Multimodal image registration by optimal control methods

Angel Angelov[†] and Marcus Wagner*

Problem statement. We present an optimal control approach to the registration of greyscale images $I_0(s)$, $I_1(s): \Omega \to [0,1], \Omega \subset \mathbb{R}^2$, with different modalities. Following [4] and [5], we determine an elastic deformation $x: \Omega \to \mathbb{R}^2$ as a solution of the following Dieudonné-Rashevsky type control problem:

$$(P): \quad F(x) = \int_{\Omega} \left(k_1 (s - x(s)) - k_0(s) \right)^2 ds$$
$$+ \mu \cdot \int_{\Omega} r (Jx(s)) ds \longrightarrow \inf!; \ x \in W_0^{1,\infty}(\Omega, \mathbb{R}^2); \ Jx(s) \in \mathcal{K} \subset \mathbb{R}^{2 \times 2} \ (\forall) \, s \in \Omega.$$

The registration is based on edge sketches $k_0(s)$, $k_1(s)$, which will be derived form the image data I_0 , I_1 by an optimal control method as well. Within (P), K $\subset \mathbb{R}^{2\times 2}$ is a convex body with $\mathfrak{o} \in \text{int}(K)$. We consider the linear-elastic or hyperelastic regularization terms

$$r(Jx(s)) = \sum_{i,j=1}^{2} \left(\frac{\partial x_{i}(s)}{\partial s_{j}} + \frac{\partial x_{j}(s)}{\partial s_{i}}\right)^{2} ds,$$

$$r(Jx(s)) = \left(c_{1} \|E_{2} - Jx(s)\|^{p} + c_{2} \left(\operatorname{Det}\left(E_{2} - Jx(s)\right)\right)^{2}\right) ds,$$

respectively. The introduction of constraints for the Jacobi matrix Jx reflects the necessity to ensure the validity of the underlying elasticity models (the resulting shear stress must remain bounded).

Numerical solution. For the numerical solution of (P), an efficient direct method will be provided. We evaluate the necessary optimality conditions for the discretized problem and solve the resulting large-scale system of nonlinear equations by interior-point methods, cf. [1] and [5]. Selected numerical results will be presented and discussed.

References.

- [1] [Brune/Maurer/Wagner 09] Brune, C.; Maurer, H.; Wagner, M.: Detection of intensity and motion edges within optical flow via multidimensional control. SIAM J. Imaging Sci. 2 (2009), 1190 1210
- [2] [HINTERMÜLLER/KEELING 09] Hintermüller, M.; Keeling, S. L.: Image registration and segmentation based on energy minimization. In: Pardalos, P. M.; Romeijn, H. E. (Eds.): Handbook of Optimization in Medicine. Springer; New York 2009, 213 – 252
- [3] [MODERSITZKI 09] Modersitzki, J.: FAIR. Flexible Algorithms for Image Registration. SIAM; Philadelphia 2009
- [4] [Wagner 08] Wagner, M.: Quasiconvex relaxation of multidimensional control problems with integrands $f(t, \xi, v)$. Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig. Preprint 68/2008. To appear: ESAIM: Control, Optimisation and Calculus of Variations
- [5] [Wagner 10] Wagner, M.: An optimal control approach to the elastic/hyperelastic image registration problem. In preparation.

[†] University of Münster, Department of Mathematics and Computer Science, Institute of Computer Science, Einsteinstraße 62, D-48149 Münster, Germany. e-mail: angelov.angel@gmx.de

^{*} University of Graz, Institute for Mathematics and Scientific Computing, Heinrichstraße 36, A-8010 Graz, Austria. Homepage / e-mail: www.thecitytocome.de / marcus.wagner @ uni-graz.at