Four Color theorem for image segmentation

Xue-Cheng Tai, University of Bergen, Norway
Collaborations with:
Xavier Bresson, Tony F. Chan and Ruilinag Zhang

$$
\text { July 17, } 2014
$$

The original Munford-Shah

The Mumford-Shah (MS) model:

$$
\begin{equation*}
\min _{C, s} \mu|C|+\frac{\alpha}{2} \int_{\Omega}\left(s-s_{0}\right)^{2}+\frac{\gamma}{2} \int_{\Omega \backslash C}|\nabla s|^{2}, \tag{1}
\end{equation*}
$$

The original Munford-Shah

The Mumford-Shah (MS) model:

$$
\begin{equation*}
\min _{C, s} \mu|C|+\frac{\alpha}{2} \int_{\Omega}\left(s-s_{0}\right)^{2}+\frac{\gamma}{2} \int_{\Omega \backslash C}|\nabla s|^{2}, \tag{1}
\end{equation*}
$$

The piecewise constant Munford-Shah

The PC Mumford-Shah (MS) model:

$$
\begin{align*}
& \min _{r} \min _{\left\{\Gamma_{i}\right\}_{i=1}^{r}} \min _{\left\{c_{i}\right\}_{i=1}} \sum_{i=1}^{r} \mu\left|\partial \Gamma_{i}\right|+\frac{\alpha}{2} \int_{\Gamma_{i}}\left(c_{i}-s_{0}\right)^{2} \text { s.t. } \\
& \Omega=\cup_{i=1}^{r} \Gamma_{i} \text { and } \Gamma_{i} \cap \Gamma_{j}=\emptyset \forall i \neq j \tag{2}
\end{align*}
$$

The Potts model

Given $\left\{f_{i}\right\}_{i=1}^{n}$ for a fixed number n, the Potts models needs to:

$$
\min _{\Gamma_{i}} \sum_{i=1}^{n} \mu\left|\partial \Gamma_{i}\right|+\int_{\Gamma_{i}} f_{i}, \quad \Omega=\cup_{i=1}^{n} \Gamma_{i}, \quad \Gamma_{i} \cap \Gamma_{j}=\emptyset, \forall i, j
$$

The Potts model

Given $\left\{f_{i}\right\}_{i=1}^{n}$ for a fixed number n ，the Potts models needs to：

$$
\min _{\Gamma_{i}} \sum_{i=1}^{n} \mu\left|\partial \Gamma_{i}\right|+\int_{\Gamma_{i}} f_{i}, \quad \Omega=\cup_{i=1}^{n} \Gamma_{i}, \quad \Gamma_{i} \cap \Gamma_{j}=\emptyset, \forall i, j .
$$

So if the number n and c_{i} are known，the PC Mumford－Shah is reduced to the Potts model choosing $f_{i}=\left|c_{i}-u_{0}\right|^{2}$ ．

Combining Mumford-Shah with GAC

It is possible to combine these two popular models together and it has been shown to have superior property with no extra computational cost:

$$
\min _{n, \Gamma_{i}, c_{i}} \sum_{i=1}^{n} \int_{\Gamma_{i}}\left(u_{0}-c_{i}\right)^{2}+\beta \int_{\partial \Gamma_{i}} g\left(\left|\nabla u_{\sigma}\right|\right) d s
$$

Chan-Vese model - One of the most popular segmentation model

Given an input image u_{0}, the 2-phase level set representation is find ϕ and c_{i} from:

$$
\min _{\Gamma, c_{1}, c_{2}} \alpha|\Gamma|+\int_{\Omega_{1}}\left|c_{1}-u_{0}\right|^{2}+\int_{\Omega_{2}}\left|c_{2}-u_{0}\right|^{2}
$$

Chan-Vese model - One of the most popular segmentation model

Given an input image u_{0}, the 2-phase level set representation is find ϕ and c_{i} from:

$$
\min _{\Gamma, c_{1}, c_{2}} \alpha|\Gamma|+\int_{\Omega_{1}}\left|c_{1}-u_{0}\right|^{2}+\int_{\Omega_{2}}\left|c_{2}-u_{0}\right|^{2}
$$

$$
\min _{\phi, c_{1}, c_{2}} \int_{\Omega} \alpha|\nabla H(\phi)|+\left\{H(\phi)\left(c_{1}-u_{0}\right)^{2}+(1-H(\phi))\left(c_{2}-u_{0}\right)^{2}\right\} d x,
$$

Chan-Vese model - One of the most popular segmentation model

Given an input image u_{0}, the 2-phase level set representation is find ϕ and c_{i} from:

$$
\min _{\Gamma, c_{1}, c_{2}} \alpha|\Gamma|+\int_{\Omega_{1}}\left|c_{1}-u_{0}\right|^{2}+\int_{\Omega_{2}}\left|c_{2}-u_{0}\right|^{2}
$$

$\min _{\phi, c_{1}, c_{2}} \int_{\Omega} \alpha|\nabla H(\phi)|+\left\{H(\phi)\left(c_{1}-u_{0}\right)^{2}+(1-H(\phi))\left(c_{2}-u_{0}\right)^{2}\right\} d x$,

- $H(\phi)=1$ if $\phi>0, H(\phi)=0$ if $\phi<0$
- From ϕ, we get $\Omega_{1}=\{x \mid \phi>0\}, \Omega_{2}=\{x \mid \phi \leq 0\}$.

More than two regions-multiple level-sets (Chan and Vese, 2000)

$$
\begin{array}{llll}
\Omega_{++}=\{x \in \Omega, & \phi_{1}>0, & \left.\phi_{2}>0\right\} \\
\Omega_{+-} & =\{x \in \Omega, & \phi_{1}>0, & \left.\phi_{2}<0\right\} \\
\Omega_{-+} & =\{x \in \Omega, & \phi_{1}<0, & \left.\phi_{2}>0\right\} \\
\Omega_{--} & =\{x \in \Omega, & \phi_{1}<0, & \left.\phi_{2}<0\right\}
\end{array}
$$

Multiphase level set representation of CV model

$$
\min _{\phi^{1}, \phi^{2},\left\{c_{i}\right\}_{i=1}^{4}} \alpha \int_{\Omega}\left|\nabla H\left(\phi^{1}\right)\right|+\alpha \int_{\Omega}\left|\nabla H\left(\phi^{2}\right)\right|+E^{\text {data }}\left(\phi^{1}, \phi^{2}\right),
$$

where

$$
\begin{aligned}
& E^{\text {data }}\left(\phi^{1}, \phi^{2}\right)=\int_{\Omega}\left\{H\left(\phi^{1}\right) H\left(\phi^{2}\right)\left|c_{2}-u_{0}\right|^{\beta}+H\left(\phi^{1}\right)\left(1-H\left(\phi^{2}\right)\right)\left|c_{1}-u_{0}\right|^{\beta}\right. \\
& \left.+\left(1-H\left(\phi^{1}\right)\right) H\left(\phi^{2}\right)\left|c_{4}-u_{0}\right|^{\beta}+\left(1-H\left(\phi^{1}\right)\right)\left(1-H\left(\phi^{2}\right)\right)\left|c_{3}-u_{0}\right|^{\beta}\right\} d x .
\end{aligned}
$$

$$
\begin{aligned}
& \Omega_{1}=\left\{x \in \Omega \text { s.t. } \phi^{1}(x)>0, \phi^{2}(x)<0\right\} \\
& \Omega_{2}=\left\{x \in \Omega \text { s.t. } \phi^{1}(x)>0, \phi^{2}(x)>0\right\} \\
& \Omega_{3}=\left\{x \in \Omega \text { s.t. } \phi^{1}(x)<0, \phi^{2}(x)<0\right\} \\
& \Omega_{4}=\left\{x \in \Omega \text { s.t. } \phi^{1}(x)<0, \phi^{2}(x)>0\right\}
\end{aligned}
$$

Chan-Vese model - Advantages

- Use the level set of Osher and Sethian (JCP1998): can handle very general geometries.
- Region based: robust with noise, images without edges.

Chan－Vese model－disadvantages

－Slow in convergence．
－Each Ω_{i} can contain many disconnected subregions，we must have $u=c_{i}$ in Ω_{i} ．

（a）Input images

（b）Segmented image

Chan-Vese model - disadvantages

- Slow in convergence.
- Each Ω_{i} can contain many disconnected subregions, we must have $u=c_{i}$ in Ω_{i}.

(a) Input images

(b) Segmented image
- If u needs to take n constant values, then we need n-phases for the segmentation.

Chan-Vese model - disadvantages

- Slow in convergence.
- Each Ω_{i} can contain many disconnected subregions, we must have $u=c_{i}$ in Ω_{i}.

(a) Input images

(b) Segmented image
- If u needs to take n constant values, then we need n-phases for the segmentation.
- Our new model allows u to take many constant values inside Ω_{i}.

Chan－Vese model－disadvantages

－Need to use many level set functions or labeling functions

（a）Input images

（b）Segmented image（8 phases）

Figure：Our new model never needs more than 4－phases to get the same segmentation．

Chan-Vese model - disadvantages

- Slow in convergence.
- Non-convex minimization: may get stuck with local minimums, depends on initial value.
(a)
(b)

initial

segment

curves

Figure: Images from Brown-Chan-Bresson (IJCV 2011).

The new 4-color model based on Munford-Shah

The New 4-Color Model Based On Munford-Shah

The new 4-color theorem

Any planar graph (map) can be painted and separated by 4 colors.

The new 4-color model based on Munford-Shah

The new model: Due to 4-color theorem:

$$
\begin{align*}
& \min _{\left\{\Omega_{i}\right\}_{i=1}^{4}} \min _{\left\{s_{i}\right\}_{i=1}^{4}} \sum_{i=1}^{4} \mu\left|\partial \Omega_{i}\right|+\frac{\alpha}{2} \int_{\Omega_{i}}\left(s_{i}-s_{0}\right)^{2} \text { s.t. } \\
& \Omega=\cup_{i=1}^{4} \Omega_{i}, \Omega_{i} \cap \Omega_{j}=\emptyset \forall i \neq j \\
& \text { and }\left|\nabla s_{i}(x)\right|^{2}=0 \text { in } \Omega_{i} . \tag{6}
\end{align*}
$$

$$
s_{i}: \Omega \mapsto R, i=1,2,3,4 .
$$

The new 4-color model based on Munford-Shah

$$
\begin{gathered}
\nabla s_{i}=0 \text { in } \Omega_{i} \\
\mathbb{y} \\
s_{i}=\text { const in } \Omega_{i} .
\end{gathered}
$$

The new 4-color model based on Munford-Shah

$$
s_{i}: \Omega \mapsto R,
$$

$$
\nabla s_{i}=0 \text { in } \Omega_{i}
$$

$s_{i}=$ const, but the constants can differ from one connected subregion to another connected subregion.

Regulatrization of s_{i}

$$
\begin{array}{ll}
\min _{\left\{\Omega_{i}\right\}_{i=1}^{4}} \min _{\left\{s_{i}\right\}_{i=1}^{4}} \sum_{i=1}^{4} \mu\left|\partial \Omega_{i}\right|+\frac{\alpha}{2} \int_{\Omega_{i}}\left(s_{i}-s_{0}\right)^{2}+\frac{\sigma}{2} \int_{\Omega}\left|\nabla s_{i}\right|^{2} \text { s.t. } \\
\Omega=\cup_{i=1}^{4} \Omega_{i}, \quad \Omega_{i} \cap \Omega_{j}=\emptyset \forall i \neq j \text { and }\left|\nabla s_{i}(x)\right|^{2}=0 \text { in } \Omega_{i} .(7)
\end{array}
$$

Adding σ, we regularize the values of s_{i} outside Ω_{i}. In fact, the values of s_{i} is the harmonic extensions of the piecewise constant values of s_{i} inside Ω_{i}.

Representation of $\left\{\Omega_{i}\right\}_{i=1}^{4}$

- Using level set functions (slow, non-convex).

Representation of $\left\{\Omega_{i}\right\}_{i=1}^{4}$

- Using level set functions (slow, non-convex).
- Using binary labels: $u_{1}, u_{2} \in\{0,1\}$.

Representation of $\left\{\Omega_{i}\right\}_{i=1}^{4}$

－Using level set functions（slow，non－convex）．
－Using binary labels：$u_{1}, u_{2} \in\{0,1\}$ ．
－Using a single label：$u \in\{1,2,3,4\}$ ．

Representation of $\left\{\Omega_{i}\right\}_{i=1}^{4}$

－Using level set functions（slow，non－convex）．
－Using binary labels：$u_{1}, u_{2} \in\{0,1\}$ ．
－Using a single label：$u \in\{1,2,3,4\}$ ．
－Using the characteristic function $u_{i}=\chi_{\Omega_{i}}, i=1,2,3,4$ ．

Representation of $\left\{\Omega_{i}\right\}_{i=1}^{4}$

－Using level set functions（slow，non－convex）．
－Using binary labels：$u_{1}, u_{2} \in\{0,1\}$ ．
－Using a single label：$u \in\{1,2,3,4\}$ ．
－Using the characteristic function $u_{i}=\chi_{\Omega_{i}}, i=1,2,3,4$ ．
All can be convexified and have fast solvers．

Chan－Vese（product）binary labelling

－Use two binary functions：$u_{1}, u_{2} \in\{0,1\}$ ．
－Corresponding characteristic functions：

$$
\begin{aligned}
& \psi_{1}=u_{1} u_{2}, \psi_{2}=\left(1-u_{1}\right) u_{2}, \psi_{3}=u_{1}\left(1-u_{2}\right), \psi_{4}= \\
& \left(1-u_{1}\right)\left(1-u_{2}\right) .
\end{aligned}
$$

－Convex equivalence exists：Bae－T．（EMMCVPV09），Bae－T． （JMIV 2014），Goldluecke－Cremers ECCV（2010）．

PCLS labelling

- Use a single labeling functions: $u \in\{1,2,3,4\}$.
- Corresponding characteristic functions:
$\psi_{i}=1$ when $u=i$, else $\psi_{i}=0$.
- Convex equivalence exists: Ishikawa, Darbon-Segelle, Pock-Bremer-Chambolle-et-al, Bae-T., Brown-Bresson-Chan, Golstein-Bresson-Osher.

Characteristic function labelling

－Use labeling functions：$u_{i} \in\{0,1\}, \sum_{i=1}^{4} u_{i}=1$ ．
－Convex equivalence exists：Pock－Cremers－Chambolle－et－al （ICCV 2008，．．．），Bae－Yuan－T．（IJCV2010），Lellman－et－al （2010，2011，2012），Zach－et－al（2009）．

Characteristc Labelling functions (PCLS)

$$
u_{i}(x)= \begin{cases}1, & \forall x \in \Omega_{i} \tag{8}\\ 0, & \text { otherwise }\end{cases}
$$

The problem (7) can thus be rewritten as

$$
\begin{align*}
& \min _{\left\{u_{i} \in\{0,1\}\right\}_{i=1}^{4}} \min _{\left\{s_{i}\right\}_{i=1}^{4}} \sum_{i=1}^{4} \int_{\Omega} \mu(x)\left|\nabla u_{i}\right|+\frac{\alpha}{2} u_{i}\left(s_{i}-s_{0}\right)^{2}+\frac{\sigma}{2}\left|\nabla s_{i}\right|^{2} \\
& \sum_{i=1}^{4} u_{i}(x)=1 \forall x \in \Omega \\
& \text { and } u_{i}(x)\left|\nabla s_{i}(x)\right|^{2}=0 \forall x \in \Omega, i=1, \ldots, 4 . \tag{9}
\end{align*}
$$

Lagrangian functional

We use Lagrangian method to deal with the constrain. The corresponding Augmented Lagrangian functional is:

$$
\begin{align*}
& L\left(\left\{u_{i}\right\}_{i=1}^{4},\left\{s_{i}\right\}_{i=1}^{4}, \lambda\right)= \\
& \sum_{i=1}^{4} \int_{\Omega} \mu\left|\nabla u_{i}\right|+\frac{\alpha}{2} \int_{\Omega} u_{i}\left(s_{i}-s_{0}\right)^{2}+\frac{\sigma}{2} \int_{\Omega}\left|\nabla s_{i}\right|^{2} \\
& +\int_{\Omega} \lambda(x) u_{i}(x)\left|\nabla s_{i}(x)\right|^{2}+\frac{r}{2} u_{i}(x)\left|\nabla s_{i}(x)\right|^{2} . \\
& u_{i}(x) \geq 0, \quad \sum_{i=1}^{4} u_{i}(x)=1 \forall x \in \Omega \tag{10}
\end{align*}
$$

An algorithm

$$
\begin{align*}
& \left(u_{i}^{k+1}, s_{i}^{k+1}\right)=\arg \min _{\left\{u_{i} \in[0,1]\right\}_{i=1}^{4},\left\{s_{i}\right\}_{i=1}^{4}} \sum_{i=1}^{4} \int_{\Omega} w_{b}\left|\nabla u_{i}\right|+\frac{\alpha}{2} \int_{\Omega} u_{i}\left(s_{i}-s_{0}\right)^{2} \\
& \quad+\frac{\sigma}{2} \int_{\Omega}\left|\nabla s_{i}\right|^{2}+\int_{\Omega} u_{i}\left(\lambda_{i}^{k}\left|\nabla s_{i}\right|^{2}+\frac{r}{2}\left|\nabla s_{i}\right|^{2}\right) \text { s.t. } \sum_{i=1}^{4} u_{i}(x)=1 \\
& \lambda_{i}^{k+1}=\lambda_{i}^{k}+r u_{i}\left|\nabla s_{i}\right|^{2} \tag{11}
\end{align*}
$$

where $w_{b}(x)$ can be an edge detector s．a．$w_{b}(x)=\frac{1}{1+\mu\left|\nabla s_{0}(x)\right|^{2}}$ ．

An algorithm: Subproblem I

$$
\begin{equation*}
\min _{u_{i} \in[0,1]} \int_{\Omega} w_{b}\left|\nabla u_{i}\right|+\int_{\Omega} u_{i} f_{i} \quad \text { s.t. } \sum_{i=1}^{4} u_{i}(x)=1 \tag{12}
\end{equation*}
$$

where $f_{i}=\frac{\alpha}{2}\left(s_{i}-s_{0}\right)^{2}+\left|\nabla s_{i}\right|^{2}\left(\lambda_{i}^{k}+\frac{r}{2}\right)$.

An algorithm: Subproblem II

$$
\begin{equation*}
\min _{s_{i}} \int_{\Omega} \frac{h_{i}}{2}\left(s_{i}-s_{0}\right)^{2}+\frac{g_{i}}{2}\left|\nabla s_{i}\right|^{2} \tag{13}
\end{equation*}
$$

where $h_{i}=\alpha u_{i}$ and $g_{i}=\sigma+\left(2 \lambda_{i}^{k}+r\right) u_{i}$.

The algorithm

Algorithm for the unsupervised image segmentation model（7）using the four color theorem（with a priori unknown number of regions）．
－Initialize the u_{i}（random initialization or k－mean）．While not converged
－s_{i}^{k+1} computed with Algorithm for s_{i}
－u_{i}^{k+1} computed with Algorithm for u_{i}
－$\lambda_{i}^{k+1}=\lambda_{i}^{k}+r u_{i}^{k+1}\left|\nabla s_{i}^{k+1}\right|^{2}$

Numerical Experiments

Figure：（a）Original image．（b）segmentation into four phase $\left\{\Omega_{i}\right\}_{i=1}^{4}$（two distinct regions，central disk and upper right part are merged）．（c）segmentation result after segmenting each phase into four sub－phase（this produces sixteen sub－phases $\left\{\Omega_{i, j}\right\}_{i, j=1}^{4}$ ）and recoloring into four phases（correct result）．（d）piecewise constant approximation of（a）．

Local minimizers and re-coloring

Two-level recursive algorithm for the unsupervised image segmentation model (2) using the four color theorem (with a priori unknown number of regions).

- Initialize the u_{i} (random initialization or k-mean), select the scale parameter α which controls the number of regions. While not converged.
- Compute four phases $\left\{\Omega_{i}\right\}_{i=1}^{4}$ with Algorithm 1
- Partition each phase $\left\{\Omega_{i}\right\}_{i=1}^{4}$ into 4 sub-phases $\left\{\Omega_{i, j}\right\}_{i, j=1}^{4}$ with Algorithm 2
- Recolor the 16 sub-phases into 4 phases

Numerical Experiments

Figure: Comparison between the standard recursive bi-partitioning method and our method: (a) Original image. (b) segmentation after 1st bi-partitioning. (c) segmentation after 2nd/final bi-partitioning (over-segmentation). (d) Our algorithm (correct segmentation).

Numerical Experiments

Figure: Influence of the regularization parameter α. First row is the original image. Second row is the four-color segmentation result. Third row is the piecewise constant approximation of the image. First column $\alpha=1.5 e 5 / 255^{2}$, second column $\alpha=3 e 4 / 255^{2}$, third column $\alpha=1 e 4 / 255^{2}$, fourth column $\alpha=1 e 3 / 255^{2}$.

Numerical Experiments

Figure: First and fourth rows present the original image. Second and fifth rows show the four-color segmentation result. Third and last rows display the piecewise constant approximation of the image s_{0}. Each column present a different value of α, which controls the number of final segmented regions.

Numerical Experiments

Figure：First and fourth rows present the original image．Second and fifth rows show the four－color segmentation result．Third and last rows display the piecewise constant approximation of the image s_{0} ．Each column present a different value of α ，which controls the number of final segmented regions．

Advantages

－Can automatically determine how many regions．

Advantages

－Can automatically determine how many regions．
－Only uses 4 labels．

Advantages

- Can automatically determine how many regions.
- Only uses 4 labels.
- Can take as many constants as is needed for a given regularization parameters.

Advantages

－Can automatically determine how many regions．
－Only uses 4 labels．
－Can take as many constants as is needed for a given regularization parameters．
－Regularization parameter controls how many regions and constants．

Advantages

- Can automatically determine how many regions.
- Only uses 4 labels.
- Can take as many constants as is needed for a given regularization parameters.
- Regularization parameter controls how many regions and constants.
- Fast to compute.

Advantages

- Can automatically determine how many regions.
- Only uses 4 labels.
- Can take as many constants as is needed for a given regularization parameters.
- Regularization parameter controls how many regions and constants.
- Fast to compute.

Historical overview

- Vese-Chan (2002, IJCV) has proposed to use 4-color theorem for the original Mumford-Shal model.
- Hodneland-Tai-Gerdes (2009, IJCV), watersehd+levelset+4color.
- Liu-Tao (2011, PR), Tao-Tai (UCLA-CAM-09-13).

Ref: Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems \& Imaging 7 (3), 1099-1113.

Ref: Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems \& Imaging 7 (3), 1099-1113.

