Exercise sheet 8

Exercise 1 [PSB update]
Prove Lemma 2.63 from the lecture.

Exercise 2 [SR1 update 1]
Let $d^{k}=x^{k+1}-x^{k}$ and $y^{k}=\nabla f\left(x^{k+1}\right)-\nabla f\left(x^{k}\right)$. We are looking for a updating formula of H_{k+1} such that

1. H_{k+1} is symmetric,
2. the equation $H_{k+1} d^{k}=y^{k}$ is satisfied,
3. $H_{k+1}=u_{k}+\gamma_{k} u^{k}\left(u^{k}\right)^{\top}, \gamma_{k} \in \mathbb{R}$ and $\left\|u^{k}\right\|=1$ holds.

Find such γ_{k} and u_{k} and formulate assumption such that they exist. Is the update $\gamma_{k} u^{k}\left(u^{k}\right)^{\top}$ unique? Why can Theorem 2.59 not be applied in this case.

Exercise 3 [SR1 update 2]

We consider the inverse SR1 method described in lecture. Here $B_{k}=H_{k}^{-1}$ with H_{k} from the last exercise. We consider the case of a linear quadratic function:

$$
f(x)=\langle b, x\rangle+\frac{1}{2}\langle A x, x\rangle,
$$

where A is symmetric positive definite. We assume that the condition $\left\langle d^{k}-B^{k} y^{k}, y^{k}\right\rangle \neq$ 0 is satisfied for all k.
a) Find a relation between d^{k} and y^{k}.
b) Prove by induction that for all $k \geq 1$, for all $i=0, \ldots, k-1$,

$$
B_{k} y^{i}=d^{i} .
$$

c) We assume that the vectors y^{0}, \ldots, y^{n-1} are linearly independent. Prove that $B_{n}=A^{-1}$. What can we say about x^{n+1} ?

Exercise 4 [Inverse BFGS update]
Formulate an update formula for B_{k+1}, where $B_{k}=H_{k}^{-1}$ and H_{k} is generated by the BFGS update formula from Lemma 2.65 in the lecture. Moreover formulate Assumptions such that B_{k+1} exists.

