iPiano: Inertial Proximal Algorithm for Non-convex Optimization

Thomas Pock
Institute for Computer Graphics and Vision
Graz University of Technology

MOBIS Workshop, University of Graz, July 5th, 2014

Joint work with:
P. Ochs, T. Brox (University of Freiburg)
Y. Chen (Graz University of Technology)

Energy minimization methods

- Typical variational approaches to solve inverse problems consist of a regularization term and a data term

$$
\min _{u}\{E(u \mid f)=\mathcal{R}(u)+\mathcal{D}(u, f)\},
$$

where f is the input data and u is the unknown solution

Energy minimization methods

- Typical variational approaches to solve inverse problems consist of a regularization term and a data term

$$
\min _{u}\{E(u \mid f)=\mathcal{R}(u)+\mathcal{D}(u, f)\},
$$

where f is the input data and u is the unknown solution

- Low-energy states reflect the physical properties of the problem

Energy minimization methods

- Typical variational approaches to solve inverse problems consist of a regularization term and a data term

$$
\min _{u}\{E(u \mid f)=\mathcal{R}(u)+\mathcal{D}(u, f)\},
$$

where f is the input data and u is the unknown solution

- Low-energy states reflect the physical properties of the problem
- Minimizer provides the best (in the sense of the model) solution to the problem

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

$$
\begin{array}{cc}
& \min f_{0}(x) \\
\text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1 \ldots m \\
x \in X,
\end{array}
$$

where $f_{0}(x) \ldots f_{m}(x)$ are real-valued functions, $x=\left(x_{1}, \ldots x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a n-dimensional real-valued vector, and X is a subset of \mathbb{R}^{n}

How to solve this problem?

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

$$
\begin{aligned}
& \quad \min f_{0}(x) \\
& \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1 \ldots m \\
& x \in X,
\end{aligned}
$$

where $f_{0}(x) \ldots f_{m}(x)$ are real-valued functions, $x=\left(x_{1}, \ldots x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a n-dimensional real-valued vector, and X is a subset of \mathbb{R}^{n}

How to solve this problem?

- Naive: "Download a commercial package ..."

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

$$
\begin{aligned}
& \quad \min f_{0}(x) \\
& \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1 \ldots m \\
& x \in X,
\end{aligned}
$$

where $f_{0}(x) \ldots f_{m}(x)$ are real-valued functions, $x=\left(x_{1}, \ldots x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a n-dimensional real-valued vector, and X is a subset of \mathbb{R}^{n}

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

$$
\begin{aligned}
& \quad \min f_{0}(x) \\
& \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1 \ldots m \\
& x \in X,
\end{aligned}
$$

where $f_{0}(x) \ldots f_{m}(x)$ are real-valued functions, $x=\left(x_{1}, \ldots x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a n-dimensional real-valued vector, and X is a subset of \mathbb{R}^{n}

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"
- Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov '04]
- Can take several million years for small problems with only 10 unknowns

Optimization problems are unsolvable

Consider the following general mathematical optimization problem:

$$
\begin{aligned}
& \quad \min f_{0}(x) \\
& \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1 \ldots m \\
& x \in X,
\end{aligned}
$$

where $f_{0}(x) \ldots f_{m}(x)$ are real-valued functions, $x=\left(x_{1}, \ldots x_{n}\right)^{T} \in \mathbb{R}^{n}$ is a n-dimensional real-valued vector, and X is a subset of \mathbb{R}^{n}

How to solve this problem?

- Naive: "Download a commercial package ..."
- Reality: "Finding a solution is far from being trivial!"
- Efficiently finding solutions to the whole class of Lipschitz continuous problems is a hopeless case [Nesterov '04]
- Can take several million years for small problems with only 10 unknowns
- "Optimization problems are unsolvable"
[Nesterov '04]

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

- Convex problems
- Any local minimizer is a global minimizer
- Result is independent of the initialization
- Convex models often inferior

Convex versus non-convex

"The great watershed in optimization is not between linearity and non-linearity, but convexity and non-convexity." R. Rockafellar, 1993

- Convex problems
- Any local minimizer is a global minimizer
- Result is independent of the initialization
- Convex models often inferior
- Non-convex problems
- In general no chance to find the global minimizer
- Result strongly depends on the initialization
- Often give more accurate models

Non-convex optimization problems

- Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, ...)
- Hard to generalize to constraints, or non-differentiable functions
- Line-search procedure can be time intensive

Non-convex optimization problems

- Smooth non-convex problems can be solved via generic nonlinear numerical optimization algorithms (SD, CG, BFGS, ...)
- Hard to generalize to constraints, or non-differentiable functions
- Line-search procedure can be time intensive
- A reasonable idea is to develop algorithms for special classes of structured non-convex problems
- A promising class of problems that has a moderate degree of non-convexity is given by the sum of a smooth non-convex function and a non-smooth convex function [Sra '12], [Chouzenoux, Pesquet, Repetti '13]

Problem definition

- We consider the problem of minimizing a function $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
\min _{x \in X} h(x)=f(x)+g(x)
$$

where X is a finite dimensional real vector space.

- We assume that h is coercive, i.e. $\|x\|_{2} \rightarrow+\infty \quad \Rightarrow \quad h(x) \rightarrow+\infty$ and bounded from below by some value $\underline{h}>-\infty$

Problem definition

- We consider the problem of minimizing a function $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
\min _{x \in X} h(x)=f(x)+g(x)
$$

where X is a finite dimensional real vector space.

- We assume that h is coercive, i.e. $\|x\|_{2} \rightarrow+\infty \quad \Rightarrow \quad h(x) \rightarrow+\infty$ and bounded from below by some value $\underline{h}>-\infty$
- The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

Problem definition

- We consider the problem of minimizing a function $h: X \rightarrow \mathbb{R} \cup\{+\infty\}$

$$
\min _{x \in X} h(x)=f(x)+g(x)
$$

where X is a finite dimensional real vector space.

- We assume that h is coercive, i.e. $\|x\|_{2} \rightarrow+\infty \quad \Rightarrow \quad h(x) \rightarrow+\infty$ and bounded from below by some value $\underline{h}>-\infty$
- The function f is possibly non-convex but has a Lipschitz continuous gradient, i.e.

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

- The function g is a proper lower semi-continuous convex function with an efficient to compute proximal map

$$
(I+\alpha \partial g)^{-1}(\hat{x}):=\arg \min _{x \in X} \frac{\|x-\hat{x}\|_{2}^{2}}{2}+\alpha g(x)
$$

where $\alpha>0$.

Forward-backward splitting

- We aim at seeking a critical point x^{*}, i.e. a point satisfying
$0 \in \partial h\left(x^{*}\right)$ which in our case becomes

$$
-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)
$$

- A critical point can also be characterized via the proximal residual

$$
r(x):=x-(I+\partial g)^{-1}(x-\nabla f(x))
$$

where $/$ is the identity map.

- Clearly $r\left(x^{*}\right)=0$ implies that x^{*} is a critical point.
- The norm of the proximal residual can be used as a (bad) measure of optimality

Forward-backward splitting

- We aim at seeking a critical point x^{*}, i.e. a point satisfying $0 \in \partial h\left(x^{*}\right)$ which in our case becomes

$$
-\nabla f\left(x^{*}\right) \in \partial g\left(x^{*}\right)
$$

- A critical point can also be characterized via the proximal residual

$$
r(x):=x-(I+\partial g)^{-1}(x-\nabla f(x))
$$

where I is the identity map.

- Clearly $r\left(x^{*}\right)=0$ implies that x^{*} is a critical point.
- The norm of the proximal residual can be used as a (bad) measure of optimality
- The proximal residual already suggests an iterative method of the form

$$
x^{n+1}=(I+\alpha \partial g)^{-1}\left(x^{n}-\alpha \nabla f\left(x^{n}\right)\right)
$$

- For f convex, this algorithm is well studied [Lions, Mercier '79], [Tseng '91], [Daubechie et al. '04], [Combettes, Wajs '05], [Raguet, Fadili, Peyré '13]

Inertial/accelerated methods

- Inertial: Introduced by Polyak in [Polyak '64] as a special case of multi-step algorithms for minimizing a μ-strongly convex function:

$$
x^{n+1}=x^{n}-\alpha \nabla f\left(x^{n}\right)+\beta\left(x^{n}-x^{n-1}\right)
$$

- Can be seen as an explicit finite differences discretization of the heavy-ball with friction dynamical system

$$
\ddot{x}(t)+\gamma \dot{x}(t)+\nabla f(x(t))=0 .
$$

Inertial/accelerated methods

- Inertial: Introduced by Polyak in [Polyak '64] as a special case of multi-step algorithms for minimizing a μ-strongly convex function:

$$
x^{n+1}=x^{n}-\alpha \nabla f\left(x^{n}\right)+\beta\left(x^{n}-x^{n-1}\right)
$$

- Can be seen as an explicit finite differences discretization of the heavy-ball with friction dynamical system

$$
\ddot{x}(t)+\gamma \dot{x}(t)+\nabla f(x(t))=0 .
$$

Source: Stich et al.

A note on the convex case

If f is I - strongly convex and ∇f is L - Lipschitz than by setting

- $\alpha=\frac{4}{(\sqrt{1}+\sqrt{L})^{2}}$
- $\beta=\left(\frac{\sqrt{I}-\sqrt{L}}{\sqrt{I}+\sqrt{L}}\right)^{2}$
yields an "optimal" linear convergence rate of

$$
\left\|x^{n}-x^{*}\right\|_{2} \leq\left(\frac{\sqrt{L}-\sqrt{l}}{\sqrt{L}+\sqrt{l}}\right)^{n}\left\|x^{0}-x^{*}\right\|_{2}
$$

A note on the convex case

If f is I - strongly convex and ∇f is L - Lipschitz than by setting

- $\alpha=\frac{4}{(\sqrt{1}+\sqrt{L})^{2}}$
- $\beta=\left(\frac{\sqrt{I}-\sqrt{L}}{\sqrt{I}+\sqrt{L}}\right)^{2}$
yields an "optimal" linear convergence rate of

$$
\left\|x^{n}-x^{*}\right\|_{2} \leq\left(\frac{\sqrt{L}-\sqrt{I}}{\sqrt{L}+\sqrt{I}}\right)^{n}\left\|x^{0}-x^{*}\right\|_{2}
$$

- No first-order method can be faster!
- Same performance as CG, but we need to know I, L
- CG only makes sense for quadratic functions
- Heavy-ball can be used together with constraints, non-smooth functions [Ochs, P. et al, '14]

iPiano

inertial Proximal algorithm for non-convex optimization

- Initialization: Choose $x^{0} \in \operatorname{dom} h$ and set $x^{-1}=x^{0}$.
- Iterations ($n \geq 0$): Update

$$
x^{n+1}=\left(I+\alpha_{n} \partial g\right)^{-1}\left(x^{n}-\alpha_{n} \nabla f\left(x^{n}\right)+\beta_{n}\left(x^{n}-x^{n-1}\right)\right),
$$ for some sequences $\left(\alpha_{n}\right),\left(\beta_{n}\right)$.

Questions:

- When does this algorithm converge (subsequence, whole sequence)?
- How fast does it converge (convergence rate)?
- Applications?

The Kurdyka-Łojasiewicz property

Definition

The function $F: \mathbb{R}^{N} \rightarrow \mathbb{R} \cup\{\infty\}$ has the Kurdyka-Łojasiewicz property at $x^{*} \in \operatorname{dom} \partial F$, if there exist $\eta \in(0, \infty]$, a neighborhood U of x^{*} and a continuous concave function $\varphi:[0, \eta) \rightarrow \mathbb{R}_{+}$such that $\varphi(0)=0$, $\varphi \in C^{1}((0, \eta))$, for all $s \in(0, \eta)$ it is $\varphi^{\prime}(s)>0$, and for all $x \in U \cap\left[F\left(x^{*}\right)<F<F\left(x^{*}\right)+\eta\right]$ the Kurdyka-Łojasiewicz inequality holds, i.e.,

$$
\varphi^{\prime}\left(F(x)-F\left(x^{*}\right)\right) \operatorname{dist}(0, \partial F(x)) \geq 1
$$

- Intuetively, we can bound the subgradients from below by a re-parametrization of the function values
- The Kurdyka-Łojasiewicz property holds for real, semi-algebraic functions
- Recently, the Kurdyka-Lojasiewicz property attracted a lot of attention for proving convergence of descent methods [Attouch, Bolte et al. '10-'13], [Chouzenoux, Pesquet, Repetti '13], ...

Abstract convergence for two-step algorithms

- We extend the convergence result of [Attouch, Bolte, Svaiter '13] for one-step algorithms to the case of two-step algorithms
- Let $F\left(z^{n}\right)$ be a proper, lower semicontinuous function, $\left(z^{n}\right)=\left(x^{n}, x^{n-1}\right), \Delta_{n}:=\left\|x^{n}-x^{n-1}\right\|_{2}$

Abstract convergence for two-step algorithms

- We extend the convergence result of [Attouch, Bolte, Svaiter '13] for one-step algorithms to the case of two-step algorithms
- Let $F\left(z^{n}\right)$ be a proper, lower semicontinuous function, $\left(z^{n}\right)=\left(x^{n}, x^{n-1}\right), \Delta_{n}:=\left\|x^{n}-x^{n-1}\right\|_{2}$
- We require the following conditions to be satisfied:
(H1) For each $n \in \mathbb{N}$, it holds

$$
F\left(z^{n+1}\right)+a \Delta_{n}^{2} \leq F\left(z^{n}\right) .
$$

(H2) For each $n \in \mathbb{N}$, there exists $w^{n+1} \in \partial F\left(z^{n+1}\right)$ such that

$$
\left\|w^{n+1}\right\|_{2} \leq \frac{b}{2}\left(\Delta_{n}+\Delta_{n+1}\right) .
$$

(H3) There exists a subsequence $\left(z^{n_{j}}\right)_{j \in \mathbb{N}}$ such that

$$
z^{n_{j}} \rightarrow \tilde{z} \quad \text { and } \quad F\left(z^{n_{j}}\right) \rightarrow F(\tilde{z}), \quad \text { as } j \rightarrow \infty
$$

Convergence of the whole sequence to a critical point

Theorem
Let $F: \mathbb{R}^{2 N} \rightarrow \mathbb{R} \cup\{\infty\}$ be a proper lower semi-continuous function and $\left(z^{n}\right)_{n \in \mathbb{N}}=\left(x^{n}, x^{n-1}\right)_{n \in \mathbb{N}}$ a sequence that satisfies $H 1, H 2$, and $H 3$.
Moreover, let F have the Kurdyka-Łojasiewicz property at the cluster point \tilde{x} specified in H3.
Then, the sequence $\left(x^{n}\right)_{n=0}^{\infty}$ has finite length, i.e., $\sum_{n=1}^{\infty} \Delta_{n}<\infty$, and converges to $\bar{x}=\tilde{x}$ as $n \rightarrow \infty$, where (\bar{x}, \bar{x}) is a critical point of F.

- Details of the proof see [Ochs, Chen, Brox, P. SIIMS '14]
- In order to apply this result to iPiano, it remains to show that H1-H3 hold

Back to our class of problems: basic inequalities

We can describe our model class $h=f+g$, by the following to inequalities

Lemma
Let ∇f be L-Lipschitz. Then for any $x, y \in \operatorname{dom} f$ it holds that

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|_{2}^{2} .
$$

Back to our class of problems: basic inequalities

We can describe our model class $h=f+g$, by the following to inequalities
Lemma
Let ∇f be L-Lipschitz. Then for any $x, y \in \operatorname{dom} f$ it holds that

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|_{2}^{2} .
$$

Lemma

Let g be a proper lower semi-continuous convex function, then it holds for any $x, y \in X, s \in \partial g(x)$ that

$$
g(y) \geq g(x)+\langle s, y-x\rangle .
$$

A Lyapunov function

- Let us consider the function $H_{\delta}(x, y):=h(x)+\delta\|x-y\|_{2}^{2}, \delta \in \mathbb{R}$, and the distance of two subsequent iterates $\Delta_{n}:=\left\|x^{n}-x^{n-1}\right\|_{2}$
- The main iterate of the algorithm is given by

$$
x^{n+1}=\left(I+\alpha_{n} \partial g\right)^{-1}\left(x^{n}-\alpha_{n} \nabla f\left(x^{n}\right)+\beta_{n}\left(x^{n}-x^{n-1}\right)\right)
$$

- Applying the previous inequalities to the iteration yields the following result:

Lemma

(a) The sequence $\left(H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)\right)_{n=0}^{\infty}$ is monotonically decreasing and thus converging. In particular, it holds

$$
H_{\delta_{n+1}}\left(x^{n+1}, x^{n}\right) \leq H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)-\gamma_{n} \Delta_{n}^{2}
$$

where γ_{n}, δ_{n} is some pos. parameter depending on α_{n}, β_{n}.
(b) It holds $\sum_{n=0}^{\infty} \Delta_{n}^{2}<\infty$ and, thus, $\lim _{n \rightarrow \infty} \Delta_{n}=0$.

A Lyapunov function

- Let us consider the function $H_{\delta}(x, y):=h(x)+\delta\|x-y\|_{2}^{2}, \delta \in \mathbb{R}$, and the distance of two subsequent iterates $\Delta_{n}:=\left\|x^{n}-x^{n-1}\right\|_{2}$
- The main iterate of the algorithm is given by

$$
x^{n+1}=\left(I+\alpha_{n} \partial g\right)^{-1}\left(x^{n}-\alpha_{n} \nabla f\left(x^{n}\right)+\beta_{n}\left(x^{n}-x^{n-1}\right)\right)
$$

- Applying the previous inequalities to the iteration yields the following result:

Lemma

(a) The sequence $\left(H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)\right)_{n=0}^{\infty}$ is monotonically decreasing and thus converging. In particular, it holds

$$
H_{\delta_{n+1}}\left(x^{n+1}, x^{n}\right) \leq H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)-\gamma_{n} \Delta_{n}^{2}
$$

where γ_{n}, δ_{n} is some pos. parameter depending on α_{n}, β_{n}.
(b) It holds $\sum_{n=0}^{\infty} \Delta_{n}^{2}<\infty$ and, thus, $\lim _{n \rightarrow \infty} \Delta_{n}=0$.

Note that from $\lim _{n \rightarrow \infty} \Delta_{n}=0 \nRightarrow \sum_{n=0}^{\infty} \Delta_{n}<\infty$, e.g choose $\Delta_{n}=1 / n$

Discussion

- We do not guarantee monotone decrease of the function values $h\left(x^{n}\right)$ but we guarantee monotone decrease of the function $H_{\delta}(x, y):=h(x)+\delta\|x-y\|_{2}^{2}$

Discussion

- We do not guarantee monotone decrease of the function values $h\left(x^{n}\right)$ but we guarantee monotone decrease of the function $H_{\delta}(x, y):=h(x)+\delta\|x-y\|_{2}^{2}$

- To ensure convergence we obtain: $\alpha_{n}<\frac{2\left(1-\beta_{n}\right)}{L_{n}}$, which is the same as in [Zavriev, Kostyuk '93] for $g=0$

Convergence of a subsequence

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)
Theorem
(a) The sequence $\left(h\left(x^{n}\right)\right)_{n=0}^{\infty}$ converges.
(b) There exists a converging subsequence $\left(x^{n_{k}}\right)_{k=0}^{\infty}$.
(c) Any limit point $x^{*}:=\lim _{k \rightarrow \infty} x^{n_{k}}$ is a critical point of h.

Convergence of a subsequence

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)
Theorem
(a) The sequence $\left(h\left(x^{n}\right)\right)_{n=0}^{\infty}$ converges.
(b) There exists a converging subsequence $\left(x^{n_{k}}\right)_{k=0}^{\infty}$.
(c) Any limit point $x^{*}:=\lim _{k \rightarrow \infty} x^{n_{k}}$ is a critical point of h.

- (a) follows from the fact that we can "sandwich" $h\left(x^{n}\right)$ between $H_{-\delta_{n}}\left(x^{n}, x^{n-1}\right)$ and $H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)$

Convergence of a subsequence

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)
Theorem
(a) The sequence $\left(h\left(x^{n}\right)\right)_{n=0}^{\infty}$ converges.
(b) There exists a converging subsequence $\left(x^{n_{k}}\right)_{k=0}^{\infty}$.
(c) Any limit point $x^{*}:=\lim _{k \rightarrow \infty} x^{n_{k}}$ is a critical point of h.

- (a) follows from the fact that we can "sandwich" $h\left(x^{n}\right)$ between $H_{-\delta_{n}}\left(x^{n}, x^{n-1}\right)$ and $H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)$
- (b) follows from the boundedness of the level sets of h and the Bolzano Weierstrass theorem

Convergence of a subsequence

Based on the previous lemma we can draw our first conclusion about the convergence of the algorithm in the general case (no KL)
Theorem
(a) The sequence $\left(h\left(x^{n}\right)\right)_{n=0}^{\infty}$ converges.
(b) There exists a converging subsequence $\left(x^{n_{k}}\right)_{k=0}^{\infty}$.
(c) Any limit point $x^{*}:=\lim _{k \rightarrow \infty} x^{n_{k}}$ is a critical point of h.

- (a) follows from the fact that we can "sandwich" $h\left(x^{n}\right)$ between $H_{-\delta_{n}}\left(x^{n}, x^{n-1}\right)$ and $H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)$
- (b) follows from the boundedness of the level sets of h and the Bolzano Weierstrass theorem
- (c) follows from the Lipschitz continuity of ∇f and the lower semi-continuity of g

Convergence of the whole sequence

Theorem
Let $\left(x^{n}\right)_{n \in \mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_{n}=\delta$ for all $n \in \mathbb{N}$. Then, the sequence $\left(x^{n+1}, x^{n}\right)_{n \in \mathbb{N}}$ satisfies $H 1, H 2$, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point $\left(x^{*}, x^{*}\right)$, then the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ has finite length, $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, and $\left(x^{*}, x^{*}\right)$ is a critical point of H_{δ}, hence x^{*} is a critical point of h.

Convergence of the whole sequence

Theorem
Let $\left(x^{n}\right)_{n \in \mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_{n}=\delta$ for all $n \in \mathbb{N}$. Then, the sequence $\left(x^{n+1}, x^{n}\right)_{n \in \mathbb{N}}$ satisfies H1, H2, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point $\left(x^{*}, x^{*}\right)$, then the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ has finite length, $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, and $\left(x^{*}, x^{*}\right)$ is a critical point of H_{δ}, hence x^{*} is a critical point of h.
(H1) follows from the monotone decrease of H_{δ}

$$
H_{\delta_{n+1}}\left(x^{n+1}, x^{n}\right) \leq H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)-\gamma_{n} \Delta_{n}^{2} .
$$

Convergence of the whole sequence

Theorem

Let $\left(x^{n}\right)_{n \in \mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_{n}=\delta$ for all $n \in \mathbb{N}$. Then, the sequence $\left(x^{n+1}, x^{n}\right)_{n \in \mathbb{N}}$ satisfies $H 1, H 2$, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point $\left(x^{*}, x^{*}\right)$, then the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ has finite length, $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, and $\left(x^{*}, x^{*}\right)$ is a critical point of H_{δ}, hence x^{*} is a critical point of h.
(H1) follows from the monotone decrease of H_{δ}

$$
H_{\delta_{n+1}}\left(x^{n+1}, x^{n}\right) \leq H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)-\gamma_{n} \Delta_{n}^{2} .
$$

(H2) follows from the subdifferential of H_{δ}

$$
\left\|w^{n+1}\right\|_{2} \leq \frac{1}{\alpha_{n}}\left(\alpha_{n} L_{n}+1+4 \alpha_{n} \delta\right) \Delta_{n+1}+\frac{1}{\alpha_{n}} \beta_{n} \Delta_{n}
$$

Convergence of the whole sequence

Theorem

Let $\left(x^{n}\right)_{n \in \mathbb{N}}$ be generated by the iPiano Algorithm, and let $\delta_{n}=\delta$ for all $n \in \mathbb{N}$. Then, the sequence $\left(x^{n+1}, x^{n}\right)_{n \in \mathbb{N}}$ satisfies $H 1, H 2$, and H3 for the function $H_{\delta}(x, y)$. Moreover, if $H_{\delta}(x, y)$ has the Kurdyka-Łojasiewicz property at a cluster point $\left(x^{*}, x^{*}\right)$, then the sequence $\left(x^{n}\right)_{n \in \mathbb{N}}$ has finite length, $x^{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, and $\left(x^{*}, x^{*}\right)$ is a critical point of H_{δ}, hence x^{*} is a critical point of h.
(H1) follows from the monotone decrease of H_{δ}

$$
H_{\delta_{n+1}}\left(x^{n+1}, x^{n}\right) \leq H_{\delta_{n}}\left(x^{n}, x^{n-1}\right)-\gamma_{n} \Delta_{n}^{2} .
$$

(H2) follows from the subdifferential of H_{δ}

$$
\left\|w^{n+1}\right\|_{2} \leq \frac{1}{\alpha_{n}}\left(\alpha_{n} L_{n}+1+4 \alpha_{n} \delta\right) \Delta_{n+1}+\frac{1}{\alpha_{n}} \beta_{n} \Delta_{n} .
$$

(H3) follows from the convergence of a subsequence of $\left(x^{n}\right)$ and the fact that $\Delta_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Convergence rate in the non-convex case

- Absence of convexity makes live hard

Convergence rate in the non-convex case

- Absence of convexity makes live hard

Theorem
The iPiano algorithm guarantees that for all $N \geq 0$

$$
\min _{0 \leq n \leq N}\left\|r\left(x^{n}\right)\right\|_{2} \leq \frac{2}{c_{1} c_{2}} \sqrt{\frac{h\left(x^{0}\right)-\underline{h}}{N+1}}
$$

i.e. the smallest proximal residual converges with rate $\mathcal{O}(1 / \sqrt{N})$.

- Similar bound for $\beta=0$ is shown in [Nesterov '12]

Ability to overcome spurious stationary solutions

(a) Contour plot of $h(x)$

(b) Energy landscape of $h(x)$
$\min _{x \in \mathbb{R}^{N}} h(x):=f(x)+g(x), \quad f(x)=\frac{1}{2} \sum_{i=1}^{N} \log \left(1+\mu\left(x_{i}-u_{i}^{0}\right)^{2}\right), \quad g(x)=\lambda\|x\|_{1}$,

Effect of the inertial force

The inertial force helps to overcome spurious stationary solutions

Application to student-t regularized image denoising

- We consider the following class of non-convex image denoising models

$$
\min _{u \in \mathbb{R}^{N}} \sum_{i=1}^{N_{f}} \vartheta_{i} \sum_{j} \varphi\left(\left(K_{i} u\right)_{j}\right)+\frac{\lambda}{p}\left\|u-u^{0}\right\|_{p}^{p}, \quad p \in\{1,2\}
$$

- The potential functions are given by $\varphi(t)=\log \left(1+t^{2}\right)$
- Obvious splitting into a smooth function plus a convex function with easy to compute proximal map
- The linear operators K_{i} are given by learned filter kernels k_{i}
- Gives excellent results for image denoising [Chen et al. '13]
- Comparison based on the error $\mathcal{E}^{n}=h^{n}-h^{*}$
- In this example, h^{*} appears to be the same for all tested algorithms (which is not true in general).

Results for ℓ_{2} denoising

Results for ℓ_{2} denoising

Results for ℓ_{2} denoising

	iPiano with different β							L-BFGS	
tol	0.00	0.20	0.40	0.60	0.80	0.95	$T_{1}(\mathrm{~s})$	iter.	$T_{2}(\mathrm{~s})$
10^{1}	505	344	222	129	79	299	47.177	66	27.054
10^{0}	664	451	290	168	98	342	59.133	79	32.143
10^{-1}	857	579	371	216	143	384	85.784	93	36.926
10^{-2}	1086	730	468	271	173	427	103.436	107	41.939
10^{-3}	1347	904	577	338	199	473	119.149	124	48.272

Results for ℓ_{1} data term

Results for ℓ_{1} data term

Results for ℓ_{1} data term

	iPiano with different β							L-BFGS	
tol	0.00	0.20	0.40	0.60	0.80	0.95	$T_{1}(\mathrm{~s})$	iter.	$T_{2}(\mathrm{~s})$
10^{1}	847	538	341	195	96	304	65.679	265	121.303
10^{0}	1077	682	433	247	120	349	81.761	285	130.846
10^{-1}	1311	835	530	303	143	395	97.060	298	136.326
10^{-2}	1559	997	631	362	164	440	111.579	311	141.876
10^{-3}	1818	1169	741	424	185	485	126.272	327	148.945

Application to image compression based on linear diffusion

- A new image compression methodology introduced in [Galic, Weickert, Welk, Bruhn, Belyaev, Seidel '08]
- The idea is to select a subset of image pixels such that the reconstruction of the whole image via linear diffusion yields the best reconstruction [Hoeltgen, Setzer, Weickert '13]

Application to image compression based on linear diffusion

- Is written as the following bilevel optimization problem

$$
\begin{aligned}
& \min _{u, c} \frac{1}{2}\left\|u-u^{0}\right\|_{2}^{2}+\lambda\|c\|_{1} \\
& \text { s.t. } C\left(u-u^{0}\right)-(I-C) L u=0,
\end{aligned}
$$

where $C=\operatorname{diag}(c) \in \mathbb{R}^{N \times N}$ and L is the Laplace or biharmonic operator

- We can transform the problem into an non-convex single-level problem of the form

$$
\min _{c} \frac{1}{2}\left\|A^{-1} C u^{0}-u^{0}\right\|_{2}^{2}+\lambda\|c\|_{1}, \quad A=C+(C-I) L
$$

- Perfectly fits to the framework of iPiano
- We choose $f=\frac{1}{2}\left\|A^{-1} C u^{0}-u^{0}\right\|_{2}^{2}$ and $g=\lambda\|c\|_{1}$
- The gradient of f is given by

$$
\nabla f(c)=\operatorname{diag}\left(-(I+L) u+u^{0}\right)\left(A^{\top}\right)^{-1}\left(u-u^{0}\right), \quad u=A^{-1} C u^{0}
$$

- Lipschitz, if at least one entry of c is non-zero
- One evaluation of the gradient requires to solve two linear systems
- Proximal map with respect to g is standard

Results for Trui

Input

Results for Trui

5% of the pixels

Results for Trui

Reconstruction

Results for Walter

Input

Results for Walter

5% of the pixels

Results for Walter

Reconstruction

Phase field models

- Mathematical model for solving interfacial problems
- Approximation of the interface length via the Mordica-Mortola phase field energy

$$
\int_{\Gamma} \mathrm{d} \gamma \approx \int_{\Omega} \frac{\varepsilon}{2}|\nabla u|^{2}+\frac{1}{\varepsilon} W(u) \mathrm{d} x
$$

where $W(t)=(t(1-t))^{2} / 2$ is a double-well potential

Phase field models

- Mathematical model for solving interfacial problems
- Approximation of the interface length via the Mordica-Mortola phase field energy

$$
\int_{\Gamma} \mathrm{d} \gamma \approx \int_{\Omega} \frac{\varepsilon}{2}|\nabla u|^{2}+\frac{1}{\varepsilon} W(u) \mathrm{d} x
$$

where $W(t)=(t(1-t))^{2} / 2$ is a double-well potential

- Non-convex, but smooth energy
- Can be combined with arbirtrary non-smooth but convex energy

(Source: wikipedia)
Videos ...

Curvature

- Phase-fields are close to distance functions around the interface and hence they allow to reliably estimate the curvature of the interface
- Approximation of the Willmore energy

$$
\frac{1}{2} \int_{\Gamma} h^{2} \mathrm{~d} \gamma \approx \frac{1}{2 \varepsilon} \int_{\Omega}\left(\Delta u-\frac{1}{\varepsilon} W^{\prime}(u)\right)^{2} \mathrm{~d} x
$$

- De Giorgi conjecture: 「-convergence as $\varepsilon \rightarrow 0$
- Length vs. curvature regularization

Videos ...

Image inpainting

Conclusion

- Proposed an inertial forward-backward algorithm (iPiano) for minimizing the sum of a smooth and a convex function
- Existence of a converging subsequence in the most-general case
- Convergence of the whole sequence in case the Kurdyka-Łojasiewicz property holds
- $\mathcal{O}(1 / \sqrt{N})$ convergence of the proximal residual in the general case
- Application to non-convex problems in image processing
- Can be easily parallelized or implemented in mobile hardware

Thank you for listening!

