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Energy minimization methods

I Typical variational approaches to solve inverse problems consist of a
regularization term and a data term

min
u
{E (u|f ) = R(u) +D(u, f )} ,

where f is the input data and u is the unknown solution

I Low-energy states reflect the physical properties of the problem

I Minimizer provides the best (in the sense of the model) solution to
the problem
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Optimization problems are unsolvable
Consider the following general mathematical optimization problem:

min f0(x)
s.t. fi (x) ≤ 0 , i = 1 . . .m

x ∈ X ,

where f0(x)...fm(x) are real-valued functions, x = (x1, ...xn)T ∈ Rn is a
n-dimensional real-valued vector, and X is a subset of Rn

How to solve this problem?

I Naive: “Download a commercial package ...”

I Reality: “Finding a solution is far from being trivial!”

I Efficiently finding solutions to the whole class of Lipschitz
continuous problems is a hopeless case [Nesterov ’04]

I Can take several million years for small problems with only 10
unknowns

I “Optimization problems are unsolvable”

[Nesterov ’04]
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Convex versus non-convex

“The great watershed in optimization is not between linearity and
non-linearity, but convexity and non-convexity.” R. Rockafellar, 1993

I Convex problems
I Any local minimizer is a global minimizer
I Result is independent of the initialization
I Convex models often inferior

I Non-convex problems
I In general no chance to find the global minimizer
I Result strongly depends on the initialization
I Often give more accurate models
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Non-convex optimization problems

I Smooth non-convex problems can be solved via generic nonlinear
numerical optimization algorithms (SD, CG, BFGS, ...)

I Hard to generalize to constraints, or non-differentiable functions

I Line-search procedure can be time intensive

I A reasonable idea is to develop algorithms for special classes of
structured non-convex problems

I A promising class of problems that has a moderate degree of
non-convexity is given by the sum of a smooth non-convex function
and a non-smooth convex function [Sra ’12], [Chouzenoux, Pesquet,
Repetti ’13]
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Problem definition
I We consider the problem of minimizing a function

h : X → R ∪ {+∞}

min
x∈X

h(x) = f (x) + g(x) ,

where X is a finite dimensional real vector space.

I We assume that h is coercive, i.e. ‖x‖2 → +∞ ⇒ h(x)→ +∞
and bounded from below by some value h > −∞

I The function f is possibly non-convex but has a Lipschitz continuous
gradient, i.e.

‖∇f (x)−∇f (y)‖2 ≤ L‖x − y‖2

I The function g is a proper lower semi-continuous convex function
with an efficient to compute proximal map

(I + α∂g)−1(x̂) := arg min
x∈X

‖x − x̂‖2
2

2
+ αg(x) ,

where α > 0.
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Forward-backward splitting
I We aim at seeking a critical point x∗, i.e. a point satisfying

0 ∈ ∂h(x∗) which in our case becomes

−∇f (x∗) ∈ ∂g(x∗) .

I A critical point can also be characterized via the proximal residual

r(x) := x − (I + ∂g)−1(x −∇f (x)) ,

where I is the identity map.

I Clearly r(x∗) = 0 implies that x∗ is a critical point.

I The norm of the proximal residual can be used as a (bad) measure
of optimality

I The proximal residual already suggests an iterative method of the
form

xn+1 = (I + α∂g)−1(xn − α∇f (xn))

I For f convex, this algorithm is well studied [Lions, Mercier ’79],
[Tseng ’91], [Daubechie et al. ’04], [Combettes, Wajs ’05], [Raguet,
Fadili, Peyré ’13]
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Inertial/accelerated methods

I Inertial: Introduced by Polyak in [Polyak ’64] as a special case of
multi-step algorithms for minimizing a µ-strongly convex function:

xn+1 = xn − α∇f (xn) + β(xn − xn−1)

I Can be seen as an explicit finite differences discretization of the
heavy-ball with friction dynamical system

ẍ(t) + γẋ(t) +∇f (x(t)) = 0 .

Source: Stich et al.
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A note on the convex case

If f is l - strongly convex and ∇f is L - Lipschitz than by setting

I α = 4
(
√
l+
√
L)2

I β =
(√

l−
√
L√

l+
√
L

)2

yields an “optimal” linear convergence rate of

‖xn − x∗‖2 ≤

(√
L−
√

l√
L +
√

l

)n

‖x0 − x∗‖2

I No first-order method can be faster!

I Same performance as CG, but we need to know l , L

I CG only makes sense for quadratic functions

I Heavy-ball can be used together with constraints, non-smooth
functions [Ochs, P. et al, ’14]
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iPiano

inertial Proximal algorithm for non-convex optimization

I Initialization: Choose x0 ∈ dom h and set x−1 = x0.

I Iterations (n ≥ 0): Update

xn+1 = (I + αn∂g)−1(xn − αn∇f (xn) + βn(xn − xn−1)) ,

for some sequences (αn), (βn).

Questions:

I When does this algorithm converge (subsequence, whole sequence)?

I How fast does it converge (convergence rate)?

I Applications?

10 / 34



The Kurdyka- Lojasiewicz property

Definition
The function F : RN → R ∪ {∞} has the Kurdyka- Lojasiewicz property
at x∗ ∈ dom ∂F , if there exist η ∈ (0,∞], a neighborhood U of x∗ and a
continuous concave function ϕ : [0, η)→ R+ such that ϕ(0) = 0,
ϕ ∈ C 1((0, η)), for all s ∈ (0, η) it is ϕ′(s) > 0, and for all
x ∈ U ∩ [F (x∗) < F < F (x∗) + η] the Kurdyka- Lojasiewicz inequality
holds, i.e.,

ϕ′(F (x)− F (x∗))dist(0, ∂F (x)) ≥ 1 .

I Intuetively, we can bound the subgradients from below by a
re-parametrization of the function values

I The Kurdyka- Lojasiewicz property holds for real, semi-algebraic
functions

I Recently, the Kurdyka- Lojasiewicz property attracted a lot of
attention for proving convergence of descent methods [Attouch,
Bolte et al. ’10-’13], [Chouzenoux, Pesquet, Repetti ’13], ...
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Abstract convergence for two-step algorithms

I We extend the convergence result of [Attouch, Bolte, Svaiter ’13] for
one-step algorithms to the case of two-step algorithms

I Let F (zn) be a proper, lower semicontinuous function,
(zn) = (xn, xn−1), ∆n := ‖xn − xn−1‖2

I We require the following conditions to be satisfied:

(H1) For each n ∈ N, it holds

F (zn+1) + a∆2
n ≤ F (zn) .

(H2) For each n ∈ N, there exists wn+1 ∈ ∂F (zn+1) such that

‖wn+1‖2 ≤
b

2
(∆n + ∆n+1) .

(H3) There exists a subsequence (znj )j∈N such that

znj → z̃ and F (znj )→ F (z̃) , as j →∞ .
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Convergence of the whole sequence to a critical point

Theorem
Let F : R2N → R ∪ {∞} be a proper lower semi-continuous function and
(zn)n∈N = (xn, xn−1)n∈N a sequence that satisfies H1, H2, and H3.
Moreover, let F have the Kurdyka- Lojasiewicz property at the cluster
point x̃ specified in H3.
Then, the sequence (xn)∞n=0 has finite length, i.e.,

∑∞
n=1 ∆n <∞, and

converges to x̄ = x̃ as n→∞, where (x̄ , x̄) is a critical point of F .

I Details of the proof see [Ochs, Chen, Brox, P. SIIMS ’14]

I In order to apply this result to iPiano, it remains to show that
H1-H3 hold

13 / 34



Back to our class of problems: basic inequalities

We can describe our model class h = f + g , by the following to
inequalities

Lemma
Let ∇f be L-Lipschitz. Then for any x , y ∈ dom f it holds that

f (x) ≤ f (y) + 〈∇f (y), x − y〉+
L

2
‖x − y‖2

2 .

Lemma
Let g be a proper lower semi-continuous convex function, then it holds
for any x , y ∈ X , s ∈ ∂g(x) that

g(y) ≥ g(x) + 〈s, y − x〉 .
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A Lyapunov function
I Let us consider the function Hδ(x , y) := h(x) + δ‖x − y‖2

2, δ ∈ R,
and the distance of two subsequent iterates ∆n := ‖xn − xn−1‖2

I The main iterate of the algorithm is given by

xn+1 = (I + αn∂g)−1(xn − αn∇f (xn) + βn(xn − xn−1))

I Applying the previous inequalities to the iteration yields the
following result:

Lemma

(a) The sequence (Hδn(xn, xn−1))∞n=0 is monotonically decreasing and
thus converging. In particular, it holds

Hδn+1 (xn+1, xn) ≤ Hδn(xn, xn−1)− γn∆2
n ,

where γn, δn is some pos. parameter depending on αn, βn.

(b) It holds
∑∞

n=0 ∆2
n <∞ and, thus, limn→∞∆n = 0.

Note that from limn→∞∆n = 0 6⇒
∑∞

n=0 ∆n <∞, e.g choose ∆n = 1/n
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Discussion

I We do not guarantee monotone decrease of the function values
h(xn) but we guarantee monotone decrease of the function
Hδ(x , y) := h(x) + δ‖x − y‖2

2
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10

12

n

h
(x
)

 

 

h(xn)
Hδn

(xn, xn−1)

I To ensure convergence we obtain: αn <
2(1−βn)

Ln
, which is the same

as in [Zavriev, Kostyuk ’93] for g = 0
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Convergence of a subsequence

Based on the previous lemma we can draw our first conclusion about the
convergence of the algorithm in the general case (no KL)

Theorem

(a) The sequence (h(xn))∞n=0 converges.

(b) There exists a converging subsequence (xnk )∞k=0.

(c) Any limit point x∗ := limk→∞ xnk is a critical point of h.

I (a) follows from the fact that we can “sandwich” h(xn) between
H−δn(xn, xn−1) and Hδn(xn, xn−1)

I (b) follows from the boundedness of the level sets of h and the
Bolzano Weierstrass theorem

I (c) follows from the Lipschitz continuity of ∇f and the lower
semi-continuity of g
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Convergence of the whole sequence

Theorem
Let (xn)n∈N be generated by the iPiano Algorithm, and let δn = δ for all
n ∈ N. Then, the sequence (xn+1, xn)n∈N satisfies H1, H2, and H3 for
the function Hδ(x , y). Moreover, if Hδ(x , y) has the Kurdyka- Lojasiewicz
property at a cluster point (x∗, x∗), then the sequence (xn)n∈N has finite
length, xn → x∗ as n→∞, and (x∗, x∗) is a critical point of Hδ, hence
x∗ is a critical point of h.

(H1) follows from the monotone decrease of Hδ

Hδn+1 (xn+1, xn) ≤ Hδn(xn, xn−1)− γn∆2
n .

(H2) follows from the subdifferential of Hδ

‖wn+1‖2 ≤ 1
αn

(αnLn + 1 + 4αnδ)∆n+1 + 1
αn
βn∆n .

(H3) follows from the convergence of a subsequence of (xn) and the fact
that ∆n → 0 as n→∞.

18 / 34
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n .

(H2) follows from the subdifferential of Hδ

‖wn+1‖2 ≤ 1
αn

(αnLn + 1 + 4αnδ)∆n+1 + 1
αn
βn∆n .

(H3) follows from the convergence of a subsequence of (xn) and the fact
that ∆n → 0 as n→∞.
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Convergence rate in the non-convex case

I Absence of convexity makes live hard

Theorem
The iPiano algorithm guarantees that for all N ≥ 0

min
0≤n≤N

‖r(xn)‖2 ≤
2

c1c2

√
h(x0)− h

N + 1

i.e. the smallest proximal residual converges with rate O(1/
√

N).

I Similar bound for β = 0 is shown in [Nesterov ’12]
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Ability to overcome spurious stationary solutions
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(a) Contour plot of h(x) (b) Energy landscape of h(x)

min
x∈RN

h(x) := f (x)+g(x) , f (x) =
1

2

N∑
i=1

log(1+µ(xi−u0
i )2) , g(x) = λ‖x‖1 ,
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Effect of the inertial force
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The inertial force helps to overcome spurious stationary solutions
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Application to student-t regularized image denoising

I We consider the following class of non-convex image denoising
models

min
u∈RN

Nf∑
i=1

ϑi
∑
j

ϕ((Kiu)j) +
λ

p
‖u − u0‖pp , p ∈ {1, 2}

I The potential functions are given by ϕ(t) = log(1 + t2)

I Obvious splitting into a smooth function plus a convex function with
easy to compute proximal map

I The linear operators Ki are given by learned filter kernels ki
I Gives excellent results for image denoising [Chen et al. ’13]

I Comparison based on the error En = hn − h∗

I In this example, h∗ appears to be the same for all tested algorithms
(which is not true in general).
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Results for `2 denoising
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Results for `2 denoising

iPiano with different β L-BFGS
tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)
101 505 344 222 129 79 299 47.177 66 27.054
100 664 451 290 168 98 342 59.133 79 32.143

10−1 857 579 371 216 143 384 85.784 93 36.926
10−2 1086 730 468 271 173 427 103.436 107 41.939
10−3 1347 904 577 338 199 473 119.149 124 48.272
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iPiano, β = 0.8
O(1/N )
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Results for `1 data term
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Results for `1 data term

iPiano with different β L-BFGS
tol 0.00 0.20 0.40 0.60 0.80 0.95 T1(s) iter. T2(s)
101 847 538 341 195 96 304 65.679 265 121.303
100 1077 682 433 247 120 349 81.761 285 130.846

10−1 1311 835 530 303 143 395 97.060 298 136.326
10−2 1559 997 631 362 164 440 111.579 311 141.876
10−3 1818 1169 741 424 185 485 126.272 327 148.945
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Application to image compression based on linear diffusion

I A new image compression methodology introduced in [Galic,
Weickert, Welk, Bruhn, Belyaev, Seidel ’08]

I The idea is to select a subset of image pixels such that the
reconstruction of the whole image via linear diffusion yields the best
reconstruction [Hoeltgen, Setzer, Weickert ’13]
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Application to image compression based on linear diffusion

I Is written as the following bilevel optimization problem

min
u,c

1

2
‖u − u0‖2

2 + λ‖c‖1

s.t. C (u − u0)− (I − C )Lu = 0 ,

where C = diag(c) ∈ RN×N and L is the Laplace or biharmonic
operator

I We can transform the problem into an non-convex single-level
problem of the form

min
c

1

2
‖A−1Cu0 − u0‖2

2 + λ‖c‖1 , A = C + (C − I )L
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I Perfectly fits to the framework of iPiano

I We choose f = 1
2‖A

−1Cu0 − u0‖2
2 and g = λ‖c‖1

I The gradient of f is given by

∇f (c) = diag(−(I + L)u + u0)(A>)−1(u − u0) , u = A−1Cu0

I Lipschitz, if at least one entry of c is non-zero

I One evaluation of the gradient requires to solve two linear systems

I Proximal map with respect to g is standard
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Results for Trui
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Results for Walter

Reconstruction
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Phase field models

I Mathematical model for solving interfacial problems

I Approximation of the interface length via the Mordica-Mortola phase
field energy ∫

Γ

dγ ≈
∫

Ω

ε

2
|∇u|2 +

1

ε
W (u) dx ,

where W (t) = (t(1− t))2/2 is a double-well potential

I Non-convex, but smooth energy

I Can be combined with arbirtrary non-smooth but convex energy

(Source: wikipedia)

Videos ...
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Curvature

I Phase-fields are close to distance functions around the interface and
hence they allow to reliably estimate the curvature of the interface

I Approximation of the Willmore energy

1

2

∫
Γ

h2 dγ ≈ 1

2ε

∫
Ω

(∆u − 1

ε
W ′(u))2 dx

I De Giorgi conjecture: Γ-convergence as ε→ 0

I Length vs. curvature regularization

Videos ...
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Image inpainting

Input image
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Conclusion

I Proposed an inertial forward-backward algorithm (iPiano) for
minimizing the sum of a smooth and a convex function

I Existence of a converging subsequence in the most-general case

I Convergence of the whole sequence in case the Kurdyka- Lojasiewicz
property holds

I O(1/
√

N) convergence of the proximal residual in the general case

I Application to non-convex problems in image processing

I Can be easily parallelized or implemented in mobile hardware
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Thank you for listening!
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