1 (Euklidischer Algorithmus). Es sei R ein Euklidischer Bereich mit einer euklidischen Normfunktion $\delta: R \setminus \{0\} \to \mathbb{N}$ wie in Definition 4.3 im Vorlesungsskript. Es seien a,b in $R \setminus \{0\}$. Die Folge $(r_i)_{i \geq 0}$ in R sei rekursiv definiert durch: $r_0 = a$, $r_1 = b$, und für $i \geq 2$ sei $r_i \in R$, so dass gilt

$$r_{i-2} = q_{i-1}r_{i-1} + r_i$$
 mit $q_{i-1} \in R$ und $\delta(r_i) < \delta(r_{i-1})$ falls $r_{i-1} \neq 0$, und $r_i = 0$ falls $r_{i-1} = 0$.

Zeigen Sie: Es existiert ein minimales $n \ge 0$, so dass für alle m > n gilt $r_m = 0$, und dann ist r_n ein ggT von a und b.

2. Berechnen Sie in $\mathbb{Q}[X]$ einen ggT d von

$$f = 6X^{10} + 23X^8 + 30X^6 + 27X^4 + 14X^2$$

und

$$q = 3X^6 + 10X^4 + 10X^2 + 7.$$

Bestimmen Sie weiters $h, k \in \mathbb{Q}[X]$ mit d = fh + gk.

- 3 (Universelle Eigenschaft des Quotientenkörpers). Es sei R ein Integrätsbereich und k sein Quotientenkörper. Wir identifizieren R mit dem Unterring $\{a/1_R | a \in R\}$ von k. Zeigen Sie:
 - (i) Ist S ein kommutativer Ring und $f: R \to S$ ein Ringhomomorphismus, so dass für alle $r \in R \setminus \{0\}$ gilt $f(r) \in S^{\times}$, dann gibt es genau einen Ringhomomorphismus $\overline{f}: k \to S$ mit $\overline{f}|_R = f$. Ist $S \neq \mathbf{0}$, so ist \overline{f} injektiv.
 - (ii) Die im Beweis von Satz 6.7 im Vorlesungsskript behauptete Abbildung $f:k\to K$ existiert und ist ein injektiver Ringhomomorphismus.