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The original Munford-Shah

The Mumford-Shah (MS) model:

min
C ,s

µ|C |+ α

2

∫
Ω

(s − s0)2 +
γ

2

∫
Ω\C
|∇s|2, (1)
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The piecewise constant Munford-Shah

The PC Mumford-Shah (MS) model:

min
r

min
{Γi}ri=1

min
{ci}ri=1

r∑
i=1

µ|∂Γi |+
α

2

∫
Γi

(ci − s0)2 s.t.

Ω = ∪ri=1Γi and Γi ∩ Γj = ∅ ∀i 6= j (2)



The Potts model

Given {fi}ni=1 for a fixed number n, the Potts models needs to:

min
Γi

n∑
i=1

µ|∂Γi |+
∫

Γi

fi , Ω = ∪ni=1Γi , Γi ∩ Γj = ∅,∀i , j .

So if the number n and ci are known, the PC Mumford-Shah is
reduced to the Potts model choosing fi = |ci − u0|2.
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Combining Mumford-Shah with GAC

It is possible to combine these two popular models together and it
has been shown to have superior property with no extra
computational cost:

min
n,Γi ,ci

n∑
i=1

∫
Γi

(u0 − ci )
2 + β

∫
∂Γi

g(|∇uσ|)ds



Chan-Vese model – One of the most popular segmentation
model

Given an input image u0, the 2-phase level set representation is
find φ and ci from:

I

min
Γ,c1,c2

α|Γ|+
∫

Ω1

|c1 − u0|2 +

∫
Ω2

|c2 − u0|2.

I

min
φ,c1,c2

∫
Ω
α|∇H(φ)|+{H(φ)(c1−u0)2+(1−H(φ))(c2−u0)2}dx ,

I H(φ) = 1 if φ > 0, H(φ) = 0 if φ < 0

I From φ, we get Ω1 = {x | φ > 0}, Ω2 = {x | φ ≤ 0}.
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More than two regions–multiple level-sets
(Chan and Vese, 2000)

Ω++ = {x ∈ Ω, φ1 > 0, φ2 > 0}
Ω+− = {x ∈ Ω, φ1 > 0, φ2 < 0}
Ω−+ = {x ∈ Ω, φ1 < 0, φ2 > 0}
Ω−− = {x ∈ Ω, φ1 < 0, φ2 < 0} .



Multiphase level set representation of CV model

min
φ1,φ2,{ci}4

i=1

α

∫
Ω
|∇H(φ1)|+ α

∫
Ω
|∇H(φ2)|+ Edata(φ1, φ2),

where

Edata(φ1, φ2) =

∫
Ω
{H(φ1)H(φ2)|c2−u0|β+H(φ1)(1−H(φ2))|c1−u0|β

+(1−H(φ1))H(φ2)|c4−u0|β+(1−H(φ1))(1−H(φ2))|c3−u0|β}dx .

Ω1 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) < 0}
Ω2 = {x ∈ Ω s.t. φ1(x) > 0, φ2(x) > 0}
Ω3 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) < 0}
Ω4 = {x ∈ Ω s.t. φ1(x) < 0, φ2(x) > 0}

What are the Euler-Lagrangian equation? How about
segmentation of more regions?



Chan-Vese model – Advantages

I Use the level set of Osher and Sethian (JCP1998): can handle
very general geometries.

I Region based: robust with noise, images without edges.



Chan-Vese model – disadvantages

I Slow in convergence.

I Each Ωi can contain many disconnected subregions, we must
have u = ci in Ωi .

(a) Input images (b) Segmented image

I If u needs to take n constant values, then we need n-phases
for the segmentation.

I Our new model allows u to take many constant values inside
Ωi .
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Chan-Vese model – disadvantages

I Need to use many level set functions or labeling functions

(a) Input images (b) Segmented image (8 phases)

Figure: Our new model never needs more than 4-phases to get the
same segmentation.



Chan-Vese model – disadvantages

I Slow in convergence.

I Non-convex minimization: may get stuck with local
minimums, depends on initial value.

(a)
input initial segment curves

(b)

Figure: Images from Brown-Chan-Bresson (IJCV 2011).



The new 4-color model based on Munford-Shah

The New 4-Color Model Based On Munford-Shah



The new 4-color theorem

Any planar graph (map) can be painted and separated by 4 colors.



The new 4-color model based on Munford-Shah

The new model: Due to 4-color theorem:

min
{Ωi}4

i=1

min
{si}4

i=1

4∑
i=1

µ|∂Ωi |+
α

2

∫
Ωi

(si − s0)2 s.t.

Ω = ∪4
i=1Ωi ,Ωi ∩ Ωj = ∅ ∀i 6= j

and |∇si (x)|2 = 0 in Ωi . (6)

si : Ω 7→ R, i = 1, 2, 3, 4.



The new 4-color model based on Munford-Shah

∇si = 0 in Ωi

6m
si = const in Ωi .



The new 4-color model based on Munford-Shah

si : Ω 7→ R,

∇si = 0 in Ωi

si = const, but the
constants can differ from
one connected subregion
to another connected
subregion.



Regulatrization of si

min
{Ωi}4

i=1

min
{si}4

i=1

4∑
i=1

µ|∂Ωi |+
α

2

∫
Ωi

(si − s0)2 +
σ

2

∫
Ω
|∇si |2 s.t.

Ω = ∪4
i=1Ωi , Ωi ∩ Ωj = ∅ ∀i 6= j and |∇si (x)|2 = 0 in Ωi . (7)

Adding σ, we regularize the values of si outside Ωi . In fact, the
values of si is the harmonic extensions of the piecewise constant
values of si inside Ωi .



Representation of {Ωi}4
i=1

I Using level set functions (slow, non-convex).

I Using binary labels: u1, u2 ∈ {0, 1}.
I Using a single label: u ∈ {1, 2, 3, 4}.
I Using the characteristic function ui = χΩi

, i = 1, 2, 3, 4.

All can be convexified and have fast solvers.
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Chan-Vese (product) binary labelling

I Use two binary functions: u1, u2 ∈ {0, 1}.
I Corresponding characteristic functions:
ψ1 = u1u2, ψ2 = (1− u1)u2, ψ3 = u1(1− u2), ψ4 =
(1− u1)(1− u2).

I Convex equivalence exists: Bae-T. (EMMCVPV09), Bae-T.
(JMIV 2014), Goldluecke-Cremers ECCV(2010).



PCLS labelling

I Use a single labeling functions: u ∈ {1, 2, 3, 4}.
I Corresponding characteristic functions:
ψi = 1 when u = i , else ψi = 0.

I Convex equivalence exists: Ishikawa, Darbon-Segelle,
Pock-Bremer-Chambolle-et-al, Bae-T., Brown-Bresson-Chan,
Golstein-Bresson-Osher.



Characteristic function labelling

I Use labeling functions: ui ∈ {0, 1},
∑4

i=1 ui = 1.

I Convex equivalence exists: Pock-Cremers-Chambolle-et-al
(ICCV 2008, ...), Bae-Yuan-T. (IJCV2010), Lellman-et-al
(2010,2011,2012), Zach-et-al (2009).



Characteristc Labelling functions (PCLS)

ui (x) =

{
1, ∀x ∈ Ωi ,

0, otherwise.
(8)

The problem (7) can thus be rewritten as

min
{ui∈{0,1}}4

i=1

min
{si}4

i=1

4∑
i=1

∫
Ω
µ(x)|∇ui |+

α

2
ui (si − s0)2 +

σ

2
|∇si |2

4∑
i=1

ui (x) = 1 ∀x ∈ Ω

and ui (x)|∇si (x)|2 = 0 ∀x ∈ Ω, i = 1, . . . , 4. (9)



Lagrangian functional

We use Lagrangian method to deal with the constrain. The
corresponding Augmented Lagrangian functional is:

L({ui}4
i=1, {si}4

i=1, λ) =
4∑

i=1

∫
Ω
µ|∇ui |+

α

2

∫
Ω
ui (si − s0)2 +

σ

2

∫
Ω
|∇si |2

+

∫
Ω
λ(x)ui (x)|∇si (x)|2 +

r

2
ui (x)|∇si (x)|2.

ui (x) ≥ 0,
4∑

i=1

ui (x) = 1 ∀x ∈ Ω (10)



An algorithm

(uk+1
i , sk+1

i ) = arg min
{ui∈[0,1]}4

i=1,{si}
4
i=1

4∑
i=1

∫
Ω

wb|∇ui |+
α

2

∫
Ω

ui (si − s0)2

+
σ

2

∫
Ω

|∇si |2 +

∫
Ω

ui
(
λki |∇si |2 +

r

2
|∇si |2

)
s.t.

4∑
i=1

ui (x) = 1.

λk+1
i = λki + rui |∇si |2 (11)

where wb(x) can be an edge detector s.a. wb(x) = 1
1+µ|∇s0(x)|2 .



An algorithm: Subproblem I

min
ui∈[0,1]

∫
Ω
wb|∇ui |+

∫
Ω
ui fi s.t.

4∑
i=1

ui (x) = 1. (12)

where fi = α
2 (si − s0)2 + |∇si |2(λki + r

2 ).



An algorithm: Subproblem II

min
si

∫
Ω

hi
2

(si − s0)2 +
gi
2
|∇si |2 (13)

where hi = αui and gi = σ + (2λki + r)ui .



The algorithm

Algorithm for the unsupervised image segmentation model (7) using the four color theorem (with a priori unknown

number of regions).

I Initialize the ui (random initialization or k-mean). While not
converged

I sk+1
i computed with Algorithm for si

I uk+1
i computed with Algorithm for ui

I λk+1
i = λki + ruk+1

i |∇sk+1
i |2



Numerical Experiments

Figure: (a) Original image. (b) segmentation into four phase {Ωi}4
i=1 (two distinct regions, central disk and

upper right part are merged). (c) segmentation result after segmenting each phase into four sub-phase (this

produces sixteen sub-phases {Ωi,j}4
i,j=1) and recoloring into four phases (correct result). (d) piecewise constant

approximation of (a).



Local minimizers and re-coloring

Two-level recursive algorithm for the unsupervised image segmentation model (2) using the four color theorem

(with a priori unknown number of regions).

I Initialize the ui (random initialization or k-mean), select the
scale parameter α which controls the number of regions.
While not converged.

I Compute four phases {Ωi}4
i=1 with Algorithm 1

I Partition each phase {Ωi}4
i=1 into 4 sub-phases {Ωi,j}4

i,j=1 with
Algorithm 2

I Recolor the 16 sub-phases into 4 phases



Numerical Experiments

Figure: Comparison between the standard recursive bi-partitioning method and our method: (a) Original
image. (b) segmentation after 1st bi-partitioning. (c) segmentation after 2nd/final bi-partitioning
(over-segmentation). (d) Our algorithm (correct segmentation).



Numerical Experiments

Figure: Influence of the regularization parameter α. First row is the original image. Second row is the
four-color segmentation result. Third row is the piecewise constant approximation of the image. First column
α = 1.5e5/2552, second column α = 3e4/2552, third column α = 1e4/2552, fourth column α = 1e3/2552.



Numerical Experiments

Figure: First and fourth rows present the original image. Second and fifth rows show the four-color
segmentation result. Third and last rows display the piecewise constant approximation of the image s0. Each
column present a different value of α, which controls the number of final segmented regions.



Numerical Experiments

Figure: First and fourth rows present the original image. Second and fifth rows show the four-color
segmentation result. Third and last rows display the piecewise constant approximation of the image s0. Each
column present a different value of α, which controls the number of final segmented regions.



Advantages

I Can automatically determine how many regions.

I Only uses 4 labels.

I Can take as many constants as is needed for a given
regularization parameters.

I Regularization parameter controls how many regions and
constants.

I Fast to compute.
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Historical overview

I Vese-Chan (2002, IJCV) has proposed to use 4-color theorem
for the original Mumford-Shal model.

I Hodneland-Tai-Gerdes (2009, IJCV),
watersehd+levelset+4color.

I Liu-Tao (2011, PR), Tao-Tai (UCLA-CAM-09-13).

Ref: Four color theorem and convex relaxation for image
segmentation with any number of regions. Inverse Problems &
Imaging 7 (3), 1099-1113.



Ref: Four color theorem and convex relaxation for image
segmentation with any number of regions. Inverse Problems &
Imaging 7 (3), 1099-1113.


