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Dennis-Moré Theorem

Quasi-Newton method for solving f (x) = 0:

f (xk) + Bk(xk+1 − xk) = 0,

where f : IRn → IRn and Bk is a sequence of matrices.
Let sk = xk+1 − xk , Ek = Bk − Df (x̄).
Recall that {xk} converges superlinearly when ‖ek+1‖/‖ek‖ → 0.

Theorem [Dennis-Moré, 1974]. Suppose that f is differentiable
in an open convex set D in IRn containing x̄ , a zero of f , the
derivative Df is continuous at x̄ and Df (x̄) is nonsingular. Let
{Bk} be a sequence of nonsingular matrices and let for some
starting point x0 in D the sequence {xk} be generated by the
method, remain in D for all k and xk 6= x̄ for all k . Then xk → x̄
superlinearly if and only if

xk → x̄ and lim
k→∞

‖Eksk‖
‖sk‖

= 0.



Outline:

1. Strong metric subregularity

2. Dennis-Moré theorem for Newton differentiable functions

3. Dennis-Moré theorem for generalized equations



Strong metric subregularity

Definition. Consider a mapping H : X →→ Y and a point
(x̄ , ȳ) ∈ X × Y . Then H is said to be strongly metrically
subregular at x̄ for ȳ when ȳ ∈ H(x̄) and there is a constant
κ > 0 together with a neighborhood U of x̄ such that

‖x − x̄‖ ≤ κd(ȳ ,H(x)) for all x ∈ U.

Obeys the paradigm of the implicit function theorem: f is s.m.s. if
and only if the linearization x 7→ f (x̄) + Df (x̄)(x − x̄) is s.m.s.,
which is the same as κ‖h‖ ≤ ‖Df (x̄)h‖ for all h ∈ X .

Every mapping T : IRn →→ IRm, whose graph is the union of finitely
many polyhedral convex sets, is s.m.s at x̄ for ȳ if and only if x̄ is
an isolated point in T−1(ȳ).



Strong metric subregularity in optimization

Convex optimization

minimize g(x)− 〈p, x〉 over x ∈ C ,

where g : IRn → IR is convex and C 2, p ∈ IRn, and C is a convex
polyhedral set in IRn.
First-order optimality condition

∇g(x) + NC (x) 3 p

The mapping ∇g + NC is strongly metrically subregular at x̄ for p̄
if and only if the standard second-order sufficient condition holds
at x̄ for p̄: 〈∇2g(x̄)u, u〉 > 0 for all nonzero u in the critical cone
KC (x̄ , p̄ −∇g(x̄)).
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Convergence under strong subregularity

Main Lemma. Let f : X → Y , for X and Y Banach spaces, be
Lipschitz continuous in a neighborhood U of x̄ and strongly
metrically subregular at x̄ with a neighborhood U. Consider any
sequence {xk} the elements of which are in U for all k = 0, 1, . . .
and xk 6= x̄ for all k . Then xk → x̄ superlinearly if and only if

xk → x̄ and lim
k→∞

‖f (xk+1)− f (x̄)‖
‖sk‖

= 0.

Proof. Consider any {xk} with elements in U such that xk+1 6= x̄
for all k and xk → x̄ superlinearly. Then ‖ek‖/‖sk‖ → 1. Let
ε > 0 and choose k0 large enough so that

‖ek+1‖ ≤ ε‖sk‖.

Let L be a Lipschitz constant of f in U. We have

‖f (xk+1)− f (x̄)‖
‖sk‖

≤ L‖xk+1 − x̄‖
‖sk‖

=
L‖ek+1‖
‖sk‖

≤ Lε.



Proof continued.

Let ε > 0 satisfy ε < 1/κ and let k0 be so large that for k ≥ k0,
one has xk ∈ U and

‖f (xk+1)− f (x̄)‖ ≤ ε‖sk‖ for k ≥ k0.

The assumed strong subregularity yields

‖xk+1 − x̄‖ ≤ κ‖f (xk+1)− f (x̄)‖

and hence, for all k ≥ k0, ‖ek+1‖ ≤ κε‖sk‖. But then, for such k ,

‖ek+1‖ ≤ κε‖sk‖ ≤ κε(‖ek‖+ ‖ek+1‖).

Hence
‖ek+1‖
‖ek‖

≤ κε

1− κε
for all sufficiently large k. Hence xk → x̄ superlinearly.



Proof of Dennis-Moré Theorem

Let

Vk =

∫ 1

0
Df (x̄ + τek)dτ − Df (x̄)ek .

By elementary calculus

f (xk+1) = f (x̄) +

∫ 1

0
Df (x̄ + τek+1)ek+1dτ = Df (x̄)ek+1 + Vk+1

= −f (xk)− Bksk + Df (x̄)sk + Df (x̄)ek + Vk+1

= −f (xk)− Eksk + Df (x̄)ek + Vk+1

= −Eksk − f (xk) + f (x̄) + Df (x̄)ek + Vk+1

= −Eksk − Vk + Vk+1.

Apply Main Lemma.



Newton differentiable functions

Definition. A function f is Newton differentiable at x̄ ∈ int dom f
when for each ε > 0 there exists a neighborhood U of x̄ and such
that for each x ∈ U there exists a mapping G (x) ∈ L(X ,Y ), called
the N-derivative of f at x , such that

‖f (x)− f (x̄)− G (x)(x − x̄)‖ ≤ ε‖x − x̄‖.

Reference: K. Ito and K. Kunisch, On the Lagrange multiplier
approach to variational problems and applications, SIAM,
Philadelphia, PA, 2008.

f is strongly metrically subregular at x̄ if and only if there is a
constant κ > 0 such that for any h near 0 and any N-derivative
G (x̄ + h) one has

‖G (x̄ + h)h‖ ≥ κ‖h‖.



Dennis-Moré for Newton differentiable functions

Theorem. Suppose that f has a zero x̄ , is Lipschitz continuous in
a neighborhood x̄ , Newton differentiable at x̄ and strongly
subregular at x̄ . Let {Bk} be a sequence of linear and bounded
mappings and suppose that there is a neighborhood of x̄ such that
for any starting point x0 in U a sequence {xk} be generated by

f (xk) + Bk(xk+1 − xk) = 0,

remain in U and satisfy xk 6= x̄ for all k. Let Gk(xk) be any
Newton derivative of f for xk and denote Ek = Bk − Gk(xk). Then
xk → x̄ superlinearly if and only if

xk → x̄ and lim
k→∞

‖Eksk‖
‖sk‖

= 0.



Quasi-Newton method for generalized equations

f : X → Y , F : X →→ Y
Generalized equation

f (x) + F (x) 3 0,

Quasi-Newton method

(QN) f (xk) + Bk(xk+1 − xk) + F (xk+1) 3 0,

where f : X → Y , F : X →→ Y , Bk ∈ L(X ,Y ).



Dennis-Moré Theorem for generalized equations

Let sk = xk+1 − xk , Ek = Bk − Df (x̄).
Theorem [extended Dennis-Moré]. Suppose that f is Fréchet
differentiable in an open convex set D in X containing a solution x̄
and Df is continuous at x̄ . Let for some starting point x0 in D the
sequence {xk} be generated by (QN), remain in D and satisfy
xk 6= x̄ for all k. If xk → x̄ superlinearly, then

lim
k→∞

d(0, f (x̄) + Eksk + F (xk+1))

‖sk‖
= 0.

Conversely, suppose that x 7→ G (x) = f (x̄) + Df (x̄)(x − x̄) + F (x)
is strongly metrically subregular at x̄ for 0 and consider a sequence
{xk} generated by (QN) for some x0 in D, which remain in D,
satisfy xk 6= x̄ for all k ,

xk → x̄ and lim
k→∞

‖Eksk‖
‖sk‖

= 0.

Then xk → x̄ superlinearly.


