Imaging with
 Kantorovich-Rubinstein discrepancy

Dirk Lorenz joint work with Jan Lellmann, Carola Schönlieb and Tuomo Valkonen, July 4th, 2014
Institut für Analysis und Algebra

- Image denoising in measure space
- Kantorovich-Rubinstein norms
- KR-TV denoising
- Examples
- Image denoising in measure space

- Kantorovich-Rubinstein norms

- KR-TV denoising
- Examples

$$
\operatorname{TV}(u)=\sup \left\{\int u \operatorname{div}(\phi) \mathrm{d} x:\||\phi|\|_{\infty} \leq 1\right\}=\int|\nabla u| \mathrm{d} x
$$

- Rudin-Osher-Fatemi, 1992 (ROF)

$$
\min _{u} \int_{\Omega}\left(u-u^{0}\right)^{2} \mathrm{~d} x+\lambda \operatorname{TV}(u)
$$

- Chan-Esedoglu, 2005 (L¹-TV)

$$
\min _{u} \int_{\Omega}\left|u-u^{0}\right| \mathrm{d} x+\lambda \operatorname{TV}(u)
$$

ROF

Contrast loss, staircasing, small things disappear... Who's to blame for this?

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{1}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g d x\right)$

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{1}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g \mathrm{~d} x\right)$
- $\|\mu\|_{\mathfrak{M}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1\right\}\left(=\|\mu\|_{1}\right.$ if $\left.\mu \in L^{1}\right)$

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{l}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g d x\right)$
- $\|\mu\|_{\mathfrak{M}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq l\right\}\left(=\|\mu\|_{1}\right.$ if $\left.\mu \in L^{1}\right)$
- Distances for measures: "Wasserstein distances"

$$
W_{p}(\mu, v)=\left(\inf _{\mu, v \text { marginales of } \gamma} \int_{\Omega \times \Omega}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{l}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g d x\right)$
- $\|\mu\|_{\mathfrak{M}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq l\right\}\left(=\|\mu\|_{1}\right.$ if $\left.\mu \in L^{1}\right)$
- Distances for measures: "Wasserstein distances"

$$
W_{p}(\mu, v)=\left(\inf _{\mu, v \text { marginales of }} \int_{\Omega \times \Omega}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

[Evans/Gangbo: Monge-Kantorovich-Rubinstein-Wasserstein-etc. metrics]

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{l}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g d x\right)$
- $\|\mu\|_{\mathfrak{M}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1\right\}\left(=\|\mu\|_{1}\right.$ if $\left.\mu \in L^{1}\right)$
- Distances for measures: "Wasserstein distances"

$$
W_{p}(\mu, v)=\left(\inf _{\mu, v \text { marginales of } \gamma} \int_{\Omega \times \Omega}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

[Evans/Gangbo: Monge-Kantorovich-Rubinstein-Wasserstein-etc. metrics]

- Metric for weak* convergence, e.g. $W_{p}\left(\delta_{x_{1}}, \delta_{x_{2}}\right)=\left|x_{1}-x_{2}\right|$

Model images as densities-i.e as measures

- $\mu \in \mathfrak{M}(\Omega)$, Radon measures on $\Omega \in \mathbb{R}^{d}$
- $\mathfrak{M}(\Omega)=\left(C_{0}(\Omega)\right)^{*},\langle\mu, f\rangle_{\mathfrak{M} \times C_{0}}=\int_{\Omega} f \mathrm{~d} \mu$. $\left(g \in L^{1}(\Omega) \Longrightarrow g \in \mathfrak{M}(\Omega),\langle g, f\rangle=\int f g d x\right)$
- $\|\mu\|_{\mathfrak{M}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1\right\}\left(=\|\mu\|_{1}\right.$ if $\left.\mu \in L^{1}\right)$
- Distances for measures: "Wasserstein distances"

$$
W_{p}(\mu, v)=\left(\inf _{\mu, v \text { marginales of } \gamma} \int_{\Omega \times \Omega}|x-y|^{p} \mathrm{~d} \gamma(x, y)\right)^{1 / p}
$$

[Evans/Gangbo: Monge-Kantorovich-Rubinstein-Wasserstein-etc. metrics]

- Metric for weak* convergence, e.g. $W_{p}\left(\delta_{x_{1}}, \delta_{x_{2}}\right)=\left|x_{1}-x_{2}\right|$
- Optimal transport [Monge 1781]: if γ supported on graph of function $T: \Omega \rightarrow \Omega, T$ transports μ to v

$$
\mu(A)=v\left(T^{-1}(A)\right)
$$

Applications of optimal transport in imaging

- Image registration and warping with W_{2} distance [Haker, Tannenbaum 2004]
- Segmentation with W_{1} distance for histograms [Ni, Bresson, Chan, Esedoglu 2009]
- Density estimation with W_{2} discepancy [Burger, Franek, Schönlieb 2012]
- Active contours with Wasserstein distances [Peyre, Fadili, Rabin 2012]
- Variational imaging with W_{1} penalty on the histograms [Swoboda, Schnörr 2013]

Applications of optimal transport in imaging

- Image registration and warping with W_{2} distance [Haker, Tannenbaum 2004]
- Segmentation with W_{1} distance for histograms
[Ni, Bresson, Chan, Esedoglu 2009]
- Density estimation with W_{2} discepancy [Burger, Franek, Schönlieb 2012]
- Active contours with Wasserstein distances [Peyre, Fadili, Rabin 2012]
- Variational imaging with W_{1} penalty on the histograms [Swoboda, Schnörr 2013]
- Here: "Kantorovich-Rubinstein-TV" denoising
- Image denoising in measure space
- Kantorovich-Rubinstein norms
- KR-TV denoising
- Examples

From L^{1} to Kantorovich-Rubinstein

- Original Monge problem in Kantorovich form (1942)

$$
W_{1}(\mu, v)=\inf _{\mu, v \text { Marginales of } \gamma} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma(x, y)
$$

From L^{l} to Kantorovich-Rubinstein

- Original Monge problem in Kantorovich form (1942)

$$
W_{1}(\mu, v)=\inf _{\mu, v} \int_{\text {Marginales of } \gamma} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma(x, y)
$$

- Kantorovich duality:

$$
W_{p}(\mu, v)=\sup \left\{\int \phi \mathrm{d} \mu-\int \psi \mathrm{d} v: \phi(y)+\psi(x) \leq|x-y|^{p}\right\}
$$

From L^{l} to Kantorovich-Rubinstein

- Original Monge problem in Kantorovich form (1942)

$$
\mathrm{W}_{1}(\mu, v)=\inf _{\mu, v \text { Marginales of } \gamma} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma(x, y)
$$

- Kantorovich duality:

$$
W_{p}(\mu, v)=\sup \left\{\int \phi \mathrm{d} \mu-\int \psi \mathrm{d} v: \phi(y)+\psi(x) \leq|x-y|^{p}\right\}
$$

- With $p=1$ Kantorovich-Rubinstein duality: For probability measures

$$
\|\mu-v\|_{\mathrm{Lip}^{*}}=\mathrm{W}_{1}(\mu, v)
$$

with the dual Lipschitz norm

$$
\|\mu\|_{\operatorname{Lip}^{*}}=\sup \left\{\int f \mathrm{~d} \mu: \operatorname{Lip}(f) \leq 1\right\}
$$

Kantorovich-Rubinstein norms

- If $\int \mathrm{d} \mu \neq \int \mathrm{d} v$, then $\int \mathrm{d}(\mu-v) \neq 0$:

$$
\|\mu-v\|_{\text {Lip }^{*}}=\sup \left\{\int f \mathrm{~d}(\mu-v): \operatorname{Lip}(f) \leq l\right\}=\infty
$$

Kantorovich-Rubinstein norms

- If $\int \mathrm{d} \mu \neq \int \mathrm{d} v$, then $\int \mathrm{d}(\mu-v) \neq 0$:

$$
\|\mu-v\|_{\operatorname{Lip}^{*}}=\sup \left\{\int f \mathrm{~d}(\mu-v): \operatorname{Lip}(f) \leq 1\right\}=\infty .
$$

- Way out: Enforce a bound on f

$$
\|\mu\|_{\mathrm{KR}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1, \operatorname{Lip}(f) \leq 1\right\}
$$

Kantorovich-Rubinstein norms

- If $\int \mathrm{d} \mu \neq \int \mathrm{d} v$, then $\int \mathrm{d}(\mu-v) \neq 0$:

$$
\|\mu-v\|_{\text {Lip }^{*}}=\sup \left\{\int f \mathrm{~d}(\mu-v): \operatorname{Lip}(f) \leq 1\right\}=\infty
$$

- Way out: Enforce a bound on f

$$
\|\mu\|_{\mathrm{KR}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1, \operatorname{Lip}(f) \leq 1\right\}
$$

- Equivalent to the bounded Lipschitz norm

$$
\|\mu\|_{\mathrm{BL}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty}+\operatorname{Lip}(f) \leq 1\right\}
$$

Kantorovich-Rubinstein norms

- If $\int \mathrm{d} \mu \neq \int \mathrm{d} v$, then $\int \mathrm{d}(\mu-v) \neq 0$:

$$
\|\mu-v\|_{\text {Lip }^{*}}=\sup \left\{\int f \mathrm{~d}(\mu-v): \operatorname{Lip}(f) \leq 1\right\}=\infty
$$

- Way out: Enforce a bound on f

$$
\|\mu\|_{\mathrm{KR}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1, \operatorname{Lip}(f) \leq 1\right\}
$$

- Equivalent to the bounded Lipschitz norm

$$
\|\mu\|_{\mathrm{BL}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty}+\operatorname{Lip}(f) \leq 1\right\}
$$

- Here: For $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \geq 0$:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq \lambda_{1}, \operatorname{Lip}(f) \leq \lambda_{2}\right\}
$$

Kantorovich-Rubinstein norms

- If $\int \mathrm{d} \mu \neq \int \mathrm{d} v$, then $\int \mathrm{d}(\mu-v) \neq 0$:

$$
\|\mu-v\|_{\operatorname{Lip}^{*}}=\sup \left\{\int f \mathrm{~d}(\mu-v): \operatorname{Lip}(f) \leq 1\right\}=\infty
$$

- Way out: Enforce a bound on f

$$
\|\mu\|_{\mathrm{KR}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq 1, \operatorname{Lip}(f) \leq 1\right\}
$$

- Equivalent to the bounded Lipschitz norm

$$
\|\mu\|_{\mathrm{BL}}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty}+\operatorname{Lip}(f) \leq 1\right\}
$$

- Here: For $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \geq 0$:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:\|f\|_{\infty} \leq \lambda_{1}, \operatorname{Lip}(f) \leq \lambda_{2}\right\}
$$

- Obviously:

$$
\|\mu\|_{\mathrm{KR},(\infty, 1)}=\|\mu\|_{\mathrm{Li} \mathrm{P}^{*}}, \quad\|\mu\|_{\mathrm{KR},(1, \infty)}=\|\mu\|_{\mathfrak{M}}
$$

Dualities

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:|f(x)| \leq \lambda_{1}, \operatorname{Lip}(f) \leq \lambda_{2}\right\}
$$

Dualities

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:|f(x)| \leq \lambda_{1},|f(x)-f(y)| \leq \lambda_{2}|x-y|\right\}
$$

1. $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|f(x)-f(y)| \leq|x-y|:$

Dualities

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:|f(x)| \leq \lambda_{1},|f(x)-f(y)| \leq \lambda_{2}|x-y|\right\}
$$

1. $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|f(x)-f(y)| \leq|x-y|:$

Linear programming duality, relation to Wasserstein-1:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{\gamma \geq 0}\left\{\lambda_{1} \int_{\Omega} \mathrm{d}\left|\mu-\operatorname{proj}_{1} \gamma+\operatorname{proj}_{2} \gamma\right|+\lambda_{2} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma\right\}
$$

\rightsquigarrow Transport formulation

Dualities

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:|f(x)| \leq \lambda_{1},|\nabla f(x)| \leq \lambda_{2}\right\}
$$

1. $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|f(x)-f(y)| \leq|x-y|:$

Linear programming duality, relation to Wasserstein-1:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{\gamma \geq 0}\left\{\lambda_{1} \int_{\Omega} \mathrm{d}\left|\mu-\operatorname{proj}_{1} \gamma+\operatorname{proj}_{2} \gamma\right|+\lambda_{2} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma\right\}
$$

\rightsquigarrow Transport formulation
2. Ω convex, then $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|\nabla f(x)| \leq \lambda_{2}$

Dualities

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\sup \left\{\int f \mathrm{~d} \mu:|f(x)| \leq \lambda_{1},|\nabla f(x)| \leq \lambda_{2}\right\}
$$

1. $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|f(x)-f(y)| \leq|x-y|:$

Linear programming duality, relation to Wasserstein-l:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{\gamma \geq 0}\left\{\lambda_{1} \int_{\Omega} \mathrm{d}\left|\mu-\operatorname{proj}_{1} \gamma+\operatorname{proj}_{2} \gamma\right|+\lambda_{2} \int_{\Omega \times \Omega}|x-y| \mathrm{d} \gamma\right\}
$$

\rightsquigarrow Transport formulation
2. Ω convex, then $\operatorname{Lip}(f) \leq \lambda_{2} \Longleftrightarrow|\nabla f(x)| \leq \lambda_{2}$

Fenchel-Rockafellar duality:

$$
\|\mu\|_{\mathrm{KR}, \lambda}=\min _{v} \lambda_{1}\|\mu-\operatorname{div} v\|_{\mathfrak{M}}+\lambda_{2}\|\mid v\|_{\mathfrak{M}}
$$

\rightsquigarrow Cascading formulation

- Image denoising in measure space
- Kantorovich-Rubinstein norms
- KR-TV denoising
- Examples

$L^{1}-T V$ and KR-TV

Ll-TV

$$
\min _{u} \lambda\left\|u-u^{0}\right\|_{1}+\operatorname{TV}(u)
$$

$L^{1}-T V$ and KR-TV

Ll-TV

$$
\min _{u} \max _{|f| \leq \lambda} \int f\left(u-u^{0}\right)+\operatorname{TV}(u)
$$

Ll-TV and KR-TV

Ll-TV

$$
\min _{u} \max _{|f| \leq \lambda} \int f\left(u-u^{0}\right)+\operatorname{TV}(u)
$$

KR-TV, primal "Lipschitz" formulation

$$
\min _{u}\left\|u-u^{0}\right\|_{\mathrm{KR}, \lambda}+\operatorname{TV}(u)
$$

$L^{1}-T V$ and KR-TV

Ll-TV

$$
\min _{u} \max _{|f| \leq \lambda} \int f\left(u-u^{0}\right)+\operatorname{TV}(u)
$$

KR-TV, primal "Lipschitz" formulation

$$
\min _{u} \max _{\substack{|f| \leq \lambda_{1} \\ \operatorname{Lip}(f) \leq \lambda_{2}}} \int f\left(u-u^{0}\right)+\operatorname{TV}(u)
$$

Relation to TGV denoising

- $\operatorname{TV}(u)=\||\nabla u|\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad \operatorname{TGV}_{\alpha}^{2}(u)=\inf _{w} \alpha_{2}\||\nabla u-w|\|_{\mathfrak{M}}+\alpha_{1}\||E w|\|_{\mathfrak{M}}
$$

Relation to TGV denoising

- $\operatorname{TV}(u)=\||\nabla u|\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad \operatorname{TGV}_{\alpha}^{2}(u)=\inf _{w} \alpha_{2}\||\nabla u-w|\|_{\mathfrak{M}}+\alpha_{1}\||E w|\|_{\mathfrak{M}}
$$

- $\|\mu\|_{L^{1}}=\|\mu\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{v} \lambda_{1}\|\mu-\operatorname{div} v\|_{\mathfrak{M}}+\lambda_{2}\||v|\|_{\mathfrak{M}}
$$

Relation to TGV denoising

- $\operatorname{TV}(u)=\||\nabla u|\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad \operatorname{TGV}_{\alpha}^{2}(u)=\inf _{w} \alpha_{2}\||\nabla u-w|\|_{\mathfrak{M}}+\alpha_{1}\||E w|\|_{\mathfrak{M}}
$$

- $\|\mu\|_{L^{1}}=\|\mu\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{v} \lambda_{1}\|\mu-\operatorname{div} v\|_{\mathfrak{M}}+\lambda_{2}\||v|\|_{\mathfrak{M}}
$$

Ll-TGV
Cascading TV with a vector field, penalize its derivative and obtain a higher order regularizer with similar properties.

Relation to TGV denoising

- $\operatorname{TV}(u)=\||\nabla u|_{\| \mathfrak{M}}$

$$
\rightsquigarrow \quad \operatorname{TGV}_{\alpha}^{2}(u)=\inf _{w} \alpha_{2}\||\nabla u-w|\|_{\mathfrak{M}}+\alpha_{1}\||E w|\|_{\mathfrak{M}}
$$

- $\|\mu\|_{L^{1}}=\|\mu\|_{\mathfrak{M}}$

$$
\rightsquigarrow \quad\|\mu\|_{\mathrm{KR}, \lambda}=\inf _{v} \lambda_{1}\|\mu-\operatorname{div} v\|_{\mathfrak{M}}+\lambda_{2}\||v|\|_{\mathfrak{M}}
$$

Ll-TGV
Cascading TV with a vector field, penalize its derivative and obtain a higher order regularizer with similar properties.

KR-TV

Cascading L^{1} with the divergence of a vector field, penalize its magnitude and obtain a lower order discrepancy with similar properties.

Relation to G-TV cartoon-texture decomposition

- Meyer's G-norm:

$$
\|u\|_{G}=\inf \left\{\||v|\|_{\infty}: \operatorname{div} v=u\right\}
$$

Gets small for oscillating patterns

Relation to G-TV cartoon-texture decomposition

- Meyer's G-norm:

$$
\|u\|_{G}=\inf \left\{\|\mid v\|_{\infty}: \operatorname{div} v=u\right\}
$$

Gets small for oscillating patterns
G-TV:
$\min _{u} \lambda\left\|u-u^{0}\right\|_{G}+\operatorname{TV}(u)=\min _{u, v} I_{\{0\}}\left(u-u^{0}-\operatorname{div} v\right)+\lambda\||v|\|_{\infty}+\operatorname{TV}(u)$

Relation to G-TV cartoon-texture decomposition

- Meyer's G-norm:

$$
\|u\|_{G}=\inf \left\{\||v|\|_{\infty}: \operatorname{div} v=u\right\}
$$

Gets small for oscillating patterns
G-TV:
$\min _{u} \lambda\left\|u-u^{0}\right\|_{G}+\operatorname{TV}(u)=\min _{u, v} I_{\{0\}}\left(u-u^{0}-\operatorname{div} v\right)+\lambda\||v|\|_{\infty}+\operatorname{TV}(u)$
KR-TV cascading formulation
$\min _{u}\left\|u-u^{0}\right\|_{\mathrm{KR}, \lambda}+\operatorname{TV}(u)=\min _{u, v} \lambda_{1}\left\|u-u^{0}-\operatorname{div} v\right\|_{\mathfrak{M}}+\lambda_{2}\||v|\|_{\mathfrak{M}}+\operatorname{TV}(u)$

Analytical results

Reproduction: For λ_{1}, λ_{2} large enough, minimizer equals u^{0}.
$\rightsquigarrow K R$ is exact penalty (similar to L^{1})
Reduction to the mean value: For λ_{1} small enough, minimizer equals mean value of u^{0}.
Weak maximum principle: If u^{0} is bounded, then there is a minimizer \bar{u} such that $\|\bar{u}\|_{\infty} \leq\left\|u^{0}\right\|_{\infty}$.
\rightsquigarrow Positivity is preserved (similar to $L^{1}-T V$ and many others)
Weak mass preservation: For $\frac{\lambda_{2}}{\lambda_{1}} \leq \frac{2}{\operatorname{diam} \Omega}$ there is a minimizer that has the same mean as u^{0}.
\rightsquigarrow Method reconstructs overall density accurately, no overall "intensity loss" (different from Ll${ }^{1}$-TV)

1D examples

- Image denoising in measure space
- Kantorovich-Rubinstein norms
- KR-TV denoising
- Examples

From $L^{1}-T V$ to KR-TV: Helps with "suddenly disappearing objects"

From $L^{1}-T V$ to KR-TV: Helps with "suddenly disappearing objects"

Helps with staircasing, gives small errors

(Parameters optimized for smallest L^{1}-error)

Cartoon-texture decomposition

Compare $L^{1}-T V, G-T V$ and KR-TV
Parameter choice:

- Start with $L^{1}-T V$. Choose λ such that most texture is in the texture component, but also some structure.
- In G-TV choose λ such that the TV-seminorm is equal to the result from above.
- In KR-TV set $\lambda_{1}=\infty$ and λ_{2} such that the TV-seminorm is equal to the result from above.

Cartoon-texture decomposition

Conclusion

- The Kantorovich-Rubinstein norm generalizes the Radon norm and the L^{1}-norm.
- It can be used as a discrepancy term and the minimization can be formulated as a convex-concave saddle-point problem.
- Cascading reformulation well suited numerically, primal "Lipschitz" formulation suited for analysis
- KR-TV relates texture models and optimal transport.
- KR-TV denoising also preserves edges, may lead to less staircasing, may introduce new edges, performs good in cartoon-texture decomposition.
- Favorable properties: New edges but maximum principle, exact penalty, mean preservation
- Straightforward extension to KR-TV reconstruction

Imaging with
 Kantorovich-Rubinstein discrepancy

Dirk Lorenz joint work with Jan Lellmann, Carola Schönlieb and Tuomo Valkonen, July 4th, 2014
Institut für Analysis und Algebra

- Image denoising in measure space
- Kantorovich-Rubinstein norms
- KR-TV denoising
- Examples

