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A multidimensional stochastic process

We consider continuous-time stochastic processes described by the
following multidimensional model

{ dX: = b(Xy, t; u) dt + o(Xe, t) dW;
Xto = XO,

where X; € R" is the state variable and dW; € R™ is a
multi-dimensional Wiener process, with stochastically independent
components.

We consider the action of a time-dependent control u(t) € R’ in
the drift term b(Xt, t; u) that allows to drive the vector random
process.
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The average objective

Since X; is random, a deterministic objective will result into a
random variable for which an averaging step is required.
Therefore, the following objective is usually considered

.
J(X, u) = E[/O L(t, Xe, u(t)) dt + W[X7]].

With this formulation it is supposed that the controller knows (all)
the state of the system at each instant of time!

The average E[-] of functionals of X; is omnipresent in almost all
stochastic optimal control problems considered in the literature.
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Alternative approaches with deterministic objective

The state of a stochastic process can be characterized by the
shape of its statistical distribution represented by the probability
density function (PDF).

In some works, control schemes were proposed, where the
deterministic objective depends on the PDF of the stochastic state
variable and no average is needed. Examples are objectives defined
by the Kullback-Leibler distance or the square distance between
the state PDF and a desired one.

Nevertheless, stochastic governing models are used and the state
PDF is obtained by averaging or by an interpolation strategy.
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The Fokker-Planck (-Kolmogorov) equation (step 1)

Consider a particle at x at time t. Let 7T(+)( ) and 7TA (x) be the
probabilities that the particle will be at x + Ax and x — Ax, at
t+ At.

Let p(xo, x; t)Ax be the conditional probability that the particle
arrives at x at time t starting from xg at t = 0 following a random
path. We have

p(xo0, x; t)Ax = p(x0,x — Ax;t — At)w (Ax (x — Ax)Ax
+ p(xo,x +Ax;t — At)w (A; (x+Ax)Ax
+ p(X07X1t_At)(]‘_7TA+ ( )_ﬂ-Ax( ))AX
From this discrete model of a stochastic process, we build one with
infinitesimal increments for Ax, At — 0.

For a meaningful statistical limiting process, the probabilities w(AJ;)
and W(A;) must be subject to some constraints. mggagg
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The Fokker-Planck (-Kolmogorov) equation (step 2)

Consider the mean of change of particle position X(t), conditional
on X(t) =

B(x) = Jim EIX(t + A1) _A):(t)X(t) ~ «]

and the corresponding variance is given by

e VIX(E+ B8 = X0)IX(2) = X]
ol = Jfim, At '

On the other hand, given the particle at x at time ¢, then at time
t + At the mean value of change of position is as follows

Ax(r)(x) - 750(x))

and the corresponding variance is given by

AR () +75) 00 = (g 0) - nf ). L
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The Fokker-Planck (-Kolmogorov) equation (step 3)

For the limiting process, we require

o (F)py () oy AX
B(X) - AX,IIAnt]ﬁO(TrAX (X) T‘—Ax (X))At
and
_ T Y o VR & MUNCAVAC o
a(x) = AX!IAngﬁO(WAX () = 7 () = (T (%) = 7 () ) 1

These provide constraints for the form of W(A—t() (x) and 7T(A_X)(X).
We suppose the scale law (Ax)? = AAt (Wiener or Gaussian

white noise). The choices

7§(x) = oa(a(x) + 5(x)Ax)

and

. 1
T () = 54(a(x) = B()Ax) oy

satisfy the above constraints. We require a(x) > B(x)Ax.
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The Fokker-Planck (-Kolmogorov) equation (step 4)

By expanding in Taylor series (step 1) up to second order, we
obtain

p =~ (p— pxQx+ %pXXAx2 — ptAt)(WX;) W(A—;)/AX + 17r(A )" Ax?)
+ (p+ pxDx+ 2pXXAx — ptAt)( (+) + 7T(+) Ax + 7r(A ) A2 )
+ (p—peAt)(1— WAX - 7TAX)

Finally, by using the constraints for « and 3, and the scale law, we
obtain the Fokker-Planck equation

Fep(x0, x; t) = 28§X( a(x)p(x0, x; t)) — Ox(B(x)p(x0, x; 1))-
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A new approach based on the Fokker-Planck equation

The evolution of the PDF given by f = f(x, t), x € Q C R",
associated to the stochastic process is modelled by the
Fokker-Planck (FP) equation.

1 n ) n
Oef — 5 > 0%, (a5 ) + ;ax, (bi(u) f) =0

ij=1
f(to) =p

This is a partial differential equation of parabolic type with Cauchy
data given by the initial PDF distribution.

The formulation of objectives with the PDF and the Fokker-Planck
equation provide a consistent framework to the optimal control of

stochastic processes.
I um\‘)ﬁﬁﬁfﬁf
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The transition density probability and the PDF

Denote with f(x, t) the probability density to find the process at
x=(x1,...,Xp) at time t.

Let lA‘(x, t;y,s) denotes the transition density probability
distribution function for the stochastic process to move from
y € R" at time s to x € R" at time t.

Both f(x,t) and f(x, t; y,s) are nonnegative functions and the
following holds

f(x,tly,s) >0, / fF(x,tly,s)dx =1 forall t>s.
Q
Given an initial PDF p(y,s) at time s, we have the following

Flx,t) = /Q P tly.s)oly,s)dy,  t>s.
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Also p should be nonnegative and [, p(y,s)dy = 1.
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A tracking objective

We consider the control problem formulated in the time window
(tk, tk+1) with known initial value at time .

We formulate the problem to determine a piecewise constant
control u(t) € R such that the process evolves towards a desired
target probability density f4(x, t) at time t = tx1.

This objective can be formulated by the the following tracking
functional

1 v
S, u) = Sl ter) = fal ti+1) | 20 + 5’“’2'

where [u|?> = v + ... + 2.
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A Fokker-Planck optimal control problem

The optimal control problem to find v that minimizes the objective

J subject to the constraint given by the FP equation is formulated
by the following

. 14
min J(f, u) := Sl (s tea) = falsy tern)f2i0) + 5\“\2
atf——z (ai +Za i(u)f) =0
ihj=1
f(tk) = p.

——
S

—s— Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
Past Control Input

¢ Prediction Horizon >
L !
T
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A Fokker-Planck optimality system

This first-order necessary optimality condition is characterized as
the solution of the following optimality system

t -2 EI,_[ 1 XX (alj )+Z7:1 X; (b:(U)f):O in Qk
f(thk =p(x) inQ

P=0 in Qk
p(x tk+1) = f(X tk+1) — fd(X, tk+1) in
f=0,p=0 onXg
vu+ (Z,.”:lax,(gg; ), ) =0 inQ I=1,....¢

where Qx = Q x (tk, tk+1) and X, = 0Q x (tk, tk+1).
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The reduced gradient

In the optimality equation, we have used the following inner
product

(6,0) = / /Q b(x. 1) bx. £) de .

The /th component of the reduced gradient vis given by

n

N 0b;
e X — f 5 5 / == 1’ ceey Xy
e (L0 (551) ) f
where p = p(u) is the solution of the adjoint equation for given
f(u).

Notice that we are discussing a nonlinear control mechanism and
thus the optimization problem is nonconvex. _
E\‘/‘Ek’s)lﬂf
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Theory of the FP control problem (step 1)

Consider the following FP equation, £(fy, u,g) = 0, as follows

Otf(x,t) — 38)20( f(x,t) + 0x (b(x; u) f(x,t)) = g(x,t)
f(x,t) = 0
f(x,0) = fo(x)

where a > 0, u € U, and fy € L?(Q2). Consider the
Ornstein-Uhlenbeck process with b(x; u) = —yx + u. We
introduce a source term g € L%(Q).
Define V = H}(Q) and V' = H71(Q) its dual with (-, -)yy the
duality pairing and H = L?(Q) the pivot space. We consider the
space

W ={wel?0,T;V),w="L30,T;V')}

with norm [[w(3y = w3y, + [#Ba(y.
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Theory of the FP control problem (step 2: lemma)
Assume that b(x; u) = y(x) +u, v € CHQ), fp € H, u € U, and
g € L2(V'). Then if f is a solution to &(fy, u, g) = 0, the following
inequalities hold.

1]l 2(v) < \foOHHJr 2HgHL2(V/
11l ooty < ol + axllgllzvry

1fllzovry < (lullu+%) (1folls + eallgllzovy)

©oan [ =llfolli + Sl ) + el
Q2 2 OllH T &llz(v) glirz(vr)

where s = \[(572) 7, 7 = maxsealh ()] () s
sufficiently small, cpr is the Poincaré - Friedrichs constant

corresponding to €2, a; = max (%, %) and ap satisfies the E‘é%ﬁﬁé’

following condition a||0w@||v: < asl|ellv, Voe V.
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Theory of the FP control problem (step 3: propositions)

Proposition

Assume that b(x; u) = v(x) + u, v € CY(Q) and sufficiently small

5 = maxxea(|7(X)], |7 (x)]), fo € H, and u € U. Then the problem
E(fy, u,0) = 0 admits a unique solution f in L>(V) N L>®(H) with

f e L2(V'). In particular, we have f € C([0, T]; H).

Proposition
The mapping N : U — C([0, T]; H), u — f = A(u) is the solution

to E(fo,u,0) =0, is Fréchet differentiable and N),. - h satisfies the
equation

e+ Ae = u"Be + hBf* + Ce
e(0) =0,

where f* = /\(U*) E\‘/‘Eﬁglﬂf
WURZBURG
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Theory of the FP control problem (step 4: propositions)

Proposition
The functional J(u) is differentiable and we have the derivative

.
dJ(u)-h= <yu+/ (qu,p)V,th,h> . VheU,
0 U

where p is the solution to the adjoint equation
—up—aug p—b(x;u)up=0, p(x,T)=Ff(x,T) - fy(x),

and f is the solution to E(fy, u,0) = 0.
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Theory of the FP control problem (step 5: propositions)

Proposition

Let f* and f;° be the states corresponding to the optimal controls
uj and uy, respectively. Further, let pj and p5 be the adjoint states
corresponding to the optimal controls uj and u3, respectively.
Under the assumption of Lemma 1, the following inequalities hold

Hf*HL2 j:1727

\[HfbHH,
£ oy < Mol J=1,2,
. 1 _
1Pj I 2(vy < s\%HE(T) —fylly,  j=1,2,

1Pj leoory < NG(T) = fallw,  J=1,2.
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Theory of the FP control problem (step 6: uniqueness)

Proposition
Using previous estimates and for sufficiently small initial condition,
i.e. small ||fo||n, a unique optimal control exists.

1 o 1
o= wely < (IA(T) = ol + 25l + SIR(T) - i)

V2

lur — wallullfollH
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The discretization of the FP optimality system

The forward- and adjoint FP equations are discretized using the
second-order backward time-differentiation formula (BDF2) as
follows

m—2

oo ym o AT T e e 3R AR
BD7i - 25t BDPi | : 25t :

For spatial-discretization we use the Chang-Cooper (CC) scheme
that is stable, second-order accurate, positive, and conservative.
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The Chang-Cooper scheme
The FP equation can be written in flux form, 0;f = V - F, where

h Z |+|, l:iL|;/2)'

The flux in the /-th direction is computed as follows

, 1
1n in n+1 in n+1
I+I /2= [(1 - 5I)Bi+|/ hCI+| /2:| f;+_:7 _< CI+I i/2 =0 Bl+| /2> fl "

where we set
; 1
(x,t,u) Z@XJ ajj(x, t)=bi(x, t; u) C'(x,t) = 5 aji(x, t)

and use the following (CC) linear spatial combination of !
fr = (1—6&) £+ 5 £ 5 €00,1/2].

i+1;/2 i+1; \
=
where w; = h B _/Chn

. - 1
choosmg 5,’ = Wi ~ exp(wi)—1 .+|,/2/ i+1;/2°
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A receding horizon model predictive control scheme

Let (0, T) be the time interval where the process is considered.
We assume time windows of size At = T /N with N a positive
integer. Let t, = kAt, k=0,1,..., N. At time ty, we have a
given initial PDF denoted with p and with (-, ), k=1,..., N,
we denote the sequence of desired PDFs.
Algorithm (RH-MPC)
Set k = 0; assign the initial PDF, f(x, tx) = p(x) and the targets
fd(-,tk), k=0,....,.N-1;

1. In (tk, txs1), solve min, J(f(u), u).

2. With the optimal solution u compute f(-, tx11).

3

. Assign this PDF as the initial condition for the FP problem in
the next time window.

>

Iftyq1 < T, set k: = k+1, go to 1. and repeat.
5. End. =
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The solution of the optimization problem

In Step 1. of RH-MPC, we need to solve min,cge J(f(u), u).
For this purpose, we implement a nonlinear conjugate gradient
(NCG) scheme with Dai and Yuan /3 and a robust bisection
linesearch.

Algorithm (NCG Scheme)

> Input: initial approx. ug, dog = —V.Al(uo), index k =0,
maximum Kkpax, tolerance tol.
1. While (k < kmax && ||gk|lre > tol ) do
2. Use Algorithm Bisection to search steplength o > 0 along dj
satisfying the Armijo - Wolfe conditions;

3. Set Ukl = Uk + OlkAdk,'
4. Compute gx+1 = VI(ury1);
5. Compute BPY
6. Let dxy1 = —gk+1 + ﬂkDY di;
7. Set k=k+1; UNIVERSITAT
8. End while [
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Application to one-dimensional problems

A Ornstein-Uhlenbeck process with additive control: a massive
particle immersed in a viscous fluid and subject to random
Brownian fluctuations due to interaction with other particles.

b(X:, t; u) = —y Xt + u, o(Xe,t) =0

where X; represents the velocity of the particle and u is the
momentum induced by an external force field.

A geometric-Brownian process with additive drift control: The
classical Merton's portfolio problem models the wealth and a wide
variety of exotic options and other derivative contracts.

b(Xe, t;u) = (1 + u)Xe o(Xe, t) = o X¢

where X; is the wealth and u represents a fraction of the portfolio
invested in a risk free and constant interest rate market. Egggﬁgg
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A Ornstein-Uhlenbeck process with additive control

The initial distribution is a Gaussian with zero mean and variance
o = 0.1. The target is also Gaussian with mean value following the
law x(t) = 2sin(7t/5) and variance o = 0.2. We have time
windows of At = 0.5 and T = 5. Parameter valuesy =1, v =0.1.

6 2
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A geometric-Brownian process with additive drift control
The initial and target distributions are in the log-normal form

1 log(x) - ﬁ(t)]2>
fq(x, t) Y e exp ( = .
where for the initial distribution fi(ty) = 0.8, o = 0.1, and for the
target distribution fi(t) = 1 + sin(wt/5) and ¢ = 0.1.
We have At = 0.25 and T = 2.5. Parameter values
w=10=01and v=0.1.

3 0.5

25 =

o 00000000 |

> 1.5

1

0.5
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Application to multidimensional problems

A two-species generalized stochastic Lotka-Volterra prey-predator
model
dXi = bl(Xl, Xo; ul)dt + Ul(Xl)dWh»
{ dXs = bg(Xl,Xz; UQ)dt + U2(X2)dW2t
where Xi(t) and Xx(t) represent populations of prey and
predators, respectively.
The drift terms including the controllers u; and u, are as follows

by (X1, Xo; u1) = a1 X1 — b1 X2 — X1 Xo + w1
bo(X1, Xo; u2) = a2 Xa — ba X3 + cX1 X2 + w2

Here, u1 and wus represent the rate of release of population species
The diffusion is 01(X1) = o4/b1 X2 and 02(X2) = 04/ b2 X3.
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Fast stabilization of the stochastic Lotka-Volterra model
The equilibrium PDF (at t — 00) is given by the following

fixa,50) = m {1 exp (2;‘1 log(xt) — %(X1 - 1))]

X1
1 2A, 2
— I ——=be-1
X [Xz exp < 2 og(x2) 2( 2 )>]
We choose T = 10 and time windows of size At = 1. Control
weights v = 0.1 and v = 0.001. Dashed and dot-dashed lines are
u1, up. Solid line represents ||7(-, tx) — f4(-, T)||co With controlled f.
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Tracking a trajectory with a limit-cycle model

Consider a noised limit cycle equation with control as follows

dXi = (Xo+ L+ — X2 — X3)X1)dt  +odWi,
dXo = (=X + (L4 up — X2 — X2)Xp) dt  +odWs,.

The purpose of the control is to track the target given by a
bi-modal multivariate Gaussian PDF

(x1 — p11)®> (2 — p=)? (x1 — u12)®> (32 — p22)?
exp |\ — 2 - 2 exp\ — 2 - 2
£ = 1 201, 203 _|_1 201, 209
4= 2 271‘0'110‘21 2 27!‘0120’22

with peaks placed symmetrically with respect to the origin at the

points (,ull,,ugl) = (—1.2,0.8) and (,ulg,ugg) = (1.2, —0.8)
We have T = 30 and the time-window size is At = 5.
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A controlled noised limit-cycle model

The Fokker-Planck RH-MPC control strategy is able to drive the
system to a bi-modal PDF configuration (!) starting from a initial
approximate delta-Dirac PDF located at the point (1.5, 1.5).
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Conclusion and thanks

A novel Fokker-Planck optimization framework for determining controls
of the PDF of multidimensional stochastic processes was presented.

The control strategy was based on a receding-horizon model predictive
control scheme where optimal controls were obtained minimizing a
deterministic PDF objective under the constraint given by the
Fokker-Planck equation that models the evolution of the probability
density function.

Thanks a lot for your attention
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