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The original Munford-Shah

The Mumford-Shah (MS) model:

min ,u|C|+a/(SSo)2+7/ Vsl?, (1)
C.s 2 Ja 2 Ja\c



The original Munford-Shah

The Mumford-Shah (MS) model:

min u/C]| +%/(s—so)2+ %/ Vs|2, (1)
Cys Q Q\C




The piecewise constant Munford-Shah

The PC Mumford-Shah (MS) model:
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The Potts model

Given {f;}"_; for a fixed number n, the Potts models needs to:
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The Potts model

Given {f;}"_; for a fixed number n, the Potts models needs to:

mriin;u!arilJr/r fi, Q=U" T, [Nl =0,Yij.

I

So if the number n and ¢; are known, the PC Mumford-Shah is
reduced to the Potts model choosing f; = |¢; — wpl?.



Combining Mumford-Shah with GAC

It is possible to combine these two popular models together and it
has been shown to have superior property with no extra
computational cost:
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Chan-Vese model — One of the most popular segmentation

model

Given an input image ug, the 2-phase level set representation is
find ¢ and ¢; from:
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Chan-Vese model — One of the most popular segmentation

model

Given an input image ug, the 2-phase level set representation is
find ¢ and ¢; from:

min «a|l| —i—/ lcr — wol? —|—/ | — wol?.
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> H(@)=1if ¢ >0, H(¢) =0 if ¢ < 0
» From ¢, we get Q1 = {x]| ¢ > 0}, Q> = {x] ¢ <0}.



More than two regions—multiple level-sets
(Chan and Vese, 2000)

¢1<0
$2<0

Qiy = {x€eQ, ¢1>0, ¢ >0}
{xeQ, ¢1>0, ¢ <0}
{xeQ, ¢1<0, ¢ >0}
Q_ = {x€Q, ¢1<0, ¢2<0}.
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Multiphase level set representation of CV model

min a/ |VH(<Z>1)] +Oé/ |VH(¢2)’ +Edata(¢1;¢2)’
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where
Edata(¢l,¢>2)=/Q{H(qﬁl)f'/(qﬁz)!@—%IB+H(¢1)(1—H(¢>2))ICl—UOIB

+H(1=H(¢"))H (&%) ca —uol” +(1—H(¢") (1~ H(6?))| c3 — uo|”} dx.

Q1 = {x € Qs.t. p*(x) > 0,¢°(x) < 0}
Qo = {x € Qs.t. p1(x) > 0, ¢%(x) > 0}
Q3 = {x € Qs.t. p*(x) < 0,¢%(x) < 0}
Q4 = {x € Qs.t. p1(x) < 0,¢%(x) > 0}




Chan-Vese model — Advantages

> Use the level set of Osher and Sethian (JCP1998): can handle
very general geometries.

» Region based: robust with noise, images without edges.




Chan-Vese model — disadvantages

» Slow in convergence.
» Each €; can contain many disconnected subregions, we must
have u = ¢; in €;.

(a) Input images (b) Segmented image
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(a) Input images (b) Segmented image
» If u needs to take n constant values, then we need n-phases
for the segmentation.



Chan-Vese model — disadvantages

» Slow in convergence.
» Each €; can contain many disconnected subregions, we must
have u = ¢; in €;.

(a) Input images (b) Segmented image
» If u needs to take n constant values, then we need n-phases
for the segmentation.
» Our new model allows u to take many constant values inside
Q;.



Chan-Vese model — disadvantages

> Need to use many level set functions or labeling functions

.
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(b) Segmented image (8 phases)

Figure: Our new model never needs more than 4-phases to get the
same segmentation.



Chan-Vese model — disadvantages

» Slow in convergence.

» Non-convex minimization: may get stuck with local
minimums, depends on initial value.

initial segment

Figure: Images from Brown-Chan-Bresson (1JCV 2011).




The new 4-color model based on Munford-Shah
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The new 4-color theorem

Any planar graph (map) can be painted and separated by 4 colors.
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The new 4-color model based on Munford-Shah

The new model: Due to 4-color theorem:
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The new 4-color model based on Munford-Shah
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The new 4-color model based on Munford-Shah

si:Q— R,
VS,':Oin Q,'

s; = const, but the
constants can differ from
one connected subregion
to another connected
subregion.
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Regulatrization of s;
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Adding o, we regularize the values of s; outside ;. In fact, the

values of s; is the harmonic extensions of the piecewise constant
values of s; inside ;.
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» Using level set functions (slow, non-convex).
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Using the characteristic function u; = xq,, I =1,2,3,4.



Representation of {Q;}?_;

» Using level set functions (slow, non-convex).

» Using binary labels: vy, up € {0,1}.

» Using a single label: v € {1,2,3,4}.

» Using the characteristic function u; = xq,, i = 1,2,3,4.

All can be convexified and have fast solvers.



Chan-Vese (product) binary labelling

» Use two binary functions: uy, up € {0,1}.

» Corresponding characteristic functions:
Y1 =, P2 = (1 — u1)uz, 3 = u1(1 — w2),¢a =
(1 —w)(1— w).

» Convex equivalence exists: Bae-T. (EMMCVPV09), Bae-T.
(JMIV 2014), Goldluecke-Cremers ECCV(2010).



PCLS labelling

» Use a single labeling functions: v € {1,2,3,4}.

» Corresponding characteristic functions:
;i =1 when u =i, else ¥; = 0.

» Convex equivalence exists: Ishikawa, Darbon-Segelle,
Pock-Bremer-Chambolle-et-al, Bae-T., Brown-Bresson-Chan,
Golstein-Bresson-Osher.



Characteristic function labelling

» Use labeling functions: u; € {0,1}, 37 u; = 1.

» Convex equivalence exists: Pock-Cremers-Chambolle-et-al
(ICCV 2008, ...), Bae-Yuan-T. (1JCV2010), Lellman-et-al
(2010,2011,2012), Zach-et-al (2009).



Characteristc Labelling functions (PCLS)

1, Vx e
ui(x) = 8
() {O, otherwise. ®)
The problem (7) can thus be rewritten as
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Lagrangian functional

We use Lagrangian method to deal with the constrain. The
corresponding Augmented Lagrangian functional is:

({ul i= lv{sl i=1> )_
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An algorithm

4
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where wp(x) can be an edge detector s.a. wp(x) = W&W'



An algorithm: Subproblem |

4
min wp|V u; +/ uif; s.t. ui(x) = 1. 12
Jmin [ welval + [ > u) (12)

where f; = 5(s; — s0)% + |Vsi|2(AF + 3):



An algorithm: Subproblem Il

Si
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where h; = au; and g; = o + (2\K + r)u;.



The algorithm

Algorithm for the unsupervised image segmentation model (7) using the four color theorem (with a priori unknown
number of regions).

» Initialize the u; (random initialization or k-mean). While not
converged

> s,-k+1 computed with Algorithm for s;

» uf™ computed with Algorithm for u;

- NN sk



Numerical Experiments

ST

FIgU re. (a) Original image. (b) segmentation into four phase {Q,-}‘,-‘:1 (two distinct regions, central disk and
upper right part are merged). (c) segmentation result after segmenting each phase into four sub-phase (this

produces sixteen sub-phases {€; ; }?j,l) and recoloring into four phases (correct result). (d) piecewise constant
J=

approximation of (a).



Local minimizers and re-coloring

Two-level recursive algorithm for the unsupervised image segmentation model (2) using the four color theorem

(with a priori unknown number of regions).

> Initialize the u; (random initialization or k-mean), select the
scale parameter o which controls the number of regions.
While not converged.
» Compute four phases {Q;}?_; with Algorithm 1
> Partition each phase {Q;}}_, into 4 sub-phases {Q;;},_; with
Algorithm 2
» Recolor the 16 sub-phases into 4 phases



Numerical Experiments

FIgU €. Comparison between the standard recursive bi-partitioning method and our method: (a) Original
image. (b) segmentation after 1st bi-partitioning. (c) segmentation after 2nd/final bi-partitioning
(over-segmentation). (d) Our algorithm (correct segmentation).



Numerical Experiments

FIgU F€: Influence of the regularization parameter cv. First row is the original image. Second row is the
four-color segmentation result. Third row is the piecewise constant approximation of the image. First column
o = 1.5e5/2552, second column o = 3e4/255°, third column o = 1e4 /2552, fourth column a = 1e3/2552.



Numerical Experiments

FIgU F€. First and fourth rows present the original image. Second and fifth rows show the four-color
segmentation result. Third and last rows display the piecewise constant approximation of the image sp. Each
column present a different value of , which controls the number of final segmented regions.



Numerical Experiments

FIgU F€. First and fourth rows present the original image. Second and fifth rows show the four-color
segmentation result. Third and last rows display the piecewise constant approximation of the image sp. Each
column present a different value of «, which controls the number of final segmented regions.
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Historical overview

» Vese-Chan (2002, IJCV) has proposed to use 4-color theorem
for the original Mumford-Shal model.

» Hodneland-Tai-Gerdes (2009, 1JCV),
watersehd-levelset+4color.
» Liu-Tao (2011, PR), Tao-Tai (UCLA-CAM-09-13).

Ref: Four color theorem and convex relaxation for image
segmentation with any number of regions. Inverse Problems &
Imaging 7 (3), 1099-1113.



Ref: Four color theorem and convex relaxation for image
segmentation with any number of regions. Inverse Problems &
Imaging 7 (3), 1099-1113.
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