Convex Relaxation Techniques for Functions with Values in a Riemannian Manifold

Daniel Cremers Computer Science & Mathematics Technische Universität München

Evgeny Strekalovskiy

ר) **ב(ר**

Jan Lellmann

Computer Vision Challenges

Segmentation

Multi-view Reconstruction

Space-time Reconstruction

Optical Flow

Super-resolution Texture

Daniel Cremers

Image segmentation:

Geman, Geman '84, Blake, Zisserman '87, Kass et al. '88, Mumford, Shah '89, Caselles et al. '95, Kichenassamy et al. '95, <u>Paragios, Deriche '99, Chan, Vese '01, Tsai et al. '01, ...</u>

Optical flow estimation:

Horn, Schunck '81, Nagel, Enkelmann '86, Black, Anandan '93, Alvarez et al. '99, Brox et al. '04, Baker et al. '07, Zach et al. '07, Sun et al. '08, Wedel et al. '09, ...

Non-convex versus Convex Energies

Non-convex energy

Convex energy

Some related work: Brakke '95, Alberti et al. '01, Chambolle '01, Attouch et al. '06, Nikolova et al. '06, Cremers et al. '06, Bresson et al. '07, Lellmann et al. '08, Zach et al. '08, Chambolle et al. '08, Pock et al. '09, Zach et al. '09, Brown et al. '10, Bae et al. '10, Yuan et al. '10,...

color image processing $\mathcal{M} = \mathbb{R}^3$

optical flow estimation normal fiel $\mathcal{M} = \mathbb{R}^2 \qquad \mathcal{M}$ =

normal field inpainting $\mathcal{M} = \mathcal{S}^2$

Overview

Problem statement

Convex regularizers

Nonconvex regularizers

Manifold-valued functions

Overview

Problem statement

Convex regularizers

Nonconvex regularizers

Manifold-valued functions

Consider the problem

$$\min_{u:\Omega\to\mathcal{M}} \int_{\Omega} s(x,u(x)) dx + R_{\mathcal{M}}(u),$$

with a Riemannian manifold \mathcal{M} .

Both the data term and the regularizer $R_{\mathcal{M}}$ may be non-convex.

Examples:

color denoising: $\mathcal{M} = \mathbb{R}^3$, s(x, u) = |u - f|normal field denoising: $\mathcal{M} = \mathbb{S}^2$, s(x, u) = |u - f|optical flow: $\mathcal{M} = \mathbb{R}^2$, $s(x, u) = |f_1 - f_2 \circ u|$ **Example: Total Variation**

For a scalar-valued function $u \in BV(\Omega; \mathbb{R})$, the total variation is

$$TV(u) := \sup_{|\xi| \le 1} \int_{\Omega} u \operatorname{div} \xi \, dx$$

For differentiable functions, integration by parts give

$$TV(u) = \sup_{|\xi| \le 1} \int_{\Omega} \nabla u \,\xi \, dx = \int_{\Omega} \nabla u \,\xi \, dx$$

For $u \in BV(\Omega; \mathbb{R})$, we have

$$TV(u) = \int_{\Omega - S_u} |\nabla u| \, dx + \int_{S_u} |u^+ - u^-| \, d\mathcal{H}^{d-1} + |D^c(u)|$$

Herve, Shulman '89, Rudin, Osher Fatemi '92

Daniel Cremers Convex Relaxation for Functions with Values in a Riemannian Manifold

u(x)

 S_u

Giaquinta, Mucci, PAMQ '07, Cremers, Strekalovskiy, JMIV '12 Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

Total Variation for Functions with Values in a Riemannian Manifold

Total Variation for Functions with Values in a Manifold

Proposition 1:

For non-Euclidean manifolds, $TV_{\mathcal{M}}$ is generally nonconvex.

Proposition 2:

The discrete version of

$$\min_{u:\Omega\to\mathcal{S}^1}\int_{\Omega} s(x,u(x)) dx + TV_{\mathcal{S}^1}(u)$$

is NP-hard.

Proof:

For 3 equidistantly spaced labels, TV_{S^1} is equivalent to a Potts regularizer on three labels.

Cremers, Strekalovskiy, JMIV 2012.

Daniel Cremers

Total Variation for Functions with Values in a Riemannian Manifold

Problem statement

Convex regularizers

Nonconvex regularizers

Manifold-valued functions

 $u: \Omega \to \Gamma = [\gamma_{min}, \gamma_{max}]$

$$E(u) = \int_{\Omega} \rho(x, u(x)) \, dx + \int_{\Omega} |\nabla u(x)| \, dx \qquad (*)$$

Let $v: (\Sigma = \Omega \times \Gamma) \rightarrow \{0, 1\}$ $v(x, \gamma) = \mathbf{1}_{u \ge \gamma}(x)$

Pock , Schoenemann, Graber, Bischof, Cremers ECCV '08

Functional Lifting and Multi-labeling

$$u: \Omega \to \Gamma = [\gamma_{min}, \gamma_{max}]$$

$$E(u) = \int_{\Omega} \rho(x, u(x)) dx + \int_{\Omega} |\nabla u(x)| dx \qquad (*)$$
nonconvex functional
Let $v: (\Sigma = \Omega \times \Gamma) \to \{0, 1\} \qquad v(x, \gamma) = \mathbf{1}_{u \ge \gamma}(x)$
Theorem: Minimizing (*) is equivalent to minimizing

$$E(v) = \int_{\Sigma} \rho(x, \gamma) |\partial_{\gamma} v(x, \gamma)| + |\nabla v(x, \gamma)| dx d\gamma \qquad (**)$$
convex functional
Solve (**) in relaxed space ($v: \Sigma \to [0, 1]$) and threshold
to obtain a globally optimal solution.

Pock , Schoenemann, Graber, Bischof, Cremers ECCV '08

Global Optima for Convex Regularizers

Let

$$E(u) = \int_{\Omega} f(x, u, \nabla u) \, dx$$

be continuous in $x \in \mathbb{R}^d$ and u, and convex in ∇u .

Theorem:

For any function $u \in W^{1,1}(\Omega; \mathbb{R})$ we have:

$$E(u) = F(\mathbf{1}_u) := \sup_{\phi \in \mathcal{K}} \int_{\Omega \times \mathbb{R}} \phi \cdot D\mathbf{1}_u,$$

where ϕ is constrained to the convex set

$$\mathcal{K} = \left\{ \phi = (\phi^x, \phi^t) \in C_0\left(\Omega \times \mathbb{R}; \mathbb{R}^d \times \mathbb{R}\right) : \phi^t(x, t) \ge f^*(x, t, \phi^x(x, t)), \ \forall x, t \in \Omega \times \mathbb{R} \right\}$$

Pock, Cremers, Bischof, Chambolle, SIAM J. on Imaging Sciences '10

Global Optima for Convex Regularizers

The functional E(u) can be minimized by solving the relaxed saddle point problem

$$\min_{v} F(v) = \min_{v} \sup_{\phi \in \mathcal{K}} \int_{\Omega \times \mathbb{R}} \phi \cdot Dv,$$

<u>Theorem:</u>

The functional F fulfills a generalized coarea formula:

$$F(v) = \int_{-\infty}^{\infty} F(\mathbf{1}_{v \ge s}) \, ds.$$

As a consequence, we have a thresholding theorem assuring that we can globally minimize the functional E(u).

Pock, Cremers, Bischof, Chambolle, SIAM J. on Imaging Sciences '10

Given the saddle point problem

$$\min_{x \in C} \max_{y \in K} \langle Ax, y \rangle + \langle g, x \rangle - \langle h, y \rangle$$

with close convex sets C and K and linear operator A of norm L.

The iterative algorithm

$$\begin{cases} y^{n+1} = \Pi_K (y^n + \sigma(A\bar{x}^n - h)) \\ x^{n+1} = \Pi_C (x^n - \tau(A^*y^{n+1} + g)) \\ \bar{x}^{n+1} = 2x^{n+1} - x^n \end{cases}$$

converges with rate O(1/N) to a saddle point for $\sigma \tau L^2 \leq 1$.

Pock, Cremers, Bischof, Chambolle, ICCV '09, Chambolle, Pock '10

Reconstruction from Aerial Images

One of two input images Courtesy of Microsoft

Depth reconstruction

Reconstruction from Aerial Images

Overview

Problem statement

Convex regularizers

Nonconvex regularizers

Manifold-valued functions

Nonconvex Regularizers

Minimal Partitions & Multilabeling

$$\begin{split} \min_{\Omega_0,\dots,\Omega_n} \frac{1}{2} \sum_i |\partial\Omega_i| &+ \sum_i \int_{\Omega_i} f_i(x) \, dx \\ \text{s.t.} \quad \bigcup_i \Omega_i = \Omega \subset \mathbb{R}^d, \text{ and } \Omega_i \cap \Omega_j = \emptyset \ \forall i \neq j \\ \end{split}$$

$$\begin{aligned} Potts \ '52, \ Blake, \ Zisserman \ '87, \ Mumford-Shah \ '89, \ Vese, \ Chan \ '02 \\ \end{aligned}$$

$$\begin{aligned} Proposition: \quad \text{With } v_i = \mathbb{1}_{\Omega_i}, \text{ this is equivalent to} \\ \min_{v \in \mathcal{B}} \frac{1}{2} \sum_i \int_{\Omega} |Dv_i| + \int_{\Omega} v_i \, f_i \, dx = \min_{v \in \mathcal{B}} \sup_{p \in \mathcal{K}} \sum_i \int_{\Omega} v_i \, \operatorname{div} p_i \, dx + \int_{\Omega} v_i \, f_i \, dx \\ \text{where } \quad \mathcal{K} = \left\{ p = (p_1, \dots, p_n)^\top \in \mathbb{R}^{n \times d} : \left| p_i - p_j \right| \leq 1, \ \forall i < j \right\} \end{split}$$

Chambolle, Cremers, Pock '08, SIIMS '12, Pock et al. CVPR '09

Daniel Cremers Convex Relaxation for Functions with Values in a Riemannian Manifold

m $v \in$

Input color image

10 label segmentation

Chambolle, Cremers, Pock '08, SIIMS '12, Pock et al. CVPR '09

<u>Reminder:</u> With $v_i = 1_{\Omega_i}$, the segmentation problem is:

$$\begin{split} \min_{v \in \mathcal{B}} \frac{1}{2} \sum_{i} \int_{\Omega} |Dv_i| + \int_{\Omega} v_i f_i \, dx &= \min_{v \in \mathcal{B}} \sup_{p \in \mathcal{K}} \sum_{i} \int_{\Omega} v_i \operatorname{div} p_i \, dx + \int_{\Omega} v_i f_i \, dx \\ \text{where} \quad \mathcal{K} &= \left\{ p = (p_1, \dots, p_n)^\top \in \mathbb{R}^{n \times m} : \left| p_i - p_j \right| \le 1, \, \forall i < j \right\} \end{split}$$

Consider instead the more general convex set:

$$\mathcal{K}_d = \left\{ p \in \mathbb{R}^{n \times m} : \left| \langle p_i - p_j, \nu \rangle \leq d(i, j, \nu), \forall i < j, \nu \in \mathbb{S}^{m-1} \right\} \right\}$$

Penalize transitions depending on label values i, j and direction ν .

Strekalovskiy, Cremers, ICCV 2011

 Ω_1

 Ω_3

 Ω_0

 Ω_2

Strekalovskiy, Cremers, ICCV 2011

Minimal Partitions & Multilabeling

Strekalovskiy, Cremers, ICCV 2011

Input image

piecewise constant

piecewise smooth

Pock, Cremers, Bischof, Chambolle ICCV '09

Color Mumford-Shah

Input image

Channelwise MS

Vectorial MS

Strekalovskiy, Chambolle, Cremers, CVPR '12

Daniel Cremers

Overview

Problem statement

Convex regularizers

Nonconvex regularizers

Manifold-valued functions

Total Variation for Functions with Values in a Manifold

Consider the problem

$$\min_{u:\Omega\to\mathcal{M}}\int_{\Omega}s(x,u(x))\,dx + TV_{\mathcal{M}}(u),$$

with a Riemannian manifold \mathcal{M} .

$$TV_{\mathcal{M}}(u) = \int_{\Omega \setminus S_u} |\nabla u| \, dx + \int_{S_u} d\mathcal{M}(u^-, u^+) \, d\mathcal{H}^{d-1} + |D^c(u)|$$

geodesic distance
on the manifold

Giaquinta, Mucci, PAMQ '07, Cremers, Strekalovskiy, JMIV '12 Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

Total Variation for Functions with Values in a Riemannian Manifold

Continuous labeling problem with all points of \mathcal{M} : $\min_{u':\Omega\to\mathcal{P}(\mathcal{M})} \sup_{p:\Omega\times\mathcal{M}\to\mathbb{R}^d} \int_{\Omega} \langle u',s\rangle dx + \int_{\Omega} \langle u',\mathsf{Div}\,p\rangle dx$ s.t. $\|p(x, z_1) - p(x, z_2)\|_2 \leq d_{\mathcal{M}}(z_1, z_2), \forall z_1, z_2 \in \mathcal{M}, \forall x \in \Omega, (*)$ Proposition: The pairwise constraints (*) are equivalent to $\|D_z p(x,z)\|_{\sigma} \leq 1, \quad \forall z \in \mathcal{M}, \forall x \in \Omega$ with spectral norm $||M||_{\sigma} = \sup_{v \in T_z \mathcal{M}} \frac{||\langle M, v \rangle_{T_z \mathcal{M}}||_2}{||v||_{T_z \mathcal{M}}}$ for $M \in (T_z \mathcal{M})^d$

linear number of constraints, respects local manifold structure

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Input signal $f: [0,1] \to \mathbb{R}^2$

Finite Labeling 8-Neighborhood

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Example: Optical Flow

flow with finite labeling

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

Example: Normal Field Denoising

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

Example: Normal Field Denoising

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

 $\mathcal{M} = \mathcal{S}^2$

normals on the boundary

 $TV_{\mathcal{S}^2}$ - inpainted normal field

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

brightness $I: \Omega \to \mathbb{R}$ chromaticity $C = I/|I|: \Omega \to S^2$

smoothed chromaticity

brightness & chromaticity

smoothed brightness

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Daniel Cremers

Example: Camera Trajectory Denoising

 $\mathcal{M} = SO(3)$

SO(3)-denoised camera rotation

Lellmann, Strekalovskiy, Kötter, Cremers, ICCV '13

Beyond Total Variation ($\mathcal{M} = \mathbb{R}$)

Daniel Cremers

UD

Convex Relaxation for Functions with Values in a Riemannian Manifold

0.8

0.9

Beyond Total Variation ($\mathcal{M} = \mathbb{R}^2$)

Summary

We proposed a convex relaxation for solving variational problems for functions with values in a Riemannian manifold, including denoising, optical flow or inpainting.

The approach can handle arbitrary Riemannian manifolds, non-convex data terms and a variety of convex and non-convex regularizers.

The continuous labeling approach provides less orientation-bias and grid-bias than existing finite labeling approaches (sublabel accuracy).

