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Sparse Coniirols 5
min J(u) = §||y — yd”%ﬁ(g) + allul| ) + 5”“”%2(9)

—Ay+coy = wu in ()
y = 0 onl

|foz-0andﬁ>0=>u(az)-—%(x), x €l

If « >0and > 0= supp(u) C {z € Q:|p(x)|>a}

If « >0and f=0=supp(u) C {x € Q:|p(x)| = a}.
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with cg € L®(Q) and ¢g > 0. We assume that a > 0, yg € L*(2) and
() is a bounded domain in R", n = 2 or 3, which is supposed to either
be convex or have a C'''! boundary I'. The controls are taken in the
space of regular Borel measures M (2).
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: 1 9
() min J(w) = 5l = vl + allulano
—Ay+coy = u in €, 1)
y = 0 onT,

with cg € L®(Q) and ¢g > 0. We assume that a > 0, yg € L*(2) and
() is a bounded domain in R", n = 2 or 3, which is supposed to either
be convex or have a C'''! boundary I'. The controls are taken in the
space of regular Borel measures M (2).
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The State Equation

Given a measure u € M(2), we say that y is a solution to the state
equation if

/(—Az + coz)y do = / z du for all z € H*(Q) N Hy(Q)
0 0

It is well known that there exists a unique solution in this sense. More-
over, y € W, ?(Q) for every 1 < p < —- and

1y llywir ) = Collullmee)
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If we consider the Jordan decomposition of u = u" — %™, then
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THEOREM 2 There exists & > 0 such that u = 0 for every o > a.
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A Finite Element Approximation of (P)

e Let us assume that 2 is convex and {7} } 50 is a regular triangulation
of {2 satisfying an inverse assumption. ), = Urc7, T

e Discrete States:

Y, = {yh c C(Q) ’ Yn|r € Py, forall T e 77La and y, = 0 on Q\Qh}v

e Discrete State Equation:

Find y;, € Y}, such that, for all z;, € Y,

/ [VthZh + coyhzh] dr = / zp, du.
O, Q,
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where y;, is the solution of the discrete state equation associated to .

Since we have not discretized the control space, this approach is re-
lated to the variational discretization method introduced by Hinze.
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The Approximation (P;)

, 1
(Pn) S Tn(un) = 5 lgn = all 2, + @llell v,

where y;, is the solution of the discrete state equation associated to wu.

Since we have not discretized the control space, this approach is re-
lated to the variational discretization method introduced by Hinze. We
will show that among all the solutions to (Pj) there is a unique one
which is a finite linear combination of Dirac measures concentrated in
the interior vertices of the triangulation, leading to a simple numerical
implementation.
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Notation

o{:cj}j-vz(?) denote the interior nodes of the triangulation 7},.
o{ej}jy:(?) is the nodal basis of Y},: ej(x;) = d;.

N(h)

oYp = Z Y;€y, where Y; = yh(xj)7 1 S] S N(h), vyh c Yh-
Jj=1

N ()
oD = {uh e M(Q):uy = Z Ajoz;, where {)\j}jy:(?) C R} :
j=1

N(h)

oD, =Yy, (up,yn) = Z Ay Yup € Dy, Yy, € Y.
=1
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Two Linear Operators

OHh X Oo(Q) — Yh

N(h)
[y = Z y(z))e;.
j=1

OAh : M(Q) — Dh
N(h)

Apu = Z(u, €;j)0;-

j=1
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e For every u € M(Q)) and every z € Cy(2) and z;, € Y}, we have
(u, zp) = (Apu, zp) and (u, I1,2) = (Ayu, 2)

e For every u € M(2) we have

[Avula) < llullm
Ay = win M(€) and || Al pm) = llullmo)

e There exist a constant C' > 0 such that for every u € M ()

o n
lu = Mpully-1a9) < OB lullm@), 1<p < ——

I = Anull 1o e < Chllullmeey

e Given u € M(Q), let y;, and ¥, be the discrete solutions associated
to the controls w and Aju, respectively, then y;, = 9.
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them there exists a unique one uy; belonging to D;. Moreover, any
other solution u, € M(S)) of (P},) satisfies that A, = uy,.

REMARK 1 The fact that (P},) has exactly one solution in Dy, is of
practical interest. Indeed, recall that, as an element of Dy, u; has a
unique representation of the form
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U = Z Ajou;
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The Solutions of (P})

THEOREM 3 Problem (Pj,) admits at least one solution. Among
them there exists a unique one uy; belonging to D;. Moreover, any
other solution u, € M(S)) of (P},) satisfies that A, = uy,.

REMARK 1 The fact that (P},) has exactly one solution in Dy, is of
practical interest. Indeed, recall that, as an element of Dy, u; has a
unique representation of the form

N(h) N(h)
ap =Y Nby, and lupll sy = Y ]
j=1 j=1

Then, the numerical computation of uy, is reduced to the computation
of the coefficients {)\j}jvz(? )
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Convergence Analysis

THEOREM 4 For every h > 0, let uy, be the unique solution to (Py,)
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convergence properties hold for h — 0:

Up S in M(Q)
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THEOREM 4 For every h > 0, let uy, be the unique solution to (Py,)
belonging to D), and let u be the solution to (P). Then, the following
convergence properties hold for h — 0:

Up S in M(Q)
s || ) = 18] m)
19 — Unllr2(0) = 0




CONTROL AND OPTIMIZATION OF PDES - GRAZ 2011

Convergence Analysis

THEOREM 4 For every h > 0, let uy, be the unique solution to (Py,)
belonging to D), and let u be the solution to (P). Then, the following
convergence properties hold for h — 0:

up, N u in M(Q)
s || ) = 18] m)

19 — Unllr2(0) = 0
Jp(up) — J(u)

where i and 1y, are the continuous and discrete states associated to
and uy, respectively.
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Some Error Estimates

Assumption:

ya € L'(Q) with r = {

THEOREM 5 There exists a constant C' > 0 independent of h such
that

[J(w) = Jn(un)| < Ch”
where k =1 ifn=2and Kk =1/2 ifn = 3.
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Some Error Estimates

Assumption:

. _ 4 ifn=2
yq € L"(Q2) W|th7“—{§ £ _ 3

THEOREM 5 There exists a constant C' > 0 independent of h such

that
[J(w) = Jn(un)| < Ch”
where k =1 ifn=2and Kk =1/2 ifn = 3.

THEOREM 6 There exists a constant C' > 0 independent of h such
that
17— Ynll 21y < Ch2
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Computational Results

oy =0=[-1,172
e Uniform triangulation arising from N X NN equidistributed nodes.
e N =128 (h =~ 0.0157), ¢ = 0, and a = 1072

oyy = 10 exp(—50||z||?).
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Optimal Control y,
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[Ua| pm(e)

1 \
0.5
\ a ~ 0.187
0

1072 107! 10°
«

Dependence of ||y on penalty parameter o
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107!

1072

| — I

—O(h)

T T T

1072 10t
h

Convergence order for the functionals
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107!

1072

= lyn — ynll 2| |
O(h

[ [ 11771
1072 107!
h

Convergence order for the states
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