Exercise sheet 7

Exercise 1 [Affine invariance of Newton's method]

We consider Newton's method for the minimization of the C^2 function $f: \mathbb{R}^n \to \mathbb{R}$ defined by

 $\nabla^2 f(x^k) s^k = -\nabla f(x^k), \quad x^{k+1} = x^k + s^k.$ (1)

- a) Show, that Newton's method is invariant to affine linear transformations of the form My + v = x with $M \in \mathbb{R}^{n \times n}$ invertible and $v \in \mathbb{R}^n$. More precisely this means that the application of Newton's method to h(y) := f(My + v) with the initial guess $y^0 = M^{-1}(x^0 v)$ generates the sequences of points $y^k = M^{-1}(x^k v)$, where x^k are the iterates of (1) with initial guess x^0 .
- b) Is the same true for the gradient method $x^{k+1} = x^k \nabla f(x^k)$?

Exercise 2 [Barzilai Borwein method]

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function. We set $s^k = x^k - x^{k-1}$ and $y^k = \nabla f(x^k) - \nabla f(x^{k-1})$. Then the Taylor formula implies

$$\nabla f(x^{k-1}) = \nabla f(x^k) - \nabla^2 f(x^k) s^k + o(\|s^k\|)$$

that

$$y^k - \nabla^2 f(x^k) s^k \approx 0$$
 and $\nabla^2 f(x^k)^{-1} y^k - s^k \approx 0$.

The main idea of this method is the approximation of $\nabla^2 f(x^k)$ by a diagonal matrix $\alpha_k I$ in terms of the above two equations. The variable α^k is chosen chosen in an optimal way, i.e.

$$a_1^k = \operatorname{argmin}_{\alpha \in \mathbb{R}} \|y^k - \alpha s^k\|_2^2, \quad a_2^k = \operatorname{argmin}_{\alpha \in \mathbb{R}} \left\| \frac{1}{\alpha} y^k - s^k \right\|_2^2$$

- a) Show that $a_1^k = \frac{\langle s^k, y^k \rangle}{\|s^k\|^2}$
- b) Show that $a_2^k = \frac{\|y^k\|^2}{\langle s_k, y_k \rangle}$

For a given initial guess $x^0 \in \mathbb{R}^n$, the first step is calculated as $x^1 = x^0 - \sigma \nabla f(x^0)$ where σ is calculated by the Armijo rule. The following iterations are calculated by

$$x^{k+1} = x^k - \frac{1}{\alpha_i^k} \nabla f(x^k), \quad i = \{1, 2\}$$

if $\alpha_i^k > 0$ and $x^{k+1} = x^k - \sigma \nabla f(x^k)$ else. Again σ is calculated by the Armijo rule. Moreover we consider the following variants:

- i = 1 for all k
- i = 2 for all k
- i = 1 if k is even and i = 2 if k is uneven

Exercise 3 [Programming exercise: Barzilai Borwein method]

Repeat Exercise 4 a) from exercise sheet 4 using the described version of the Barzilai Borwein method for $\varepsilon = 10^{-3}, \ 10^{-4}, \dots, \ 10^{-12}$. Describe your findings and compare your results with your previous results. Moreover, plot $f(x^k)$ in a semi logarithmic plot. What do you notice? Which variant performs best?

Hand in by email (philip.trautmann@uni-graz.at) until 02.12.2019, 23:59 o'clock.