locally Lipschitz.
Let us suppose to know that the solution at each time tj , with
0 ≤ t1 ≤ . . . ≤ tn ≤ T , verifies

Snapshots

yj = y(tj) = etjAy0 +

∫ tj

0
e(tj−s)Af (s, y(s)) ds j ∈ {1, . . . , n},
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Let {ψj}`j=1 be a POD basis, we make the following ansatz:

y `(t) =
∑̀
j=1

y `j (t)ψj =
∑̀
j=1

< y `(t), ψj > ψj , ∀t ∈ [0,T ]

Reduced-Order Modelling

∑̀
j=1

ẏ `j (t)ψj =
∑̀
j=1

y `j (t)Aψj + f (t, y `(t)), t ∈ (0,T ]

∑̀
j=1

y `j (0)ψj = y0.
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From the reduced model, it follows

ẏ `i (t) =
∑̀
j=1

y `j (t) < Aψj , ψi > + < f (t, y `(t)), ψi >

and with compact notations:
ẏ `(t) = A`y `(t) + F (t, y `(t))

y `(0) = y `0

where:
A` ∈ R`×` with (A`)ij =< Aψi , ψj >,

y ` =

 y `1
...
y ``

 : [0,T ]→ R`
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F = (F1, . . . ,F`)
T : [0,T ]× R` → R`

Fi (t, y) =

〈
f

t,
∑̀
j=1

yjψj

 , ψi

〉
for t ∈ [0,T ] y = (y1, . . . y`) ∈ R`.

y `0 =

 < y0, ψ1 >
...

< y0, ψ` >

 ∈ R`.

Remark

We obtain system of ODEs approximating evolutive PDEs by finite
differences or finite elements schemes.
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TEST 1

A Parabolic Problem
d

dt
y(x , t) =

1

60

d2

dx2
y(x , t), x ∈ [−1, 1], t ∈ (0, 5]

y(−1, t) = y(1, t) = 0, y(x , 0) = 1− |x |

Snapshots Parameters

∆x = 0.02,∆t = 0.012,Nr = 100
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TEST 1

HEAT EQUATION (snapshots)

T axis X axis

HEAT EQUATION SOLVED WITH 1 POD BASE

HEAT EQUATION SOLVED WITH 2 POD BASES

HEAT EQUATION SOLVED WITH 3 POD BASES
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TEST 2

An Hyperbolic Problem
d

dt
y(x , t) +

d

dx
y(x , t) = 0, x ∈ R, t ∈ (0,T ],

y(x , 0) = max{1− |x |, 0},

Snapshots Parameters

∆x = 0.01,∆t = 0.01,Nr = 1400
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TEST 2

TRANSPORT EQUATION - ANALYTIC SOLUTION TRANSPORT EQUATION SOLVED WITH 11 POD BASES

T axis X axis

TRANSPORT EQUATION SOLVED WITH 20 POD BASES

T axis
X axis

TRANSPORT EQUATION SOLVED WITH 91 POD BASES

T axis X axis
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POD E(`) L1 L2

1 0.9661 0.0647 0.0554

2 0.9941 0.0164 0.0156

3 0.9983 0.0062 0.0062

5 0.9996 0.0015 0.0016

20 1 1.9493e-004 0.0014

Table: L1 and L2 errors for TEST 1 (parabolic)

POD E(`) L1 L2

11 0.9082 0.1150 0.0636

20 0.9511 0.0442 0.0258

91 0.9901 0.0028 0.0022

Table: L1 and L2 errors for TEST 2 (hyperbolic)
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Patchy decomposition

Main Idea
Since the patches are invariant with respect to the patchy vector fields, we
can split the computation of the solution in D sub-problems, each
corresponding to a patchy sub-domain and use a parallel algorithm to
compute the value function in the whole domain.

This patchy domain decomposition method has shown to be more efficient
with respect to standard (static) domain decomposition techniques as we
will show by some numerical tests.

Previous works based on Al’brekht series expansion by Krener and Navasca
(2007,..), Hunt (PhD thesis, 2011).
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The model problem

Let us consider, for example, the infinite horizon optimal control problem
which leads to the Hamilton-Jacobi-Bellman equation

λv(x) + max
a∈A
{−f (x , a) · ∇v(x)− l(x , a)} = 0 , x ∈ Ω

where A is a compact subset of Rm and f , l are given functions, λ > 0.

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 23 / 59



The infinite horizon problem

Dynamics {
ẏ(t) = f (y(t), α(t)) t > 0
y(0) = x

Admissible controls

α(·) ∈ A ≡ {α : [0,+∞[→ A,measurable}

Cost

J(x , α(·)) =

∫ ∞
0

l(y(t), α(t))e−λtdt

Value function
v(x) = inf

α(·)∈A
J(x , α(·))
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The infinite horizon problem

For numerical purposes we have to deal the problem in a bounded domain
Ω

λv(x) + max
u∈U
{−f (x , u) · ∇v(x)− l(x , u)} = 0 , x ∈ Ω

Domain splitting
Let us consider a splitting of Ω into D subdomains Ωd , d = 1, . . . ,D

Ω = ∪dΩd

and a grid G with a number of nodes NΩ

NΩ ≈ N1 + . . .+ ND
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Sketch of Classical DD

MAIN CICLE
REPEAT

STEP 1

Compute one iteration of the numerical operator S restricted to every
domain Ωd , d = 1, . . . ,D

STEP 2

Couple the information on the overlapping zones (Transmission Conditions)

UNTIL a stopping rule is satisfied
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Transmission Conditions

The correct transmission condition is the min operator

min{S1,S2, . . . ,SD}.
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Main goal

We want to construct a domain decomposition which is based on the
patches defined by Ancona and Bressan.
PROS patches are invariant with respect to the optimal dynamics
CONS we need a dynamic construction of the patches.

Let be Ω ⊂ Rn an open domain with smooth boundary ∂Ω and g a
smooth vector field defined on a neighborhood of Ω.

Definition

We say that the pair (Ω, g) is a patch if Ω is a positive-invariant region
for g , i.e. at every boundary point x ∈ ∂Ω the inner product of g with the
outer normal n satisfies

〈g(x), n(x)〉 < 0.
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Patchy vectorfields

A patchy vector field on a domain Ω ⊂ Rn is a superposition of patches,
as reported in the following

Definition

We say that g : Ω→ Rn is a patchy vector field if there exists a family of
patches {(Ωα, gα) : α ∈ I} such that

- I is a totally ordered index set,

- the open sets Ωα form a locally finite covering of Ω,

- the vector field g can be written in the form

g(x) = gα(x) if x ∈ Ωα \
⋃
β>α

Ωβ.
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Goal

To build a domain decomposition such that

the solution in each patch does not depend on the solution in other
patches;

there is no transmission condition through the boundaries of the
patches.

In this way the computation can be fully parallelized. The final solution is
obtained by merging all the patches at the end.

To this end we need an a-priori knowledge of characteristics which is not
available ⇒ PRE-COMPUTATIONS
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The Patchy Algorithm

Step1. (Computation on the coarse grid). We solve the equation on a coarse
grid Gcoarse by means of the classical domain decomposition
technique. This leads to the function ucoarse.

Step2. (Interpolation on a fine grid). We compute a first approximation u(0)

of the solution on a fine grid Gfine by means of a simple bilinear
interpolation of the values ucoarse.
We also compute the optimal control

a∗coarse(xi ) = arg max
a
{−f (xi , a) · ∇u(0)(xi )} , xi ∈ Gfine

Note that a∗coarse is defined on Gfine.
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The Patchy Algorithm

Step3. (Partition of target). On Gfine, we divide the target in Np parts

denoted by Ω j
0, j = 1, . . . ,Np.

Step4. (Main cycle) For any j = 1, . . . ,Np,

Step4.1. (Creation of j-th patch). We use the (coarse) optimal control a∗coarse
to find the nodes of the grid Gfine which have Ω j

0 in their numerical
domain of dependence. This procedure defines the j-th patch. (NEXT
SLIDE)

Step4.2. (Computation in patches). We solve iteratively the equation in the j-th
patch until convergence is reached, imposing state constraints
boundary conditions.

Step5. (Merge). All the solutions computed in the Np patches are assembled
in the grid Gfine.
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The Patchy Algorithm: creation of a patch

For j = 1, . . . ,Np

1 (Initialization) Set

φi =

{
1 , xi ∈ Ωj

0

0 , xi ∈ Gfine\Ωj
0

, i = 1, . . . ,N.

2 (Iteration) Solve iteratively the following ad hoc numerical scheme,
until convergence is reached.

φi = φ(xi + hi f (xi , a
∗
coarse(xi ))) , i = 1, . . . ,N.

Note that the solution φ takes values in [0, 1].

3 (Projection) Project the color j into a binary value

φi =

{
1 , φ(xi ) ≥ 1

2
0 , φ(xi ) <

1
2

, i = 1, . . . ,N.

The sub-domain Pj = {xi : φ(xi ) = 1} is the j-th patch.
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The Patchy Algorithm: creation of a patch

Initialization Iteration Projection
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The Patchy Algorithm: invariant domain decomposition

Patchy domain decomposition (4 patches)
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Numerical Tests

Numerical Tests in dimension 2
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Test 1: Eikonal

f (x1, x2, a) = a , A = B(0, 1) , Ω0 = B(0, 0.5).

Patchy domain decomposition (8 patches)
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Test 1: Eikonal – Patchy Error

We compute the difference between the patchy solution and the DD
solution. Since the scheme is the same, this error is due to the fact that
patches are not perfectly independent.

Error table in norm ‖ · ‖1 (‖ · ‖∞) depending on the space steps kcoarse
and kfine.

kf =0.08 kf =0.04 kf =0.02 kf =0.01 kf =0.005

kc =0.08 0.436 (0.960) 0.275 (1.856) 0.102 (0.048) 0.065 (0.034) 0.048 (0.026)
kc =0.04 – 0.088 (0.046) 0.029 (0.023) 0.014 (0.042) 0.005 (0.008)
kc =0.02 – – 0.038 (0.029) 0.012 (0.013) 0.004 (0.008)
kc =0.01 – – – 0.011 (0.016) 0.006 (0.010)
kc =0.005 – – – – 0.004 (0.008)

A = B(0, 1) is discretized with 32 points and the number of patches is 16.
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Test 1: Eikonal

Patchy solution

The subsolutions merge quite well!

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 41 / 59



Test 1: Eikonal

Patchy error

The error is localized on the boundaries of the patches!
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Test 1: Eikonal

Patchy method vs classical Domain Decomposition

CPU times (in seconds) depending on the number of processors and the
number of patches

Controls: 16. Grid: 1002 → 8002

2 domains 4 domains 8 domains 16 domains Best DD

1 proc 1547 1076 1058 933 1571
2 procs 845 595 574 504 820
4 procs 459 325 317 271 415

Controls: 32. Grid: 1002 → 8002

2 domains 4 domains 8 domains 16 domains Best DD

1 proc 2702 1897 1843 1623 2785
2 procs 1462 998 968 872 1430
4 procs 771 532 514 435 716
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Test 2: Fan

f (x1, x2, a) = |x1 + x2 + 0.1|a , A = B(0, 1) , Ω0 = {x1 = 0}.

Patchy domain decomposition (8 patches)
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Test 2: Fan

Patchy error

Error table in norm ‖ · ‖1 (‖ · ‖∞) depending on the space steps kcoarse
and kfine.

kf = 0.08 kf = 0.04 kf = 0.02 kf = 0.01 kf = 0.005

kc =0.08 1.393 (3.023) 0.123 (1.507) 0.037 (0.315) 0.017 (0.263) 0.011 (0.263)
kc =0.04 – 0.114 (1.502) 0.032 (0.149) 0.011 (0.095) 0.006 (0.095)
kc =0.02 – – 0.032 (0.111) 0.011 (0.061) 0.004 (0.037)
kc =0.01 – – – 0.011 (0.079) 0.004 (0.037)
kc =0.005 – – – – 0.004 (0.037)

A = B(0, 1) is discretized with 32 points and the number of patches is 16.
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Test 2: Fan

Patchy Error

The error is localized on the boundaries of the patches!

M. Falcone (SAPIENZA, Rome) A Patchy Method for HJB Equations 46 / 59



Test 2: Fan

Patchy method vs classical Domain Decomposition

CPU times (in seconds) depending on the number of processors and the
number of patches

Controls: 32. Grid: 1002 → 8002

2 domains 4 domains 8 domains 16 domains Best DD

1 proc 3712 3322 3049 3172 4163

2 procs 2020 1746 1596 1559 2124

4 procs 1032 900 841 852 1069
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Test 3: Zermelo

f (x1, x2, a) = 2.1a + (2, 0) , A = B(0, 1) , Ω0 = B(0, 0.5).

Patchy domain decomposition (8 patches)
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Test 3: Zermelo

Patchy Error

Error table in norm ‖ · ‖1 (‖ · ‖∞) depending on the space steps kcoarse
and kfine.

kf = 0.08 kf = 0.04 kf = 0.02 kf = 0.01 kf = 0.005

kc =0.08 0.171 (0.293) 0.159 (0.059) 0.097 (0.057) 0.026 (0.027) 0.006 (0.016)
kc =0.04 – 0.101 (0.063) 0.033 (0.041) 0.011 (0.023) 0.004 (0.016)
kc =0.02 – – 0.039 (0.039) 0.012 (0.023) 0.004 (0.016)
kc =0.01 – – – 0.011 (0.020) 0.005 (0.015)
kc =0.005 – – – – 0.004 (0.016)

A = B(0, 1) is discretized with 32 points and the number of patches is 16.
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Test 3: Zermelo

Patchy Error

The error is localized on the boundaries of the patches!
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Test 3: Zermelo

Patchy method vs classical Domain Decomposition

Cpu times (in seconds) depending on the number of processors and the
number of patches

Controls: 32. Grid: 1002 → 8002

2 domains 4 domains 8 domains 16 domains Best DD

1 proc 3113 2675 2126 2018 3209

2 procs 1651 1404 1111 1054 1640

4 procs 871 721 584 545 825
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Numerical Tests

Numerical Tests in dimension 3
Here several add-on’s are enabled!

(ordering of the nodes (FMM-like), reduced controls, ...)
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Test 1: Eikonal

f (x1, x2, x3, a) = a , A = B(0, 1) , Ω0 = B(0, 0.5).

dynamics grid size CPU time Error L1 Error L∞

Eikonal 3D 503 → 1003 183 0.033 0.035

Eikonal 3D 503 → 2003 1217 0.029 0.042

A = B(0, 1) is discretized with 189 points (then reduced when working on
the fine grid) and the number of patches is 8. Processors are 4.
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Test 1: Eikonal

One level set of the patchy solution

The error is localized on the boundaries of the patches!
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Test 2: Fan

f (x1, x2, x3, a) = |x1 + x2 + x3 + 0.1|a , A = B(0, 1) , Ω0 = {x1 = 0}.

dynamics grid size CPU time Error L1 Error L∞

Fan 3D 503 → 1003 165 0.064 0.187

Fan 3D 503 → 2003 1269 0.056 0.305

A = B(0, 1) is discretized with 189 points (then reduced when working on
the fine grid) and the number of patches is 8. Processors are 4.
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Test 2: Fan

Patchy domain decomposition (8 patches) and level sets of the patchy
solution
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Test 2: Fan

Some optimal trajectories to the target
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Conclusions and future directions

We developed an approximation method for the solution of
Hamilton-Jacobi equations which combines a patchy decomposition of the
domain and a dynamic programming scheme.
The method can handle:
- more general control problems (minimum time, finite horizon, ...)
- state constraints
- pursuit evasion games
The numerical tests show a very small and localized error (on the patches
boundaries).

Future directions
We want to analyze the method (convergence, error estimates) and
combine this technique with efficient fast marching techniques.
Efficient coupling of this method with POD techniques for the control of
PDEs (ongoing with A. Alla).
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