Exercise sheet 7

Exercise 1 [Affine invariance of Newton's method]
We consider Newton's method for the minimization of the C^{2} function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\nabla^{2} f\left(x^{k}\right) s^{k}=-\nabla f\left(x^{k}\right), \quad x^{k+1}=x^{k}+s^{k} . \tag{1}
\end{equation*}
$$

a) Show, that Newton's method is invariant to affine linear transformations of the form $M y+v=x$ with $M \in \mathbb{R}^{n \times n}$ invertible and $v \in \mathbb{R}^{n}$. More precisely this means that the application of Newton's method to $h(y):=f(M y+v)$ with the initial guess $y^{0}=M^{-1}\left(x^{0}-v\right)$ generates the sequences of points $y^{k}=M^{-1}\left(x^{k}-v\right)$, where x^{k} are the iterates of (1) with initial guess x^{0}.
b) Is the same true for the gradient method $x^{k+1}=x^{k}-\nabla f\left(x^{k}\right)$?

Exercise 2 [Barzilai Borwein method]

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a C^{2} function. We set $s^{k}=x^{k}-x^{k-1}$ and $y^{k}=\nabla f\left(x^{k}\right)-\nabla f\left(x^{k-1}\right)$. Then the Taylor formula implies

$$
\nabla f\left(x^{k-1}\right)=\nabla f\left(x^{k}\right)-\nabla^{2} f\left(x^{k}\right) s^{k}+o\left(\left\|s^{k}\right\|\right)
$$

that

$$
y^{k}-\nabla^{2} f\left(x^{k}\right) s^{k} \approx 0 \quad \text { and } \quad \nabla^{2} f\left(x^{k}\right)^{-1} y^{k}-s^{k} \approx 0
$$

The main idea of this method is the approximation of $\nabla^{2} f\left(x^{k}\right)$ by a diagonal matrix $\alpha_{k} I$ in terms of the above two equations. The variable α^{k} is chosen chosen in an optimal way, i.e.

$$
a_{1}^{k}=\operatorname{argmin}_{\alpha \in \mathbb{R}}\left\|y^{k}-\alpha s^{k}\right\|_{2}^{2}, \quad a_{2}^{k}=\operatorname{argmin}_{\alpha \in \mathbb{R}}\left\|\frac{1}{\alpha} y^{k}-s^{k}\right\|_{2}^{2}
$$

a) Show that $a_{1}^{k}=\frac{\left\langle s^{k}, y^{k}\right\rangle}{\left\|s^{k}\right\|^{2}}$
b) Show that $a_{2}^{k}=\frac{\left\|y^{k}\right\|^{2}}{\left\langle s_{k}, y_{k}\right\rangle}$

For a given initial guess $x^{0} \in \mathbb{R}^{n}$, the first step is calculated as $x^{1}=x^{0}-\sigma \nabla f\left(x^{0}\right)$ where σ is calculated by the Armijo rule. The following iterations iterations are calculated by

$$
x^{k+1}=x^{k}-\frac{1}{\alpha_{i}^{k}} \nabla f\left(x^{k}\right), \quad i=\{1,2\}
$$

if $\alpha_{i}^{k}>0$ and $x^{k+1}=x^{k}-\sigma \nabla f\left(x^{k}\right)$ else. Again σ is calculated by the Armijo rule. Moreover we consider the following variants:

- $i=1$ for all k
- $i=2$ for all k
- $i=1$ if k is even and $i=2$ if k is uneven

Exercise 3 [Programming exercise: Barzilai Borwein method]
Repeat Exercise 4 a) from exercise sheet 4 using the described version of the Barzilai Borwein method for $\varepsilon=10^{-3}, 10^{-4}, \ldots, 10^{-12}$. Describe your findings and compare your results with your previous results. Moreover, plot $f\left(x^{k}\right)$ in a semi logarithmic plot. What do you notice? Which variant performs best?
Hand in by email (philip.trautmann@uni-graz.at) until 02.12.2019, 23:59 o'clock.

