Exercise sheet 9

Exercise 1 [Criteria for admissibility of search directions and step sizes]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1} and let $\left(x^{k}\right),\left(s^{k}\right)$ as well as $\left(\sigma_{k}\right)$ be generated by Algorithm 2.8.1 from the lecture. Show that:
a) The sequence of search directions $\left(s^{k}\right)_{K}$ is admissible, if

$$
-\nabla f\left(x^{k}\right)^{\top} s^{k} \geq \phi\left(\left\|\nabla f\left(x^{k}\right)\right\|\right)\left\|s^{k}\right\| \quad \forall k \in K,
$$

where $\phi:[0, \infty) \rightarrow[0, \infty), \phi(0)=0$ is a strict monotonic and increasing function.
b) The sequence of step lengths $\left(\sigma_{k}\right)_{K}$ is admissable, if there is for every $\varepsilon>0$ a $\delta(\varepsilon)>0$ such that holds:

$$
\begin{aligned}
& \frac{-\nabla f\left(x^{k}\right)^{\top} s^{k}}{\left\|s^{k}\right\|} \geq \varepsilon \quad \text { for infinitely many } k \in K \\
\Rightarrow & f\left(x^{k}\right)-f\left(x^{k}+\sigma_{k} s^{k}\right) \geq \delta(\varepsilon) \quad \text { for infinitely many } k \in K
\end{aligned}
$$

Exercise 2 [Admissibility of the Armijo step sizes]
Prove Lemma 2.79 from the lecture using Exercise 1.

Exercise 3 [Efficient step sizes]

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1} and s^{k} be a descent direction of f in x^{k}. The step size $\sigma_{k}>0$ is called efficient, if

$$
f\left(x^{k}+\sigma_{k} s^{k}\right) \leq f\left(x^{k}\right)-\theta\left(\frac{\nabla f\left(x^{k}\right)^{\top} s^{k}}{\left\|s^{k}\right\|}\right)^{2}
$$

holds, where $\theta>0$ is a constant. Now let $\left(x^{k}\right),\left(s^{k}\right)$ and $\left(\sigma^{k}\right)$ be generated by Algorithm 2.8.1 and (40) from the lecture holds true. Show that:
a) Let $\left(\sigma_{k}\right)_{K}$ be a subsequence, for which all step sizes $\sigma_{k}, k \in K$ are efficient, then the subsequence of step sizes $\left(\sigma_{k}\right)_{K}$ is admissible.
b) Conclude that the Curry step size from Sheet 4, Exercise 3 is admissible.

Exercise 4 [Non admissible search directions]
If one chooses search directions, which are almost perpendicular to the gradient direction, it can happen that Algorithm 2.8.1 does not converge to the optimal solution. As an example we consider $f\left(x_{1}, x_{2}\right)=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ with search directions

$$
s^{k}=g^{k}-\frac{1}{2^{k+3}} \nabla f\left(x^{k}\right),
$$

where g^{k} is chosen such that $\left\langle g^{k}, \nabla f\left(x^{k}\right)\right\rangle=0$ and $\left\|s^{k}\right\|_{2}=\left\|\nabla f\left(x^{k}\right)\right\|_{2}$. Show that Algorithm 2.8.1 with s^{k} and admissible step lengths does not converge for any initial guess $x^{0} \in \mathbb{R}^{n} \backslash\{0\}$ to the optimal solution $x^{*}=0$ and that x^{*} is not a accumulation point of $\left(x^{k}\right)$.

Exercise 5 [Non admissible step sizes by the Armijo rule]
We consider Algorithm 2.8.1 with $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in C^{1} and the search directions $s^{k}=$ $-2^{-k} \nabla f\left(x^{k}\right)$.
a) Proof that every subsequence of search directions $\left(s^{k}\right)_{K}$ is admissible.
b) Proof that the Armijo rule in general does not generate admissible step sizes σ_{k}. Use the example

$$
f(x)=\frac{x^{2}}{8}, \quad \text { initial guess } \quad x^{0}>0
$$

for your proof, i.e. show that there is no admissible subsequence $\left(\sigma_{k}\right)_{K}$.
c) What is the reason for non admissibility of the step sizes?

