*i*Piano: Inertial Proximal Algorithm for Non-convex Optimization

Thomas Pock

Institute for Computer Graphics and Vision Graz University of Technology

MOBIS Workshop, University of Graz, July 5th, 2014

Joint work with: P. Ochs, T. Brox (University of Freiburg) Y. Chen (Graz University of Technology)

Energy minimization methods

 Typical variational approaches to solve inverse problems consist of a regularization term and a data term

 $\min_{u} \left\{ E(u|f) = \mathcal{R}(u) + \mathcal{D}(u,f) \right\} \,,$

where f is the input data and u is the unknown solution

Energy minimization methods

 Typical variational approaches to solve inverse problems consist of a regularization term and a data term

 $\min_{u} \left\{ E(u|f) = \mathcal{R}(u) + \mathcal{D}(u,f) \right\} \,,$

where f is the input data and u is the unknown solution

Low-energy states reflect the physical properties of the problem

Energy minimization methods

 Typical variational approaches to solve inverse problems consist of a regularization term and a data term

 $\min_{u} \left\{ E(u|f) = \mathcal{R}(u) + \mathcal{D}(u,f) \right\} \,,$

where f is the input data and u is the unknown solution

- Low-energy states reflect the physical properties of the problem
- Minimizer provides the best (in the sense of the model) solution to the problem

Consider the following general mathematical optimization problem:

s.t.
$$f_i(x) \leq 0$$
, $i = 1 \dots m$
 $x \in X$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and X is a subset of \mathbb{R}^n

How to solve this problem?

Consider the following general mathematical optimization problem:

s.t.
$$f_i(x) \leq 0$$
, $i = 1 \dots m$
 $x \in X$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and X is a subset of \mathbb{R}^n

How to solve this problem?

► Naive: "Download a commercial package ..."

Consider the following general mathematical optimization problem:

s.t. $f_i(x) \leq 0$, $i = 1 \dots m$ $x \in X$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and X is a subset of \mathbb{R}^n

▲ロ ▶ ▲ □ ▶ ■ ■ ■ ∧ □ ▶ ■ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩ ■ ■ ∩

How to solve this problem?

- ► Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"

Consider the following general mathematical optimization problem:

s.t. $f_i(x) \leq 0$, $i = 1 \dots m$ $x \in X$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and X is a subset of \mathbb{R}^n

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"
- Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov '04]
- Can take several million years for small problems with only 10 unknowns

Consider the following general mathematical optimization problem:

s.t. $f_i(x) \leq 0$, $i = 1 \dots m$ $x \in X$,

where $f_0(x)...f_m(x)$ are real-valued functions, $x = (x_1,...x_n)^T \in \mathbb{R}^n$ is a *n*-dimensional real-valued vector, and X is a subset of \mathbb{R}^n

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"
- Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov '04]
- Can take several million years for small problems with only 10 unknowns

"Optimization problems are unsolvable"
 [Nesterov '04]

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○臣 - のへ()

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

4/34

Convex problems

- Any local minimizer is a global minimizer
- Result is independent of the initialization
- Convex models often inferior

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

Convex problems

- Any local minimizer is a global minimizer
- Result is independent of the initialization
- Convex models often inferior
- Non-convex problems
 - In general no chance to find the global minimizer
 - Result strongly depends on the initialization
 - Often give more accurate models

Non-convex optimization problems

- Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, ...)
- ▶ Hard to generalize to constraints, or non-differentiable functions
- Line-search procedure can be time intensive

Non-convex optimization problems

- Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, ...)
- Hard to generalize to constraints, or non-differentiable functions
- Line-search procedure can be time intensive
- A reasonable idea is to develop algorithms for special classes of structured non-convex problems
- A promising class of problems that has a moderate degree of non-convexity is given by the sum of a smooth non-convex function and a non-smooth convex function [Sra '12], [Chouzenoux, Pesquet, Repetti '13]

Problem definition

We consider the problem of minimizing a function h: X → ℝ ∪ {+∞}

 $\min_{x\in X} h(x) = f(x) + g(x),$

where X is a finite dimensional real vector space.

▶ We assume that *h* is coercive, i.e. $||x||_2 \to +\infty \Rightarrow h(x) \to +\infty$ and bounded from below by some value $\underline{h} > -\infty$

Problem definition

We consider the problem of minimizing a function h: X → ℝ ∪ {+∞}

 $\min_{x\in X} h(x) = f(x) + g(x),$

where X is a finite dimensional real vector space.

- ▶ We assume that *h* is coercive, i.e. $||x||_2 \to +\infty \Rightarrow h(x) \to +\infty$ and bounded from below by some value $\underline{h} > -\infty$
- The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

 $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

Problem definition

We consider the problem of minimizing a function h: X → ℝ ∪ {+∞}

 $\min_{x\in X} h(x) = f(x) + g(x),$

where X is a finite dimensional real vector space.

- ▶ We assume that *h* is coercive, i.e. $||x||_2 \to +\infty \Rightarrow h(x) \to +\infty$ and bounded from below by some value $\underline{h} > -\infty$
- The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

 $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

► The function g is a proper lower semi-continuous convex function with an efficient to compute proximal map

$$(I + \alpha \partial g)^{-1}(\hat{x}) := \arg \min_{x \in X} \frac{\|x - \hat{x}\|_2^2}{2} + \alpha g(x),$$

where $\alpha > 0$.

Forward-backward splitting

We aim at seeking a critical point x*, i.e. a point satisfying 0 ∈ ∂h(x*) which in our case becomes

 $-\nabla f(x^*) \in \partial g(x^*).$

> A critical point can also be characterized via the proximal residual

$$r(x) := x - (I + \partial g)^{-1}(x - \nabla f(x)),$$

where *I* is the identity map.

- Clearly $r(x^*) = 0$ implies that x^* is a critical point.
- The norm of the proximal residual can be used as a (bad) measure of optimality

Forward-backward splitting

We aim at seeking a critical point x*, i.e. a point satisfying 0 ∈ ∂h(x*) which in our case becomes

 $-\nabla f(x^*) \in \partial g(x^*).$

A critical point can also be characterized via the proximal residual

$$r(x) := x - (I + \partial g)^{-1}(x - \nabla f(x)),$$

where *I* is the identity map.

- Clearly $r(x^*) = 0$ implies that x^* is a critical point.
- The norm of the proximal residual can be used as a (bad) measure of optimality
- The proximal residual already suggests an iterative method of the form

 $x^{n+1} = (I + \alpha \partial g)^{-1} (x^n - \alpha \nabla f(x^n))$

 For f convex, this algorithm is well studied [Lions, Mercier '79], [Tseng '91], [Daubechie et al. '04], [Combettes, Wajs '05], [Raguet, Fadili, Peyré '13]

Inertial/accelerated methods

 Inertial: Introduced by Polyak in [Polyak '64] as a special case of multi-step algorithms for minimizing a μ-strongly convex function:

$$x^{n+1} = x^n - \alpha \nabla f(x^n) + \beta (x^n - x^{n-1})$$

 Can be seen as an explicit finite differences discretization of the heavy-ball with friction dynamical system

 $\ddot{x}(t) + \gamma \dot{x}(t) + \nabla f(x(t)) = 0.$

Inertial/accelerated methods

 Inertial: Introduced by Polyak in [Polyak '64] as a special case of multi-step algorithms for minimizing a μ-strongly convex function:

$$x^{n+1} = x^n - \alpha \nabla f(x^n) + \beta (x^n - x^{n-1})$$

 Can be seen as an explicit finite differences discretization of the heavy-ball with friction dynamical system

 $\ddot{x}(t) + \gamma \dot{x}(t) + \nabla f(x(t)) = 0.$

Source: Stich et al.

A note on the convex case

If f is I - strongly convex and ∇f is L - Lipschitz than by setting • $\alpha = \frac{4}{(\sqrt{l} + \sqrt{L})^2}$

 $\bullet \ \beta = \left(\frac{\sqrt{l} - \sqrt{L}}{\sqrt{l} + \sqrt{L}}\right)^2$

yields an "optimal" linear convergence rate of

$$||x^n - x^*||_2 \le \left(\frac{\sqrt{L} - \sqrt{l}}{\sqrt{L} + \sqrt{l}}\right)^n ||x^0 - x^*||_2$$

イロン 不良 とくほど 不良 とうほう

9/34

A note on the convex case

If f is *l* - strongly convex and ∇f is *L* - Lipschitz than by setting • $\alpha = \frac{4}{(\sqrt{l} + \sqrt{L})^2}$ • $\beta = \left(\frac{\sqrt{l} - \sqrt{L}}{\sqrt{l} + \sqrt{L}}\right)^2$

yields an "optimal" linear convergence rate of

$$\|x^n - x^*\|_2 \le \left(\frac{\sqrt{L} - \sqrt{l}}{\sqrt{L} + \sqrt{l}}\right)^n \|x^0 - x^*\|_2$$

- No first-order method can be faster!
- Same performance as CG, but we need to know I, L
- CG only makes sense for quadratic functions
- Heavy-ball can be used together with constraints, non-smooth functions [Ochs, P. et al, '14]

iPiano

inertial Proximal algorithm for non-convex optimization

- ▶ Initialization: Choose $x^0 \in \text{dom } h$ and set $x^{-1} = x^0$.
- Iterations $(n \ge 0)$: Update

 $x^{n+1} = \left(I + \alpha_n \partial g\right)^{-1} \left(x^n - \alpha_n \nabla f(x^n) + \beta_n (x^n - x^{n-1})\right),$

for some sequences (α_n) , (β_n) .

Questions:

- ▶ When does this algorithm converge (subsequence, whole sequence)?
- How fast does it converge (convergence rate)?
- Applications?

The Kurdyka-Łojasiewicz property

Definition

The function $F : \mathbb{R}^N \to \mathbb{R} \cup \{\infty\}$ has the Kurdyka-Łojasiewicz property at $x^* \in \text{dom } \partial F$, if there exist $\eta \in (0, \infty]$, a neighborhood U of x^* and a continuous concave function $\varphi : [0, \eta) \to \mathbb{R}_+$ such that $\varphi(0) = 0$, $\varphi \in C^1((0, \eta))$, for all $s \in (0, \eta)$ it is $\varphi'(s) > 0$, and for all $x \in U \cap [F(x^*) < F < F(x^*) + \eta]$ the Kurdyka-Łojasiewicz inequality holds, i.e.,

 $\varphi'(F(x) - F(x^*))dist(0, \partial F(x)) \geq 1$.

- Intuetively, we can bound the subgradients from below by a re-parametrization of the function values
- The Kurdyka-Łojasiewicz property holds for real, semi-algebraic functions
- Recently, the Kurdyka-Łojasiewicz property attracted a lot of attention for proving convergence of descent methods [Attouch, Bolte et al. '10-'13], [Chouzenoux, Pesquet, Repetti '13], ...

Abstract convergence for two-step algorithms

We extend the convergence result of [Attouch, Bolte, Svaiter '13] for one-step algorithms to the case of two-step algorithms

(ロ) (部) (E) (E) (E) (000)

12/34

• Let $F(z^n)$ be a proper, lower semicontinuous function, $(z^n) = (x^n, x^{n-1}), \Delta_n := ||x^n - x^{n-1}||_2$

Abstract convergence for two-step algorithms

- We extend the convergence result of [Attouch, Bolte, Svaiter '13] for one-step algorithms to the case of two-step algorithms
- ► Let $F(z^n)$ be a proper, lower semicontinuous function, $(z^n) = (x^n, x^{n-1}), \Delta_n := ||x^n - x^{n-1}||_2$
- We require the following conditions to be satisfied:
 (H1) For each n ∈ N, it holds

 $F(z^{n+1}) + a\Delta_n^2 \leq F(z^n).$

(H2) For each $n \in \mathbb{N}$, there exists $w^{n+1} \in \partial F(z^{n+1})$ such that

$$\|w^{n+1}\|_2 \leq rac{b}{2} (\Delta_n + \Delta_{n+1})$$
.

(H3) There exists a subsequence $(z^{n_j})_{j \in \mathbb{N}}$ such that

 $z^{n_j} o ilde{z} \quad ext{and} \quad F(z^{n_j}) o F(ilde{z}) \,, \qquad ext{as } j o \infty \,.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Convergence of the whole sequence to a critical point

Theorem

Let $F : \mathbb{R}^{2N} \to \mathbb{R} \cup \{\infty\}$ be a proper lower semi-continuous function and $(z^n)_{n \in \mathbb{N}} = (x^n, x^{n-1})_{n \in \mathbb{N}}$ a sequence that satisfies H1, H2, and H3. Moreover, let F have the Kurdyka-Łojasiewicz property at the cluster point \tilde{x} specified in H3. Then, the sequence $(x^n)_{n=0}^{\infty}$ has finite length, i.e., $\sum_{n=1}^{\infty} \Delta_n < \infty$, and

converges to $\bar{x} = \tilde{x}$ as $n \to \infty$, where (\bar{x}, \bar{x}) is a critical point of F.

- ▶ Details of the proof see [Ochs, Chen, Brox, P. SIIMS '14]
- In order to apply this result to iPiano, it remains to show that H1-H3 hold

Back to our class of problems: basic inequalities

We can describe our model class h = f + g, by the following to inequalities

Lemma

Let ∇f be L-Lipschitz. Then for any $x, y \in \text{dom } f$ it holds that

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||_2^2$$

Back to our class of problems: basic inequalities

We can describe our model class h = f + g, by the following to inequalities

Lemma

Let ∇f be L-Lipschitz. Then for any $x, y \in \text{dom } f$ it holds that

$$f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||_2^2$$

Lemma

Let g be a proper lower semi-continuous convex function, then it holds for any $x, y \in X$, $s \in \partial g(x)$ that

 $g(y) \ge g(x) + \langle s, y - x \rangle$.

A Lyapunov function

- Let us consider the function H_δ(x, y) := h(x) + δ||x − y||₂², δ ∈ ℝ, and the distance of two subsequent iterates Δ_n := ||xⁿ − x^{n−1}||₂
- The main iterate of the algorithm is given by

$$x^{n+1} = (I + \alpha_n \partial g)^{-1} (x^n - \alpha_n \nabla f(x^n) + \beta_n (x^n - x^{n-1}))$$

Applying the previous inequalities to the iteration yields the following result:

Lemma

(a) The sequence $(H_{\delta_n}(x^n, x^{n-1}))_{n=0}^{\infty}$ is monotonically decreasing and thus converging. In particular, it holds

$$H_{\delta_{n+1}}(x^{n+1},x^n) \leq H_{\delta_n}(x^n,x^{n-1}) - \gamma_n \Delta_n^2,$$

where γ_n, δ_n is some pos. parameter depending on α_n, β_n . (b) It holds $\sum_{n=0}^{\infty} \Delta_n^2 < \infty$ and, thus, $\lim_{n \to \infty} \Delta_n = 0$.

A Lyapunov function

- Let us consider the function H_δ(x, y) := h(x) + δ||x − y||₂², δ ∈ ℝ, and the distance of two subsequent iterates Δ_n := ||xⁿ − x^{n−1}||₂
- The main iterate of the algorithm is given by

$$x^{n+1} = (I + \alpha_n \partial g)^{-1} (x^n - \alpha_n \nabla f(x^n) + \beta_n (x^n - x^{n-1}))$$

Applying the previous inequalities to the iteration yields the following result:

Lemma

(a) The sequence $(H_{\delta_n}(x^n, x^{n-1}))_{n=0}^{\infty}$ is monotonically decreasing and thus converging. In particular, it holds

$$H_{\delta_{n+1}}(x^{n+1},x^n) \leq H_{\delta_n}(x^n,x^{n-1}) - \gamma_n \Delta_n^2,$$

where γ_n, δ_n is some pos. parameter depending on α_n, β_n . (b) It holds $\sum_{n=0}^{\infty} \Delta_n^2 < \infty$ and, thus, $\lim_{n \to \infty} \Delta_n = 0$.

Note that from $\lim_{n\to\infty} \Delta_n = 0 \Rightarrow \sum_{n=0}^{\infty} \Delta_n < \infty$, e.g. choose $\Delta_n = 1/n$

Discussion

► We do not guarantee monotone decrease of the function values $h(x^n)$ but we guarantee monotone decrease of the function $H_{\delta}(x, y) := h(x) + \delta ||x - y||_2^2$

Discussion

• We do not guarantee monotone decrease of the function values $h(x^n)$ but we guarantee monotone decrease of the function $H_{\delta}(x, y) := h(x) + \delta ||x - y||_2^2$

To ensure convergence we obtain: α_n < 2(1-β_n)/L_n, which is the same as in [Zavriev, Kostyuk '93] for g = 0

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)

Theorem

- (a) The sequence $(h(x^n))_{n=0}^{\infty}$ converges.
- (b) There exists a converging subsequence $(x^{n_k})_{k=0}^{\infty}$.
- (c) Any limit point $x^* := \lim_{k \to \infty} x^{n_k}$ is a critical point of h.

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)

Theorem

- (a) The sequence $(h(x^n))_{n=0}^{\infty}$ converges.
- (b) There exists a converging subsequence $(x^{n_k})_{k=0}^{\infty}$.
- (c) Any limit point $x^* := \lim_{k \to \infty} x^{n_k}$ is a critical point of h.
 - ► (a) follows from the fact that we can "sandwich" $h(x^n)$ between $H_{-\delta_n}(x^n, x^{n-1})$ and $H_{\delta_n}(x^n, x^{n-1})$

◆□ → ◆□ → ◆注 → ◆注 → □ □

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)

Theorem

- (a) The sequence $(h(x^n))_{n=0}^{\infty}$ converges.
- (b) There exists a converging subsequence $(x^{n_k})_{k=0}^{\infty}$.
- (c) Any limit point $x^* := \lim_{k \to \infty} x^{n_k}$ is a critical point of h.
 - ► (a) follows from the fact that we can "sandwich" $h(x^n)$ between $H_{-\delta_n}(x^n, x^{n-1})$ and $H_{\delta_n}(x^n, x^{n-1})$
 - (b) follows from the boundedness of the level sets of h and the Bolzano Weierstrass theorem

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)

Theorem

- (a) The sequence $(h(x^n))_{n=0}^{\infty}$ converges.
- (b) There exists a converging subsequence $(x^{n_k})_{k=0}^{\infty}$.
- (c) Any limit point $x^* := \lim_{k \to \infty} x^{n_k}$ is a critical point of h.
 - ► (a) follows from the fact that we can "sandwich" $h(x^n)$ between $H_{-\delta_n}(x^n, x^{n-1})$ and $H_{\delta_n}(x^n, x^{n-1})$
 - (b) follows from the boundedness of the level sets of h and the Bolzano Weierstrass theorem
 - (c) follows from the Lipschitz continuity of ∇f and the lower semi-continuity of g

Theorem

Let $(x^n)_{n\in\mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_n = \delta$ for all $n \in \mathbb{N}$. Then, the sequence $(x^{n+1}, x^n)_{n\in\mathbb{N}}$ satisfies H1, H2, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point (x^*, x^*) , then the sequence $(x^n)_{n\in\mathbb{N}}$ has finite length, $x^n \to x^*$ as $n \to \infty$, and (x^*, x^*) is a critical point of H_{δ} , hence x^* is a critical point of h.

18/34

Theorem

Let $(x^n)_{n\in\mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_n = \delta$ for all $n \in \mathbb{N}$. Then, the sequence $(x^{n+1}, x^n)_{n\in\mathbb{N}}$ satisfies H1, H2, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point (x^*, x^*) , then the sequence $(x^n)_{n\in\mathbb{N}}$ has finite length, $x^n \to x^*$ as $n \to \infty$, and (x^*, x^*) is a critical point of H_{δ} , hence x^* is a critical point of h.

(H1) follows from the monotone decrease of H_{δ}

 $H_{\delta_{n+1}}(x^{n+1},x^n) \leq H_{\delta_n}(x^n,x^{n-1}) - \gamma_n \Delta_n^2.$

18/34

Theorem

Let $(x^n)_{n\in\mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_n = \delta$ for all $n \in \mathbb{N}$. Then, the sequence $(x^{n+1}, x^n)_{n\in\mathbb{N}}$ satisfies H1, H2, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point (x^*, x^*) , then the sequence $(x^n)_{n\in\mathbb{N}}$ has finite length, $x^n \to x^*$ as $n \to \infty$, and (x^*, x^*) is a critical point of H_{δ} , hence x^* is a critical point of h.

(H1) follows from the monotone decrease of H_{δ}

$$H_{\delta_{n+1}}(x^{n+1},x^n) \leq H_{\delta_n}(x^n,x^{n-1}) - \gamma_n \Delta_n^2.$$

(H2) follows from the subdifferential of H_{δ}

 $\|w^{n+1}\|_2 \leq \frac{1}{\alpha_n}(\alpha_n L_n + 1 + 4\alpha_n \delta)\Delta_{n+1} + \frac{1}{\alpha_n}\beta_n \Delta_n.$

Theorem

Let $(x^n)_{n\in\mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_n = \delta$ for all $n \in \mathbb{N}$. Then, the sequence $(x^{n+1}, x^n)_{n\in\mathbb{N}}$ satisfies H1, H2, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point (x^*, x^*) , then the sequence $(x^n)_{n\in\mathbb{N}}$ has finite length, $x^n \to x^*$ as $n \to \infty$, and (x^*, x^*) is a critical point of H_{δ} , hence x^* is a critical point of h.

(H1) follows from the monotone decrease of H_{δ}

$$H_{\delta_{n+1}}(x^{n+1},x^n) \leq H_{\delta_n}(x^n,x^{n-1}) - \gamma_n \Delta_n^2.$$

(H2) follows from the subdifferential of H_{δ}

$$\|w^{n+1}\|_2 \leq \frac{1}{\alpha_n}(\alpha_n L_n + 1 + 4\alpha_n \delta)\Delta_{n+1} + \frac{1}{\alpha_n}\beta_n \Delta_n.$$

(H3) follows from the convergence of a subsequence of (x^n) and the fact that $\Delta_n \to 0$ as $n \to \infty$.

Convergence rate in the non-convex case

Absence of convexity makes live hard

Convergence rate in the non-convex case

Absence of convexity makes live hard

Theorem

The iPiano algorithm guarantees that for all $N \ge 0$

$$\min_{0 \le n \le N} \|r(x^n)\|_2 \le \frac{2}{c_1 c_2} \sqrt{\frac{h(x^0) - \underline{h}}{N+1}}$$

- i.e. the smallest proximal residual converges with rate $O(1/\sqrt{N})$.
 - Similar bound for $\beta = 0$ is shown in [Nesterov '12]

Ability to overcome spurious stationary solutions

 $\min_{x \in \mathbb{R}^N} h(x) := f(x) + g(x), \quad f(x) = \frac{1}{2} \sum_{i=1}^N \log(1 + \mu(x_i - u_i^0)^2), \quad g(x) = \lambda \|x\|_1,$

<ロ > < 部 > < 書 > < 書 > 差 の Q (や 20/34

Effect of the inertial force

The inertial force helps to overcome spurious stationary solutions

4 ロ ト () + () -

Application to student-t regularized image denoising

 We consider the following class of non-convex image denoising models

$$\min_{u\in\mathbb{R}^N}\sum_{i=1}^{N_f}\vartheta_i\sum_j\varphi((K_iu)_j)+\frac{\lambda}{p}\|u-u^0\|_p^p,\quad p\in\{1,2\}$$

- The potential functions are given by $\varphi(t) = \log(1 + t^2)$
- Obvious splitting into a smooth function plus a convex function with easy to compute proximal map
- The linear operators K_i are given by learned filter kernels k_i
- Gives excellent results for image denoising [Chen et al. '13]
- Comparison based on the error $\mathcal{E}^n = h^n h^*$
- In this example, h* appears to be the same for all tested algorithms (which is not true in general).

Results for ℓ_2 denoising

Results for ℓ_2 denoising

Results for ℓ_2 denoising

	iPiano with different β								L-BFGS	
tol	0.00	0.20	0.40	0.60	0.80	0.95	$T_1(s)$	iter.	$T_2(s)$	
10 ¹	505	344	222	129	79	299	47.177	66	27.054	
10 ⁰	664	451	290	168	98	342	59.133	79	32.143	
10^1	857	579	371	216	143	384	85.784	93	36.926	
10 ⁻²	1086	730	468	271	173	427	103.436	107	41.939	
10^{-3}	1347	904	577	338	199	473	119.149	124	48.272	

23/34

Results for ℓ_1 data term

Results for ℓ_1 data term

Results for ℓ_1 data term

	iPiano with different β								L-BFGS	
tol	0.00	0.20	0.40	0.60	0.80	0.95	$T_1(s)$	iter.	$T_2(s)$	
10 ¹	847	538	341	195	96	304	65.679	265	121.303	
100	1077	682	433	247	120	349	81.761	285	130.846	
10^1	1311	835	530	303	143	395	97.060	298	136.326	
10^2	1559	997	631	362	164	440	111.579	311	141.876	
10-3	1818	1169	741	424	185	485	126.272	327	148.945	

24 / 34

Application to image compression based on linear diffusion

- A new image compression methodology introduced in [Galic, Weickert, Welk, Bruhn, Belyaev, Seidel '08]
- ► The idea is to select a subset of image pixels such that the reconstruction of the whole image via linear diffusion yields the best reconstruction [Hoeltgen, Setzer, Weickert '13]

Application to image compression based on linear diffusion

Is written as the following bilevel optimization problem

$$\begin{split} \min_{u,c} & \frac{1}{2} \|u - u^0\|_2^2 + \lambda \|c\|_1 \\ \text{s.t. } & \mathcal{C}(u - u^0) - (I - \mathcal{C})Lu = 0 \,, \end{split}$$

where $C = \text{diag}(c) \in \mathbb{R}^{N \times N}$ and L is the Laplace or biharmonic operator

 We can transform the problem into an non-convex single-level problem of the form

$$\min_{c} \frac{1}{2} \|A^{-1}Cu^{0} - u^{0}\|_{2}^{2} + \lambda \|c\|_{1}, \quad A = C + (C - I)L$$

- Perfectly fits to the framework of iPiano
- We choose $f = \frac{1}{2} \|A^{-1}Cu^0 u^0\|_2^2$ and $g = \lambda \|c\|_1$
- The gradient of f is given by

 $\nabla f(c) = \operatorname{diag}(-(I+L)u + u^0)(A^{\top})^{-1}(u-u^0), \quad u = A^{-1}Cu^0$

- Lipschitz, if at least one entry of c is non-zero
- One evaluation of the gradient requires to solve two linear systems
- Proximal map with respect to g is standard

Results for Trui

Input

Results for Trui

5% of the pixels

Results for Trui

Reconstruction

Results for Walter

Input

Results for Walter

5% of the pixels

Results for Walter

Reconstruction

Phase field models

- Mathematical model for solving interfacial problems
- Approximation of the interface length via the Mordica-Mortola phase field energy

$$\int_{\Gamma} \mathrm{d}\gamma \approx \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \mathrm{d}x,$$

where $W(t) = (t(1-t))^2/2$ is a double-well potential

Phase field models

- Mathematical model for solving interfacial problems
- Approximation of the interface length via the Mordica-Mortola phase field energy

$$\int_{\Gamma} \mathrm{d}\gamma \approx \int_{\Omega} \frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} W(u) \mathrm{d}x,$$

where $W(t) = (t(1-t))^2/2$ is a double-well potential

- Non-convex, but smooth energy
- Can be combined with arbitrary non-smooth but convex energy

Videos ...

Curvature

- Phase-fields are close to distance functions around the interface and hence they allow to reliably estimate the curvature of the interface
- Approximation of the Willmore energy

$$\frac{1}{2}\int_{\Gamma}h^2\,\mathrm{d}\gamma\approx\frac{1}{2\varepsilon}\int_{\Omega}(\Delta u-\frac{1}{\varepsilon}W'(u))^2\,\mathrm{d}x$$

- De Giorgi conjecture: Γ -convergence as $\varepsilon \to 0$
- Length vs. curvature regularization

Videos ...

Image inpainting

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conclusion

- Proposed an inertial forward-backward algorithm (iPiano) for minimizing the sum of a smooth and a convex function
- ► Existence of a converging subsequence in the most-general case
- Convergence of the whole sequence in case the Kurdyka-Łojasiewicz property holds
- $\mathcal{O}(1/\sqrt{N})$ convergence of the proximal residual in the general case
- Application to non-convex problems in image processing
- Can be easily parallelized or implemented in mobile hardware

Thank you for listening!