

UNIVERSITÄT ZU LÜBECK INSTITUTE OF MATHEMATICS AND IMAGE COMPUTING

Hyperelastic Image Registration with an Application to PET Reconstruction

Jan Modersitzki

Institute of Mathematics and Image Computing University of Lübeck, Germany

Fraunhofer Project Group Image Registration, Lübeck, Germany

jan.modersitzki@mic.uni-luebeck.de http://www.mic.uni-luebeck.de

Outline

- Introduction to image registration
- Mathematical model: $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min$
- A case study: Hyperelasticity and mass preservation
- Numerical analysis: Stabilizing the Hessian

Image Registration $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min$ Introduction

Introduction Hyperelasticity Multigrid Σ

Mathematical Modelling

Image Registration

Given a reference image \mathcal{R} and a template image \mathcal{T} , find a reasonable transformation *y*, such that the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

 $\text{reference}\; \mathcal{R}$

 $\mathcal{T}[\mathbf{y}]$

template T

dΣ

Mathematical Modelling

Image Registration

Given a reference image \mathcal{R} and a template image \mathcal{T} , find a reasonable transformation *y*, such that the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

Questions:

- Transformed image T[y] ?
- Similarity of $\mathcal{T}[y]$ and \mathcal{R} ?
- Reasonability of y ?
- Constraints on y ?

Mathematical Modelling

Image Registration

Given a reference image \mathcal{R} and a template image \mathcal{T} , find a reasonable transformation *y*, such that the transformed image $\mathcal{T}[y]$ is similar to \mathcal{R}

Questions:

- Transformed image T[y] ?
- Similarity of $\mathcal{T}[y]$ and \mathcal{R} ?
- Reasonability of y ?
- Constraints on y ?

 $\begin{array}{l} \rightsquigarrow \text{ image model } \mathcal{T}[y] \\ \rightsquigarrow \mathcal{D}[\mathcal{T}[y], \mathcal{R}] \\ \rightsquigarrow \mathcal{S}[y] \\ \rightsquigarrow y \in \mathcal{A} \end{array}$

Image Registration: Variational Formulation $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min, \quad y \in \mathcal{A}$

Simplified Image Registration Model

Continuous model for images

• Given: discrete data $T_i \in \mathbb{R}$ at locations $X_i \in \Omega \subset \mathbb{R}^d$

Data and Transformation Model

- Given: discrete data $T_i \in \mathbb{R}$ at locations $X_i \in \Omega \subset \mathbb{R}^d$
- Interpolation yields continuous model $\mathcal{T}: \Omega \subset \mathbb{R}^d \to \mathbb{R}$

 $\mathcal{T}(x) = \operatorname{interpolation}(X, T, x)$

Data and Transformation Model

- Given: discrete data $T_i \in \mathbb{R}$ at locations $X_i \in \Omega \subset \mathbb{R}^d$
- Interpolation yields continuous model $\mathcal{T}: \Omega \subset \mathbb{R}^d \to \mathbb{R}$

 $\mathcal{T}(x) = \operatorname{interpolation}(X, T, x)$

Transformed image (Eulerian framework)

Data and Transformation Model

- Given: discrete data $T_i \in \mathbb{R}$ at locations $X_i \in \Omega \subset \mathbb{R}^d$
- Interpolation yields continuous model $\mathcal{T}: \Omega \subset \mathbb{R}^d \to \mathbb{R}$

 $\mathcal{T}(x) = \operatorname{interpolation}(X, T, x)$

Transformed image (Eulerian framework)

- Differentiability: analytic derivatives a.e.
- Multi-scale framework
- Multi-resolution framework

Transforming Images: Scaling

Transforming Images: Non-linear

Simplified Image Registration Model

• Continuous model for images, transformed image $\mathcal{T}[y]$

 $\mathcal{T}(x) = \text{interpolation}(X, T, x)$ $\mathcal{T}[y](x) = \mathcal{T}(y(x)) = \text{interpolation}(X, T, y(x))$

Simplified Image Registration Model

► Continuous model for images, transformed image *T*[*y*]

 $\mathcal{T}(x) = \text{interpolation}(X, T, x)$ $\mathcal{T}[y](x) = \mathcal{T}(y(x)) = \text{interpolation}(X, T, y(x))$

► Similarity of $\mathcal{T}[y]$ and \mathcal{R} , for example $\mathcal{D}^{SSD}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx$,

Sum of Squared Differences

Simplified Image Registration Model

► Continuous model for images, transformed image *T*[*y*]

 $\begin{aligned} \mathcal{T}(x) &= \text{ interpolation}(X, \mathbb{T}, x) \\ \mathcal{T}[y](x) &= \mathcal{T}(y(x)) = \text{ interpolation}(X, \mathbb{T}, y(x)) \end{aligned}$

- ► Similarity of $\mathcal{T}[y]$ and \mathcal{R} , for example $\mathcal{D}^{SSD}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx$,
- Reasonability

Reasonability of y

1	2	3
4	5	8
7	6	

Reasonability of y

Reasonability of y

- Registration is severely ill-posed
- Restrictions onto the transformation y required
- Goal: explicit physical restrictions

Simplified Image Registration Model

► Continuous model for images, transformed image *T*[*y*]

 $\begin{aligned} \mathcal{T}(x) &= \text{ interpolation}(X, T, x) \\ \mathcal{T}[y](x) &= \mathcal{T}(y(x)) = \text{ interpolation}(X, T, y(x)) \end{aligned}$

- ► Similarity of $\mathcal{T}[y]$ and \mathcal{R} , for example $\mathcal{D}^{\text{SSD}}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx$,
- ► Reasonability → Regularization, for example $S^{\text{diff}}[y] = \int_{\Omega} \|\nabla y\|_{\text{Fro}}^2 dx$

Simplified Image Registration Model

► Continuous model for images, transformed image *T*[*y*]

 $\begin{aligned} \mathcal{T}(x) &= \text{ interpolation}(X, T, x) \\ \mathcal{T}[y](x) &= \mathcal{T}(y(x)) = \text{ interpolation}(X, T, y(x)) \end{aligned}$

- ► Similarity of $\mathcal{T}[y]$ and \mathcal{R} , for example $\mathcal{D}^{\text{SSD}}[\mathcal{T}[y], \mathcal{R}] = \frac{1}{2} \int_{\Omega} [\mathcal{T}(y(x)) - \mathcal{R}(x)]^2 dx$,
- ► Reasonability → Regularization, for example $S^{\text{diff}}[y] = \int_{\Omega} \|\nabla y\|_{\text{Fro}}^2 dx$
- Objective: $\mathcal{D}[\mathcal{T}[y], \mathcal{R}] + \mathcal{S}[y] \xrightarrow{y} \min$

Hyperelasticity

in Correspondence Problems

Hyperelasticity

Multigrid Σ

PET

PET-IR

Disc

Results

DFG Grant MO 1053/2-1

Prof. Dr. Martin Burger

Institute for Computational and Applied Mathematics, University of Münster

- Dr. Lars Ruthotto, PostDoc at UBC, Vancouver
- Dipl.-math. Sebastian Suhr, Lübeck and Münster
- ► Burger, Modersitzki, Ruthotto: *A hyperelastic regularization* energy for image registration. SIAM SISC, 35(1), 2013.

ET

T-IR

Results

Motivation: PET Cardiac Imaging

- http://www.siemens.com
- http://cardiacpetsolutions.com
- http://www.medical.siemens.com

Goal: Produce the "best" 3D image

Multigrid Σ

PET

PET-IR

esults

- measurement takes several minutes
- ▶ reconstruction: $\hat{I} = R(m_i, i \in M)$

id Σ

PET

PET-IR

Results

- measurement takes several minutes
- reconstruction: $\hat{I} = R(m_i, i \in M)$
- respiratory challenge

d Σ

PET

PET-IR

Results

- measurement takes several minutes
- reconstruction:
- respiratory challenge
- sort *m_i* into *B* gates:
- B reconstructions:

 $\hat{I} = R(m_i, i \in M)$ resolved via gating $(m_{r,i}, i \in M_r), r = 1, \dots, B$ $I_r = R(m_{r,i}, i \in M_r)$

 Σ

PET

Respiratory Challenge

gated images:

$$I_r = R(m_{r,i}, \ i \in M_r)$$

PET cardiac images (human) European Institute for Molecular Imaging, Münster

d Σ

PET

Respiratory Challenge

gated images:

$$I_r = R(m_{r,i}, \ i \in M_r)$$

- compensates motion, compromises quality: fewer events per gate
- estimate transformations yr:
- reconstruction:

such that $I_0 \approx I_r \circ y_r$

$$\hat{I} = R(m_{r,i} \circ y_r, i \in M_r, all r)$$

Σ

PET

ET-IR

- measurement takes several minutes
- reconstruction:
- respiratory challenge

$$\hat{I} = R(m_i, i \in M)$$
$$I_r = R(m_{r,i}, i \in M_r)$$

Multigrid S

PET

Results

- measurement takes several minutes
- reconstruction:
- respiratory challenge
- cardiac challenge:

$$\hat{I} = R(m_i, i \in M)$$

$$I_r = R(m_{r,i}, i \in M_r)$$

$$I^c = R(m^{c,i}, i \in M^c)$$

and in case

roduction

Hyperelasticity Multigrid

d Σ

PET

ET-IR

Results

- measurement takes several minutes
- reconstruction:
- respiratory challenge
- cardiac challenge:
- overall goal:

$$\hat{I} = R(m_i, i \in M) I_r = R(m_{r,i}, i \in M_r) I^c = R(m^{c,i}, i \in M^c) I_r^c = R(m^{c,i}_{r,i}, i \in M_r \cap M^c)$$

and the local division of the local division

Hyperelasticity Multigrid

 Σ

PET

PET-IR

Discreti

Cardiac Challenge

▶ gated: $I_r = R(m_{r,i}, i \in M_r), I^c = R(m^{c,i}, i \in M^c)$

Hyperelasticity

Multigrid Σ

PET

PET-IR

Results

cardiac

Cardiac Challenge

respiratory

- ▶ gated: $I_r = R(m_{r,i}, i \in M_r), I^c = R(m^{c,i}, i \in M^c)$
- \blacktriangleright y_r almost rigid
- \blacktriangleright y^c highly non-linear

PET

PET-IR

Discretization

Results

cardiac

MEVIS

PET Image Registration

Multigrid 2

PET

PET-IR

Discretization

Results

- ▶ Given images *I*⁰ and *I*^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x))$

 $J[y] = \int \left[I^0(x) - I^c(y(x)) \right]^2 dx + \int \|\nabla y\|_{\text{Fro}}^2 dx$

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x))$

$$J[y] = \int \left[I^0(x) - I^c(y(x)) \right]^2 dx + \int \|\nabla y\|_{\text{Fro}}^2 dx$$

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x)) \cdot \det \nabla y$

 $J[y] = \int \left[I^0(x) - I^c(y(x)) \cdot \det \nabla y \right]^2 dx + \int \|\nabla y\|_{\text{Fro}}^2 dx$

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x)) \cdot \det \nabla y$

$$J[y] = \int \left[I^0(x) - I^c(y(x)) \cdot \det \nabla y \right]^2 dx + \int \|\nabla y\|_{\text{Fro}}^2 dx$$

- data-fit non-convex in ∇y , regularization insufficient,
- standard approach requires 6th order regularization

Multigrid Σ

ET

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x)) \cdot \det \nabla y$

$$J[y] = \int \left[I^0(x) - I^c(y(x)) \cdot \det \nabla y \right]^2 dx + \int \|\nabla y\|_{\text{Fro}}^2 + \varphi(\|\operatorname{cof} \nabla y\|_{\text{Fro}}^2) + \psi(\det \nabla y) dx$$

- ► data-fit non-convex in ∇y, regularization insufficient,
- standard approach requires 6th order regularization
- new approach involves gradient, cofactor, and determinant

Multigrid Σ

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x)) \cdot \det \nabla y$

 $J[y, \nabla y, \operatorname{cof} \nabla y, \det \nabla y] =$ $\int \left[I^{0}(x) - I^{c}(y(x)) \cdot \det \nabla y \right]^{2} dx$ $+ \int \|\nabla y\|_{\operatorname{Fro}}^{2} + \varphi(\|\operatorname{cof} \nabla y\|_{\operatorname{Fro}}^{2}) + \psi(\det \nabla y) dx$

- ► data-fit non-convex in ∇y , regularization insufficient,
- standard approach requires 6th order regularization
- new approach involves gradient, cofactor, and determinant
- poly-convex, convex in ∇y , cof ∇y , and det ∇y

Multigrid Σ

- Given densities I^0 and I^c
- Find y, such that ideally $I^0(x) \approx I^c(y(x)) \cdot \det \nabla y$

 $J[y, \nabla y, \operatorname{cof} \nabla y, \det \nabla y] =$ $\int \left[I^{0}(x) - I^{c}(y(x)) \cdot \det \nabla y \right]^{2} dx$ $+ \int \|\nabla y\|_{\operatorname{Fro}}^{2} + \varphi(\|\operatorname{cof} \nabla y\|_{\operatorname{Fro}}^{2}) + \psi(\det \nabla y) dx$

- ► data-fit non-convex in ∇y , regularization insufficient,
- standard approach requires 6th order regularization
- new approach involves gradient, cofactor, and determinant
- ▶ poly-convex, convex in ∇y, cof ∇y, and det ∇y → hyperelasticity, non-linear elasticity model

Multigrid Σ

Regularization

 $\mathcal{S}[\nabla y, \operatorname{cof} \nabla y, \det \nabla y] = \int \|\nabla y\|_{\operatorname{Fro}}^2 + \varphi(\|\operatorname{cof} \nabla y\|_{\operatorname{Fro}}^2) + \psi(\det \nabla y) \, dx$

• $\|\nabla y\|_{\text{Fro}}^2$ controls lengths

$$\nabla y = \begin{pmatrix} \partial_1 y^1 & \partial_2 y^1 & \partial_3 y^1 \\ \partial_1 y^2 & \partial_2 y^2 & \partial_3 y^2 \\ \partial_1 y^3 & \partial_2 y^3 & \partial_3 y^3 \end{pmatrix}$$

• $cof \nabla y$ controls areas

$$\begin{pmatrix} \partial_{2}y^{2}\partial_{3}y^{3} - \partial_{3}y^{2}\partial_{2}y^{3} & \partial_{1}y^{2}\partial_{3}y^{3} - \partial_{3}y^{2}\partial_{1}y^{3} & \partial_{1}y^{2}\partial_{2}y^{3} - \partial_{2}y^{2}\partial_{1}y^{3} \\ \partial_{3}y^{1}\partial_{2}y^{3} - \partial_{2}y^{1}\partial_{3}y^{3} & \partial_{3}y^{1}\partial_{1}y^{3} - \partial_{1}y^{1}\partial_{3}y^{3} & \partial_{2}y^{1}\partial_{1}y^{3} - \partial_{1}y^{1}\partial_{2}y^{3} \\ \partial_{2}y^{1}\partial_{3}y^{2} - \partial_{2}y^{2}\partial_{3}y^{2} & \partial_{3}y^{1}\partial_{1}y^{2} - \partial_{1}y^{1}\partial_{3}y^{1} & \partial_{1}y^{1}\partial_{2}y^{2} - \partial_{2}y^{1}\partial_{1}y^{2} \end{pmatrix}$$

• det ∇y controls volumes

$$\det \nabla y = \partial_1 y^1 \partial_2 y^2 \partial_3 y^3 + \partial_2 y^1 \partial_3 y^2 \partial_1 y^3 + \partial_3 y^1 \partial_1 y^2 \partial_2 y^3 - \partial_1 y^1 \partial_3 y^2 \partial_2 y^3 - \partial_2 y^1 \partial_1 y^2 \partial_3 y^3 - \partial_3 y^1 \partial_2 y^2 \partial_1 y^3$$

 Σ

Multiarid

ET

Penalties
$$\varphi, \psi : \mathbb{R} \to [0, \infty]$$

- $\blacktriangleright \ C := \operatorname{cof} \nabla y$
- $\varphi(\pm\infty) = \infty$
- $\varphi(C) = \sum_{j=1}^{3} \max \left\{ \|C_{:,j}\|^2 1, 0 \right\}$

Multigrid 2

PET

PET-IR

Penalties
$$\varphi, \psi : \mathbb{R} \to [0, \infty]$$

- $\blacktriangleright C := \operatorname{cof} \nabla y$
- $\varphi(\pm\infty) = \infty$
- $\varphi(C) = \sum_{j=1}^{3} \max \left\{ \|C_{:,j}\|^2 1, 0 \right\}$

• $v = \det \nabla y$

•
$$\psi(-|v|) = \infty$$

- $\psi(\infty) = \infty$
- $\psi(v) = \psi(1/v)$
- $\psi(v) = (v-1)^4/v^2$
- enforces diffeomorphism

Σ

Multiarid

PET

PET-IR

tization

- displacement u, $y(x) = x + u(x) \Rightarrow \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $\|\nabla u\| \ll 1$

Т

PET-IR

Discreti

- displacement u, $y(x) = x + u(x) \Rightarrow \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u$

Multigrid S

Т

PET-IR

- displacement u, $y(x) = x + u(x) \Rightarrow \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u$

Material constants, Lamé constants ν and μ

• linear elasticity: $S^{\text{elas}}[y] = \int \nu (\text{trace}V)^2 + \mu \operatorname{trace}(V^2) dx$

id Σ

ET

PET-IR

- displacement u, $y(x) = x + u(x) \Rightarrow \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u$

Material constants, Lamé constants ν and μ

- linear elasticity: $S^{\text{elas}}[y] = \int \nu (\text{trace}V)^2 + \mu \operatorname{trace}(V^2) dx$
- Yanovsky et al: $S^{\text{quad}}[y] = \int \nu (\text{trace}E)^2 + \mu \operatorname{trace}(E^2) dx$

Multigrid 2

PET-IR

Hyperelasticity: Ogden Materials

- displacement u, $y(x) = x + u(x) \Rightarrow_{-} \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^{\top} + \nabla u^{\top} \nabla u$
- linear elasticity: $S^{\text{elas}}[y] = \int \nu (\text{trace}V)^2 + \mu \operatorname{trace}(V^2) dx$
- Yanovsky et al: $S^{\text{quad}}[y] = \int \nu (\text{trace}E)^2 + \mu \operatorname{trace}(E^2) dx$

PET-IR

Hyperelasticity: Ogden Materials

- displacement u, $y(x) = x + u(x) \Rightarrow \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^\top + \nabla u^\top \nabla u$
- linear elasticity: $S^{\text{elas}}[y] = \int \nu (\text{trace}V)^2 + \mu \operatorname{trace}(V^2) dx$
- Yanovsky et al: $S^{\text{quad}}[y] = \int \nu (\text{trace}E)^2 + \mu \text{trace}(E^2) dx$

Ogden materials

$$\mathcal{S}^{\text{Ogden}}[y] = \int \|\nabla y\|^2 + \varphi_0(\|\operatorname{cof} \nabla y\|_{\operatorname{Fro}}^2) + \psi_0(\det \nabla y)dx$$
$$= \mathcal{S}^{\text{quad}}[y] + \mathcal{O}(\|\nabla y\|^3)$$
$$\Rightarrow \varphi_0(\mathbf{x}) = \mathbf{x}, \qquad \psi_0(\mathbf{x}) = \mathbf{y}^2 - \log \mathbf{y}.$$

T

PET-IR

Hyperelasticity: Ogden Materials

- ► displacement *u*, $y(x) = x + u(x) \Rightarrow_{-} \nabla y = I_d + \nabla u$
- Cauchy strain tensor: $V = V(y) = \nabla u + \nabla u^{\top}$, for $||\nabla u|| \ll 1$
- Green-St.-Venant: $E = E(y) = \nabla u + \nabla u^\top + \nabla u^\top \nabla u$
- linear elasticity: $S^{\text{elas}}[y] = \int \nu (\text{trace}V)^2 + \mu \operatorname{trace}(V^2) dx$
- Yanovsky et al: $S^{\text{quad}}[y] = \int \nu (\text{trace}E)^2 + \mu \text{trace}(E^2) dx$

Ogden materials

 $\mathcal{S}^{\text{hyper}}[y] = \int \|\nabla y\|^2 + \varphi \ (\|\operatorname{cof} \nabla y\|_{\operatorname{Fro}}^2) + \psi \ (\det \nabla y) dx$

•
$$\varphi_O(s) = s$$
, $\psi_O(v) = v^2 - \log v$
• $\varphi(s) = (s-3)^2$, $\psi(v) = (v-1)^4/v^2 = \psi(1/v)$

 Σ

Multiarid

T

Hyperelasticity: Extremal Stress

Ogden materials

$$S^{\text{hyper}}[y] = \int \|\nabla y\|^2 + \varphi(\|\operatorname{cof} \nabla y\|_{\text{Fro}}^2) + \psi(\det \nabla y) dx$$

$$\varphi_O(s) = s, \qquad \psi_O(v) = v^2 - \log v$$

$$\varphi(s) = (s-3)^2, \qquad \psi(v) = (v-1)^4 / v^2 = \psi(1/v)$$

PET-IR

Hyperelasticity: Extremal Stress

Ogden materials

$$S^{\text{hyper}}[y] = \int \|\nabla y\|^2 + \varphi(\|\operatorname{cof} \nabla y\|_{\text{Fro}}^2) + \psi(\det \nabla y)dx$$

$$\varphi_O(s) = s, \qquad \psi_O(v) = v^2 - \log v$$

$$\varphi(s) = (s-3)^2, \qquad \psi(v) = (v-1)^4/v^2 = \psi(1/v)$$

extremal stress and coercivity

$$\begin{split} \mathcal{S}^{\text{Ogden/hyper}}[y] &\longrightarrow \infty \quad \text{for} \quad \det \nabla y \to 0, \\ \mathcal{S}^{\text{Ogden/hyper}}[y] &\geq c_1 \{ \|\nabla y\|^p + \|\operatorname{cof} \nabla y\|^q + (\det \nabla y)^r \} + c_2, \end{split}$$

• price: $S^{Ogden/hyper}$ non-convex in ∇y but poly-convex

ET

PET-IR

Existence of Minimizer

$$\mathcal{A}_{0} := \{ y \in W^{1,2}(\Omega, \mathbb{R}^{3}) : \\ \operatorname{cof} \nabla y \in L_{4}(\Omega, \mathbb{R}^{3 \times 3}), \ \det \nabla y \in L_{2}(\Omega, \mathbb{R}), \ \det \nabla y > 0 \ a.e. \} \\ \mathcal{A} := \{ y \in \mathcal{A} : \left| \int y(x) \ dx \right| \le |\Omega| \ (M + \operatorname{diam}(\Omega)) \}$$

Theorem (Burger, Modersitzki, Ruthotto 2013)

Given are images $\mathcal{R}, \mathcal{T} \in C(\Omega, \mathbb{R})$, a polyconvex distance measure $\mathcal{D} = \mathcal{D}[y] = \mathcal{D}[\mathcal{T}, \mathcal{R}; y, \nabla y, \det \nabla y]$ with $\mathcal{D} \ge 0$, $\mathcal{S}^{\text{hyper}}$ the hyperelastic regularizer with convex penalties φ and ψ , the feasible set \mathcal{A} . We assume that the registration functional $\mathcal{J} = \mathcal{D} + \mathcal{S}$ satisfies $\mathcal{J}[\text{Id}] < \infty$ for Id(x) := x on Ω .

Then there exists at least one minimizer $y^* \in \mathcal{A}$ of \mathcal{J} .

Remarks on Proof:

- Problem: $\nabla y \mapsto \mathcal{J}[y, \nabla y]$ is non-convex
- Splitting:

 $\{y^k\} \rightsquigarrow \{(y^k, \operatorname{cof} \nabla y^k, \det \nabla y^k)\} \subset X = W^{1,2} \times L^4 \times L^2$

• Coercivity: $\exists C > 0, K \in \mathbb{R}$ such that

$$\forall y \in \mathcal{A} : \ \mathcal{J}[y] \ge C \|y\|_X + K$$

Lower semi-continuity:

 $(y^{k}, \operatorname{cof} \nabla y^{k}, \operatorname{det} \nabla y^{k}) \to (y, H, v)$ $\Rightarrow \liminf_{k} \mathcal{J}[y^{k}, \operatorname{cof} \nabla y^{k}, \operatorname{det} \nabla y^{k}] \geq \mathcal{J}[y, H, v]$

Existence of minimizing sequence in X

$$(y^k, \operatorname{cof} \nabla y^k, \det \nabla y^k) \to (y, H, v)$$

- Undo splitting: Weak continuity of cof and det implies $H = \operatorname{cof} \nabla y$ and $v = \operatorname{det} \nabla y$
- Verify that det $\nabla y > 0$ a.e.

Numerical Scheme

- ► Discretize then optimize ~→ nodal discretization
- Multi-level approach
- Gauss-Newton
- Armijo line search with backtracking \rightsquigarrow ensures det $\nabla y > 0$
- Conjugate gradient for linear systems

Multigrid S

Jan Modersitzki Hyperelastic Image Registration

Discretization

Multigrid Σ

PET

PET-IR

Discretization

$$\operatorname{vol}(V) = \int_{V} dx$$
$$\operatorname{vol}(y(V)) = \int_{y(V)} dx = \int_{V} \det(\nabla y) dx$$

Multigrid Σ

PET

Discretization

$$\operatorname{vol}(V) = \int_{V} dx$$
$$\operatorname{vol}(y(V)) = \int_{y(V)} dx$$

V y(V)

PET

PET-IR

Discretization

PET

PET-IR

Discretization

 Σ

PET

PET

y continuous, piecewise linear on triangles/tetrahedron

Multigrid Σ

Voxel-based Discretization, Model

PET I

Jan Modersitzki Hyperelastic Image Registration

Voxel-based Discretization, Model

Hyperelasticity

Multigrid

PET

PET-IR

Discretization

Voxel-based Discretization, Model

 \sum

P

PET

PET-IR

Voxel-based Discretization, Model

Voxel-based Discretization, Deformation

Voxel-based Discretization, Controls

Properties of the Discretization

Theorem (Burger, Modersitzki, Ruthotto 2013)

Let *V* be a voxel and $\{T_j, j \in J\}$ be a tetrahedral partition of *V* with $\operatorname{vol}(T_j) > 0$ for all $j \in J$. Let $y : \overline{\Omega} \to \mathbb{R}^3$ be a vector field such that $y|_{T_i}$ is linear. It holds

 $\det \nabla y|_V > 0$ a.e. $\iff \forall j \in J : \operatorname{vol}(y(T_j)) > 0.$

Multigrid Σ

ET

T-IR

Jan Modersitzki Hyperelastic Image Registration

Results

Multigrid S

PET

PET-IR

Discretization

Results

Hyperelasticity makes a difference

Mass-preservation makes a difference

Cardiac motion compensation

3D PET images European Institute for Molecular Imaging Münster, Germany

d Σ

PET

Elasticity versus Hyperelasticity

PET

PET-IR

Elasticity versus Hyperelasticity

PET

Multigrid Σ

PET

PET-IR

Discretization

Plain versus Mass-Preservation

Respiratory Motion Compensation gated images motion compensated

n Hy

 Σ

PET

PET-IR

Discretization

Cardiac Motion Compensation

gated images

Hyperelasticity

 \sum

PET

PET-IF

Discretization

Minimum Intensity Projection of $det(\nabla y)$

Jan Modersitzki Hyperelastic Image Registration

The "Best" Image

no gating

Multigrid S

PET

PET-IR

Discretization

The "Best" Image

no gating

single gate

Multigrid S

PET

PET-IR

Discretization

The "Best" Image

no gating

VAMPIRE

single gate

Hyperelasticity

Multigrid

PET

PET-IR

Discretization

The "Best" Image

no gating

VAMPIRE

single gate

profiles

uction

Hyperelasticity

 Σ

Multigrid

PET

PET-IR

Discretization

Jan Modersitzki Hyperelastic Image Registration

Multigrid

Introduction Hyperelasticity Multigrid Σ

Jan Modersitzki Hyperelastic Image Registration

Numerical Analysis

- Prof. Dr. Chen Greif
 - Department of Computer Science, UBC, Vancouver
- Prof Dr. Lars Ruthotto, Emory University, Atlanta (starting 9-2014)
- Ruthotto, Greif, Modersitzki: A Multigrid Solver for Hyperelastic Image Registration. SIAM SISC, under revision.

Discretization: Meshes in 2D and 3D

Discretization of Data Fit I

FE spaces: vertices V^1, \ldots, V^{n_V} , tetrahedra T_1, \ldots, T_{n_T}

$$\mathcal{A}^{h} = \left\{ y \in \mathcal{C}(\Omega, \mathbb{R}^{3}) : \left. y \right|_{T_{i}} \in \Pi^{1}(T_{i}, \mathbb{R}^{3}) \text{ for } i = 1, \dots, n_{T} \right\} \subset \mathcal{A},$$

Nodal Lagrange hat-functions: bⁱ

$$y^{\mathcal{A},h}(x) = B(x)y = \sum \eta_j b^j(x), \quad \eta_j = y^{\mathcal{A},h}(V^j) \in \mathbb{R}^3$$

Gradient: $Gy = \nabla B(x)y \in \mathbb{R}^{9n_T}$, constant on T_i

$$G = I_3 \otimes \begin{pmatrix} \partial_1^h \\ \partial_2^h \\ \partial_3^h \end{pmatrix}, \quad \partial_k^h \in \mathbb{R}^{n_T, n_V} \text{ with } (\partial_k^h)_{i,j} = \partial_k b^i(V^j)$$

Discretization of Data Fit II

Averaging: $A = A_T^V = I_3 \otimes A \in \mathbb{R}^{n_T, n_V}$

 $(A)_{i,j} = \begin{cases} 1/4, & \text{if } V^j \text{ is node of } T_i \\ 0 & \text{otherwise} \end{cases}$

Volume: $v_i = \operatorname{vol}(T_i), v = (v_i) \in \mathbb{R}^{n_T}, V = \operatorname{diag}(v)$

Data fit:

$$\mathcal{D}[y^{\mathcal{A},h}] = 0.5 \|\mathcal{T} \circ y^{\mathcal{A},h} - R\|^2$$

$$D(y) = 0.5 \operatorname{res}(y)^\top V \operatorname{res}(y), \quad \operatorname{res}(y) = \mathcal{T}(Ay) - \mathcal{R}(x)$$

$$dD(y) = \operatorname{res}(y)^\top V (\nabla \mathcal{T}(Ay)) A$$

$$d^2 D(y) \stackrel{\text{GN}}{\approx} A^\top (\nabla \mathcal{T}(Ay))^\top V (\nabla \mathcal{T}(Ay)) A$$

Discretization of Data Fit III

Hyperelasticity:

$$\mathcal{S}[\boldsymbol{y}^{\mathcal{A},h}] = \mathcal{S}^{\text{length}}[\boldsymbol{y}^{\mathcal{A},h}] + \mathcal{S}^{\text{area}}[\boldsymbol{y}^{\mathcal{A},h}] + \mathcal{S}^{\text{volume}}[\boldsymbol{y}^{\mathcal{A},h}]$$

Discretization of Hyperelasticity I

Length:

$$S^{\text{length}}[y^{\mathcal{A},h}] = \frac{\alpha}{2} \|\nabla(y^{\mathcal{A},h} - y^{\mathcal{A},h}_{\text{ref}})\|^2$$

$$S^{\text{length}}(y) = \frac{\alpha}{2} (y - y_{\text{ref}})^\top G^\top (I_9 \otimes V) G (y - y_{\text{ref}})$$

$$dS^{\text{length}}(y) = \alpha (y - y_{\text{ref}})^\top G^\top (I_9 \otimes V) G$$

$$d^2 S^{\text{length}}(y) = \alpha G^\top (I_9 \otimes V) G$$

Introduction Hyperelasticity Multigrid Σ

A

Discretization of Hyperelasticity II

$$\begin{aligned} \mathbf{Area:} \ D_i^j &= \operatorname{diag}(\partial_i^h y^j) \in \mathbb{R}^{n_T, n_T} \\ \mathcal{S}^{\operatorname{area}}[y^{\mathcal{A}, h}] &= \int \varphi(\operatorname{cof} \nabla y^{\mathcal{A}, h}) dx \\ S^{\operatorname{area}}(y) &= v^\top \varphi(\operatorname{cof} Gy) \\ dS^{\operatorname{area}}(y) &= (I_9 \otimes V) \ \varphi'(\operatorname{cof} Gy)^\top \ d \operatorname{cof} Gy \\ d^2 S^{\operatorname{area}}(y) \stackrel{\text{GN}}{\approx} (d \operatorname{cof} Gy)^\top ((I_9 \otimes V) \varphi''(\operatorname{cof} Gy)) \ d \operatorname{cof} Gy \\ d \operatorname{cof} Gy &= \begin{pmatrix} D_3^3 & -D_3^3 & -D_3^2 D_2^2 \\ D_3^3 & -D_3^3 & -D_2^3 & -D_3^2 D_1^2 \\ D_3^3 & -D_3^3 & -D_3^3 & -D_3^2 D_1^2 \\ D_3^3 & -D_3^3 & -D_1^3 & D_1^3 D_1^1 \\ D_2^3 & -D_3^3 & -D_1^3 & D_1^1 \\ D_2^3 & -D_1^3 & -D_1^3 & D_1^1 \\ D_2^3 & -D_1^2 & D_2^1 & D_1^1 \end{pmatrix} \end{bmatrix} \ G \in \mathbb{R}^{9n_T \times 3n_V}. \end{aligned}$$

Discretization of Hyperelasticity III

Volume:

$$\begin{split} \mathcal{S}^{\text{volume}}[y^{\mathcal{A},h}] &= \int \psi(\det \nabla y^{\mathcal{A},h}) dx \\ \mathcal{S}^{\text{volume}}(y) &= v^{\top} \psi(\det Gy) \\ d\mathcal{S}^{\text{volume}}(y) &= v^{\top} \psi'(\det Gy)^{\top} d \det Gy \\ d^2 \mathcal{S}^{\text{volume}}(y) &\stackrel{\text{GN}}{\approx} (d \det Gy)^{\top} \text{diag}(V \psi''(\det Gy)) d \det Gy \\ d \det Gy &= (C_1^1, C_1^2, C_1^3, C_2^1, C_2^2, C_2^3, C_3^1, C_3^2, C_3^3,) \ G \in \mathbb{R}^{n_T, 3n_V}, \\ C_i^j &= \text{diag}((\operatorname{cof} Gy)_{i,j}) \in \mathbb{R}^{n_T, n_T}. \end{split}$$

Remarks on Discretization

- Exact gradients
- Gauss-Newton approximation of Hessians
- Main problem:

 $\psi''(\det Gy) \longrightarrow \infty \quad \text{for} \quad \det Gy \longrightarrow \infty \quad \text{or} \quad \det Gy \longrightarrow 0$

conditioning?, *h*-ellipticity?

Remarks on Discretization

- Exact gradients
- Gauss-Newton approximation of Hessians
- Main problem:

 $\psi''(\det Gy) \longrightarrow \infty \quad \text{for} \quad \det Gy \longrightarrow \infty \quad \text{or} \quad \det Gy \longrightarrow 0$

conditioning?, *h*-ellipticity?

Main idea: stabilization, change approximation of Hessian to

$$\varphi_s''(v) := \min\left\{\psi''(v), \ s\alpha_1/\alpha_3\right\}$$

Multigrid, Block-Vanka Smoother

- cell-wise reordering of unknowns results block matrix with dense blocks
- ► five/fifteen tetrahedral nodes per pixel/voxel for two/three components result in 10 × 10 / 45 × 45 blocks for 2D/3D
- Gauss-Seidel relaxation sweep with damping $\omega = 2/3$

Multigrid, *h*-Ellipticity

- *h*-ellipticity, measure for sensitivity of Hessian to high frequencies; ideal: bounded away from zero
- toy example: y(x) = cx, c contraction

 $\mathcal{S}[y] = \alpha_1 \mathcal{S}^{\text{length}}[y] + \alpha_2 \mathcal{S}^{\text{area}}[y] + \alpha_3 \mathcal{S}^{\text{volume}}[y]$

Local Fourier and Smoothing Analysis, *h*-Ellipticity

Multigrid, *h*-Ellipticity

- *h*-ellipticity, measure for sensitivity of Hessian to high frequencies; ideal: bounded away from zero
- toy example: y(x) = cx, c contraction

 $\mathcal{S}[y] = \alpha_1 \mathcal{S}^{\text{length}}[y] + \alpha_2 \mathcal{S}^{\text{area}}[y] + \alpha_3 \mathcal{S}^{\text{volume}}[y]$

- large compression, i.e. c small, implies h-ellipticity approaches zero
- larger weight on length term, i.e. α₁ large, implies h-ellipticity larger

Multigrid, *h*-Ellipticity

- *h*-ellipticity, measure for sensitivity of Hessian to high frequencies; ideal: bounded away from zero
- toy example: y(x) = cx, c contraction

 $\mathcal{S}[y] = \alpha_1 \mathcal{S}^{\text{length}}[y] + \alpha_2 \mathcal{S}^{\text{area}}[y] + \alpha_3 \mathcal{S}^{\text{volume}}[y]$

- large compression, i.e. c small, implies h-ellipticity approaches zero
- larger weight on length term, i.e. α₁ large, implies h-ellipticity larger
- main idea: stabilization, change approximation of Hessian

 $\varphi_s''(v) := \min\left\{\psi''(v), s\alpha_1/\alpha_3\right\}$

degrades quality of approximation only for volume term; more outer iterations might be expected

Impact of Stabilization

Convergence history

	GNiter	Jacobi-CG	MG-CG	stabilized MG-CG
		J #iter relres	J #iter relres	J #iter relres
level-4	-1	8.7e7	8.7e7	8.7e7
	0	1.3e7	1.3e7	1.3e7
	1	6.1e6 41 9.94e-3	6.1e6 2 8.93e-3	6.1e6 2 8.93e-3
	2	5.4e6 86 7.77e-3	5.4e6 3 7.80e-3	5.4e6 2 7.79e-3
	3	5.3e6 71 9.97e-3	5.3e6 3 7.41e-3	5.3e6 2 8.95e-3
	4	5.2e6 62 9.58e-3	5.2e6 3 1.31e-3	5.2e6 2 8.65e-3
level-5	-1	1.2e8	1.2e8	1.2e8
10.010	0	1.0e7	1.0e7	1.0e7
	Ĩ	8.0e6 37 9.49e-3	8.0e6 2 5.38e-3	8.0e6 2 5.37e-03
	2	6.8e6 56 8.49e-3	6.8e6 3 5.61e-3	7.2e6 2 6.35e-03
	3	6.6e6 70 9.52e-3	6.6e6 4 8.45e-3	6.9e6 2 7.63e-03
	4	6.5e6 102 9.65e-3	6.5e6 7 9.47e-3	6.6e6 2 9.00e-03
	5			6.5e6 3 1.65e-03
level-6	-1	1.5e8	1.5e8	1.5e8
	0	9.5e6	9.5e6	9.5e6
	1	8.3e6 51 9.49e-3	8.3e6 2 7.79e-3	8.3e6 2 6.41e-03
	2	8.0e6 96 9.98e-3	8.0e6 3 7.55e-3	7.9e6 2 8.07e-03
	4	8.0e6 96 9.88e-3	8.0e6 3 6.05e-3	7.8e6 3 2.43e-03

Jan Modersitzki Hyperelastic Image Registration

Summary

Introduction Hyperelasticity Multigrid Σ

Conclusions

Introduction to image registration

Case study: motion compensation in PET cardiac imaging

- Mass preservation
- Hyperelasticity

Numerical analysis:

- Multigrid scheme
- Ill-conditioned for det $\nabla y \longrightarrow 0$
- Stabilizing the Hessian