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A multidimensional stochastic process

We consider continuous-time stochastic processes described by the
following multidimensional model{

dXt = b(Xt , t; u) dt + σ(Xt , t) dWt

Xt0 = X0,

where Xt ∈ Rn is the state variable and dWt ∈ Rm is a
multi-dimensional Wiener process, with stochastically independent
components.

We consider the action of a time-dependent control u(t) ∈ R` in
the drift term b(Xt , t; u) that allows to drive the vector random
process.
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The average objective

Since Xt is random, a deterministic objective will result into a
random variable for which an averaging step is required.
Therefore, the following objective is usually considered

J(X , u) = E[

∫ T

0
L(t,Xt , u(t)) dt + Ψ[XT ]].

With this formulation it is supposed that the controller knows (all)
the state of the system at each instant of time!

The average E[·] of functionals of Xt is omnipresent in almost all
stochastic optimal control problems considered in the literature.
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Alternative approaches with deterministic objective

The state of a stochastic process can be characterized by the
shape of its statistical distribution represented by the probability
density function (PDF).

In some works, control schemes were proposed, where the
deterministic objective depends on the PDF of the stochastic state
variable and no average is needed. Examples are objectives defined
by the Kullback-Leibler distance or the square distance between
the state PDF and a desired one.

Nevertheless, stochastic governing models are used and the state
PDF is obtained by averaging or by an interpolation strategy.
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The Fokker-Planck (-Kolmogorov) equation (step 1)

Consider a particle at x at time t. Let π
(+)
∆x (x) and π

(−)
∆x (x) be the

probabilities that the particle will be at x + ∆x and x −∆x , at
t + ∆t.
Let p(x0, x ; t)∆x be the conditional probability that the particle
arrives at x at time t starting from x0 at t = 0 following a random
path. We have

p(x0, x ; t)∆x = p(x0, x −∆x ; t −∆t)π
(+)
∆x (x −∆x)∆x

+ p(x0, x + ∆x ; t −∆t)π
(−)
∆x (x + ∆x)∆x

+ p(x0, x ; t −∆t)(1− π(+)
∆x (x)− π(−)

∆x (x))∆x .

From this discrete model of a stochastic process, we build one with
infinitesimal increments for ∆x ,∆t → 0.

For a meaningful statistical limiting process, the probabilities π
(+)
∆x

and π
(−)
∆x must be subject to some constraints.
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The Fokker-Planck (-Kolmogorov) equation (step 2)
Consider the mean of change of particle position X (t), conditional
on X (t) = x ,

β(x) = lim
∆t→0

E [X (t + ∆t)− X (t)|X (t) = x ]

∆t

and the corresponding variance is given by

α(x) = lim
∆t→0

V [X (t + ∆t)− X (t)|X (t) = x ]

∆t
.

On the other hand, given the particle at x at time t, then at time
t + ∆t the mean value of change of position is as follows

∆x(π
(+)
∆x (x)− π(−)

∆x (x))

and the corresponding variance is given by

∆x2(π
(+)
∆x (x) + π

(−)
∆x (x)− (π

(+)
∆x (x)− π(−)

∆x (x))2).
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The Fokker-Planck (-Kolmogorov) equation (step 3)
For the limiting process, we require

β(x) = lim
∆x ,∆t→0

(π
(+)
∆x (x)− π(−)

∆x (x))
∆x

∆t

and

α(x) = lim
∆x ,∆t→0

(π
(+)
∆x (x)− π(−)

∆x (x)− (π
(+)
∆x (x)− π(−)

∆x (x))2)
∆x2

∆t
.

These provide constraints for the form of π
(+)
∆x (x) and π

(−)
∆x (x).

We suppose the scale law (∆x)2 = A∆t (Wiener or Gaussian
white noise). The choices

π
(+)
∆x (x) =

1

2A
(α(x) + β(x)∆x)

and

π
(−)
∆x (x) =

1

2A
(α(x)− β(x)∆x)

satisfy the above constraints. We require α(x) ≥ β(x)∆x .
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The Fokker-Planck (-Kolmogorov) equation (step 4)

By expanding in Taylor series (step 1) up to second order, we
obtain

p ' (p − px∆x + 1
2 pxx∆x2 − pt∆t)(π

(+)
∆x − π

(+)
∆x

′
∆x + 1

2π
(+)
∆x

′′
∆x2)

+ (p + px∆x + 1
2 pxx∆x2 − pt∆t)(π

(+)
∆x + π

(+)
∆x

′
∆x + 1

2π
(+)
∆x

′′
∆x2)

+ (p − pt∆t)(1− π(+)
∆x − π

(−)
∆x ).

Finally, by using the constraints for α and β, and the scale law, we
obtain the Fokker-Planck equation

∂tp(x0, x ; t) =
1

2
∂2
xx(α(x)p(x0, x ; t))− ∂x(β(x)p(x0, x ; t)).
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A new approach based on the Fokker-Planck equation

The evolution of the PDF given by f = f (x , t), x ∈ Ω ⊂ Rn,
associated to the stochastic process is modelled by the
Fokker-Planck (FP) equation.

∂t f −
1

2

n∑
i ,j=1

∂2
xixj

(aij f ) +
n∑

i=1

∂xi (bi (u) f ) = 0

f (t0) = ρ

This is a partial differential equation of parabolic type with Cauchy
data given by the initial PDF distribution.
The formulation of objectives with the PDF and the Fokker-Planck
equation provide a consistent framework to the optimal control of
stochastic processes.
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The transition density probability and the PDF
Denote with f (x , t) the probability density to find the process at
x = (x1, . . . , xn) at time t.

Let f̂ (x , t; y , s) denotes the transition density probability
distribution function for the stochastic process to move from
y ∈ Rn at time s to x ∈ Rn at time t.

Both f (x , t) and f̂ (x , t; y , s) are nonnegative functions and the
following holds

f̂ (x , t|y , s) ≥ 0,

∫
Ω

f̂ (x , t|y , s) dx = 1 for all t ≥ s.

Given an initial PDF ρ(y , s) at time s, we have the following

f (x , t) =

∫
Ω

f̂ (x , t|y , s)ρ(y , s) dy , t > s.

Also ρ should be nonnegative and
∫

Ω ρ(y , s)dy = 1.
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A tracking objective

We consider the control problem formulated in the time window
(tk , tk+1) with known initial value at time tk .

We formulate the problem to determine a piecewise constant
control u(t) ∈ R` such that the process evolves towards a desired
target probability density fd(x , t) at time t = tk+1.

This objective can be formulated by the the following tracking
functional

J(f , u) :=
1

2
‖f (·, tk+1)− fd(·, tk+1)‖2

L2(Ω) +
ν

2
|u|2.

where |u|2 = u2
1 + . . .+ u2

` .
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A Fokker-Planck optimal control problem
The optimal control problem to find u that minimizes the objective
J subject to the constraint given by the FP equation is formulated
by the following

min J(f , u) :=
1

2
‖f (·, tk+1)− fd(·, tk+1)‖2

L2(Ω) +
ν

2
|u|2

∂t f −
1

2

n∑
i ,j=1

∂2
xixj

(aij f ) +
n∑

i=1

∂xi (bi (u) f ) = 0

f (tk) = ρ.
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A Fokker-Planck optimality system

This first-order necessary optimality condition is characterized as
the solution of the following optimality system

∂t f − 1
2

∑n
i ,j=1 ∂

2
xixj

(aij f ) +
∑n

i=1 ∂xi (bi (u) f ) = 0 in Qk

f (x , tk) = ρ(x) in Ω
−∂tp − 1

2

∑n
i ,j=1 aij ∂

2
xixj

p −
∑n

i=1 bi (u) ∂xi p = 0 in Qk

p(x , tk+1) = f (x , tk+1)− fd(x , tk+1) in Ω
f = 0, p = 0 on Σk

ν ul +
(∑n

i=1 ∂xi (
∂bi
∂ul

f ), p
)

= 0 in Qk l = 1, . . . , `

where Qk = Ω× (tk , tk+1) and Σk = ∂Ω× (tk , tk+1).
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The reduced gradient

In the optimality equation, we have used the following inner
product

(φ, ψ) =

∫ tk+1

tk

∫
Ω
φ(x , t)ψ(x , t) dx dt.

The lth component of the reduced gradient ∇Ĵ is given by

(∇Ĵ)l = ν ul +

(
n∑

i=1

∂xi

(
∂bi

∂ul
f

)
, p

)
, l = 1, . . . , `,

where p = p(u) is the solution of the adjoint equation for given
f (u).

Notice that we are discussing a nonlinear control mechanism and
thus the optimization problem is nonconvex.
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Theory of the FP control problem (step 1)

Consider the following FP equation, E(f0, u, g) = 0, as follows

∂t f (x , t)− a ∂2
xx f (x , t) + ∂x (b(x ; u) f (x , t)) = g(x , t)

f (x , t) = 0

f (x , 0) = f0(x)

where a > 0, u ∈ U, and f0 ∈ L2(Ω). Consider the
Ornstein-Uhlenbeck process with b(x ; u) = −γx + u. We
introduce a source term g ∈ L2(Q).
Define V = H1

0 (Ω) and V ′ = H−1(Ω) its dual with (·, ·)V ′V the
duality pairing and H = L2(Ω) the pivot space. We consider the
space

W = {w ∈ L2(0,T ; V ), ẇ = L2(0,T ; V ′)}

with norm ‖w‖2
W = ‖w‖2

L2(V ) + ‖ẇ‖2
L2(V ′).
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Theory of the FP control problem (step 2: lemma)
Assume that b(x ; u) = γ(x) + u, γ ∈ C 1(Ω), f0 ∈ H, u ∈ U, and
g ∈ L2(V ′). Then if f is a solution to E(f0, u, g) = 0, the following
inequalities hold.

‖f ‖L2(V ) ≤
1

s
√

2
‖f0‖H +

1

s2
‖g‖L2(V ′)

‖f ‖L∞(H) ≤ ‖f0‖H + α1‖g‖L2(V ′)

‖ḟ ‖L2(V ′) ≤ (‖u‖U + γ̄)
(
‖f0‖H + α1‖g‖L2(V ′)

)
+ α2

(
1

s
√

2
‖f0‖H +

1

s2
‖g‖L2(V ′)

)
+ ‖g‖L2(V ′)

where s =
√

( a
1+cPF

)− γ̄, γ̄ = maxx∈Ω(|γ(x)|, |γ′(x)|) is

sufficiently small, cPF is the Poincaré - Friedrichs constant

corresponding to Ω, α1 = max
(

1√
2
,
√

2√
s

)
, and α2 satisfies the

following condition a‖∂xxϕ‖V ′ ≤ α2‖ϕ‖V , ∀ϕ ∈ V .
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Theory of the FP control problem (step 3: propositions)

Proposition

Assume that b(x ; u) = γ(x) + u, γ ∈ C 1(Ω) and sufficiently small
γ̄ = maxx∈Ω(|γ(x)|, |γ′(x)|), f0 ∈ H, and u ∈ U. Then the problem
E(f0, u, 0) = 0 admits a unique solution f in L2(V ) ∩ L∞(H) with
ḟ ∈ L2(V ′). In particular, we have f ∈ C ([0,T ]; H).

Proposition

The mapping Λ : U → C ([0,T ]; H), u → f = Λ(u) is the solution
to E(f0, u, 0) = 0, is Fréchet differentiable and Λ′u∗ · h satisfies the
equation

ė + Ae = u∗Be + hBf ∗ + Ce

e(0) = 0,

where f ∗ = Λ(u∗).
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Theory of the FP control problem (step 4: propositions)

Proposition

The functional Ĵ(u) is differentiable and we have the derivative

dĴ(u) · h =

(
ν u +

∫ T

0
(ux f , p)V ′V dt, h

)
U

, ∀h ∈ U,

where p is the solution to the adjoint equation

−utp − a u2
xx p − b(x ; u) ux p = 0, p(x ,T ) = f (x ,T )− fd(x),

and f is the solution to E(f0, u, 0) = 0.
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Theory of the FP control problem (step 5: propositions)

Proposition

Let f ∗1 and f ∗2 be the states corresponding to the optimal controls
u∗1 and u∗2 , respectively. Further, let p∗1 and p∗2 be the adjoint states
corresponding to the optimal controls u∗1 and u∗2 , respectively.
Under the assumption of Lemma 1, the following inequalities hold

‖f ∗j ‖L2(V ) ≤
1

s
√

2
‖f0‖H , j = 1, 2,

‖f ∗j ‖L∞(H) ≤ ‖f0‖H , j = 1, 2,

‖p∗j ‖L2(V ) ≤
1

s
√

2
‖fj(T )− fd‖H , j = 1, 2,

‖p∗j ‖L∞(H) ≤ ‖fj(T )− fd‖H , j = 1, 2.
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Theory of the FP control problem (step 6: uniqueness)

Proposition

Using previous estimates and for sufficiently small initial condition,
i.e. small ‖f0‖H , a unique optimal control exists.

ν‖u1 − u2‖U ≤
(

1

s2
‖f1(T )− fd‖H +

α1

s
√

2
‖f0‖H +

1

s2
‖f2(T )− fd‖H

)
‖u1 − u2‖U‖f0‖H
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The discretization of the FP optimality system

The forward- and adjoint FP equations are discretized using the
second-order backward time-differentiation formula (BDF2) as
follows

∂−BDym
i :=

3ym
i − 4ym−1

i + ym−2
i

2δt
∂+
BDpm

i := −
3pm

i − 4pm+1
i + pm+2

i

2δt
.

For spatial-discretization we use the Chang-Cooper (CC) scheme
that is stable, second-order accurate, positive, and conservative.
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The Chang-Cooper scheme
The FP equation can be written in flux form, ∂t f = ∇ · F , where

∇ · F ≈ 1

h

n∑
i=1

(F i
i+ıi/2 − F i

i−ıi/2).

The flux in the i-th direction is computed as follows

F i
i+ıi/2 =

[
(1− δi )B i ,n

i+ıi/2 +
1

h
C i ,n

i+ıi/2

]
f n+1
i+ıi
−
(

1

h
C i ,n

i+ıi/2 − δiB
i ,n
i+ıi/2

)
f n+1
i ,

where we set

B i (x , t, u) =
1

2

n∑
j=1

∂xj aij(x , t)−bi (x , t; u) C i (x , t) =
1

2
aii (x , t)

and use the following (CC) linear spatial combination of f n+1

f n+1
i+ıi/2 = (1− δi ) f n+1

i+ıi
+ δi f n+1

i , δi ∈ [0, 1/2].

choosing δi = 1
wi
− 1

exp(wi )−1 where wi = h B i ,n
i+ıi/2/C i ,n

i+ıi/2.
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A receding horizon model predictive control scheme

Let (0,T ) be the time interval where the process is considered.
We assume time windows of size ∆t = T/N with N a positive
integer. Let tk = k∆t, k = 0, 1, . . . ,N. At time t0, we have a
given initial PDF denoted with ρ and with fd(·, tk), k = 1, . . . ,N,
we denote the sequence of desired PDFs.

Algorithm (RH-MPC)

Set k = 0; assign the initial PDF, f (x , tk) = ρ(x) and the targets
fd(·, tk), k = 0, . . . ,N − 1;

1. In (tk , tk+1), solve minu J(f (u), u).

2. With the optimal solution u compute f (·, tk+1).

3. Assign this PDF as the initial condition for the FP problem in
the next time window.

4. If tk+1 < T , set k := k + 1, go to 1. and repeat.

5. End.
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The solution of the optimization problem
In Step 1. of RH-MPC, we need to solve minu∈R` J(f (u), u).
For this purpose, we implement a nonlinear conjugate gradient
(NCG) scheme with Dai and Yuan β and a robust bisection
linesearch.

Algorithm (NCG Scheme)

I Input: initial approx. u0, d0 = −∇Ĵ(u0), index k = 0,
maximum kmax , tolerance tol .

1. While (k < kmax && ‖gk‖R` > tol ) do
2. Use Algorithm Bisection to search steplength αk > 0 along dk

satisfying the Armijo - Wolfe conditions;
3. Set uk+1 = uk + αk dk ;
4. Compute gk+1 = ∇Ĵ(uk+1);
5. Compute βDY

k

6. Let dk+1 = −gk+1 + βDY
k dk ;

7. Set k = k + 1;
8. End while
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Application to one-dimensional problems

A Ornstein-Uhlenbeck process with additive control: a massive
particle immersed in a viscous fluid and subject to random
Brownian fluctuations due to interaction with other particles.

b(Xt , t; u) = −γXt + u, σ(Xt , t) = σ

where Xt represents the velocity of the particle and u is the
momentum induced by an external force field.
A geometric-Brownian process with additive drift control: The
classical Merton’s portfolio problem models the wealth and a wide
variety of exotic options and other derivative contracts.

b(Xt , t; u) = (µ+ u)Xt σ(Xt , t) = σXt

where Xt is the wealth and u represents a fraction of the portfolio
invested in a risk free and constant interest rate market.
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A Ornstein-Uhlenbeck process with additive control

The initial distribution is a Gaussian with zero mean and variance
σ = 0.1. The target is also Gaussian with mean value following the
law x(t) = 2 sin(πt/5) and variance σ = 0.2. We have time
windows of ∆t = 0.5 and T = 5. Parameter values γ = 1, ν = 0.1.
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A geometric-Brownian process with additive drift control
The initial and target distributions are in the log-normal form

fd(x , t) =
1

x
√

2πσ2
exp

(
− [log(x)− µ̃(t)]2

2σ2

)
.

where for the initial distribution µ̃(t0) = 0.8, σ = 0.1, and for the
target distribution µ̃(t) = 1 + sin(πt/5) and σ = 0.1.
We have ∆t = 0.25 and T = 2.5. Parameter values
µ = 1, σ = 0.1 and ν = 0.1.
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Application to multidimensional problems

A two-species generalized stochastic Lotka-Volterra prey-predator
model {

dX1 = b1(X1,X2; u1)dt + σ1(X1)dW1t

dX2 = b2(X1,X2; u2)dt + σ2(X2)dW2t

where X1(t) and X2(t) represent populations of prey and
predators, respectively.
The drift terms including the controllers u1 and u2 are as follows{

b1(X1,X2; u1) = a1X1 − b1X 2
1 − cX1X2 + u1

b2(X1,X2; u2) = a2X2 − b2X 2
2 + cX1X2 + u2

Here, u1 and u2 represent the rate of release of population species

The diffusion is σ1(X1) = σ
√

b1X 2
1 and σ2(X2) = σ

√
b2X 2

2 .
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Fast stabilization of the stochastic Lotka-Volterra model
The equilibrium PDF (at t →∞) is given by the following

fd(x1, x2) = m

[
1

x1
exp

(
2A1

σ2
log(x1)− 2

σ2
(x1 − 1)

)]
×
[

1

x2
exp

(
2A2

σ2
log(x2)− 2

σ2
(x2 − 1)

)]
.

We choose T = 10 and time windows of size ∆t = 1. Control
weights ν = 0.1 and ν = 0.001. Dashed and dot-dashed lines are
u1, u2. Solid line represents ‖f (·, tk)− fd(·,T )‖∞ with controlled f .
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Tracking a trajectory with a limit-cycle model

Consider a noised limit cycle equation with control as follows

dX1 = (X2 + (1 + u1 − X 2
1 − X 2

2 )X1) dt +σdW1t

dX2 = (−X1 + (1 + u2 − X 2
1 − X 2

2 )X2) dt +σdW2t .

The purpose of the control is to track the target given by a
bi-modal multivariate Gaussian PDF

fd =
1

2

exp

(
− (x1 − µ11)

2

2σ2
11

− (x2 − µ21)
2

2σ2
21

)
2πσ11σ21

+
1

2

exp

(
− (x1 − µ12)

2

2σ2
12

− (x2 − µ22)
2

2σ2
22

)
2πσ12σ22

with peaks placed symmetrically with respect to the origin at the
points (µ11, µ21) = (−1.2, 0.8) and (µ12, µ22) = (1.2,−0.8)
We have T = 30 and the time-window size is ∆t = 5.
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A controlled noised limit-cycle model
The Fokker-Planck RH-MPC control strategy is able to drive the
system to a bi-modal PDF configuration (!) starting from a initial
approximate delta-Dirac PDF located at the point (1.5, 1.5).
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Conclusion and thanks
A novel Fokker-Planck optimization framework for determining controls
of the PDF of multidimensional stochastic processes was presented.

The control strategy was based on a receding-horizon model predictive
control scheme where optimal controls were obtained minimizing a
deterministic PDF objective under the constraint given by the
Fokker-Planck equation that models the evolution of the probability
density function.

Thanks a lot for your attention
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This book fills a gap between theory-oriented investigations in PDE-constrained optimization 
and the practical demands made by numerical solutions of PDE optimization problems. The 
authors discuss computational techniques representing recent developments that result from 
a combination of modern techniques for the numerical solution of PDEs and for sophisticated 
optimization schemes. 

Computational Optimization of Systems Governed by Partial Differential Equations offers 
readers a combined treatment of PDE-constrained optimization and uncertainties and an 
extensive discussion of multigrid optimization. It provides a bridge between continuous 
optimization and PDE modeling and focuses on the numerical solution of the corresponding 
problems.

This book is intended for graduate students working in PDE-constrained optimization and 
students taking a seminar on numerical PDE-constrained optimization. It is also suitable as  
an introduction for researchers in scientific computing with PDEs who want to work in the 
field of optimization and for those in optimization who want to consider methodologies from 
the field of numerical PDEs. It will help researchers in the natural sciences and engineering  
to formulate and solve optimization problems. 
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