Exercise sheet 6

Exercise 1 [Q-linear and r-linear convergence]
Construct a sequence (x_{k}) which converges r-linear but not q-linear.

Exercise 2 [Problematic cases for Newton's Method]
a) Let $f(x)=|x|^{p}, p>2$ and $x^{0}>0$. We consider Newton's Method for optimization problems, Algorithm 2.6.1 from the lecture, for finding the global minimum $x^{*}=0$ of f with initial guess x^{0}. Show, that the Newton iteration converges q -linear to x^{*} and specify the convergence rate γ. Further show, that the convergence is not q-superlinear. Why does this fact not contradict Theorem 2.45 from the lecture?
b) Let $f(x)=\exp (-1 /|x|)$ for $x \neq 0$ and $f(0):=0$. Show, that f is a C^{2}-function with $f^{\prime}(0)=f^{\prime \prime}(0)=0$. Prove, that Algorithm 2.6.1 for minimizing f converges strictly monotonic to $x^{*}=0$ for all $0<x^{0}<1 / 3$. Moreover argument that the q -convergence rate is worse than linear.

Exercise 3 [Convergence of inexact Newton's method]
Prove Theorem 2.52, 4)-6) from the lecture. Hint: Use similar arguments as in the proof of Theorem 2.45, 4)-6).

Exercise 4 [Gauß-Newton method]

Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, m \geq n$, be a C^{2}-function. Then we consider the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|F(x)\|_{2}^{2}=f(x) \tag{1}
\end{equation*}
$$

We intend to solve (1) by applying the Gauß-Newton method defined by
for $k=0,1, \ldots$ do
Solve $F^{\prime}\left(x^{k}\right)^{\top} F^{\prime}\left(x^{k}\right) s^{k}=-F^{\prime}\left(x^{k}\right)^{\top} F\left(x^{k}\right)$ for s^{k};
Set $x^{k+1}=x^{k}+s^{k}$;
end
Algorithm 1: Gauß-Newton method
a) Apply Algorithm 2.6 .1 to (1) and compare it to Algorithm 1. What are the differences?
b) Construct a convex quadratic function $q_{k}(s)$ such that $F^{\prime}\left(x^{k}\right)^{\top} F^{\prime}\left(x^{k}\right) s^{k}=$ $-F^{\prime}\left(x^{k}\right)^{\top} F\left(x^{k}\right)$ is equivalent to $\nabla q_{k}\left(s^{k}\right)=0$ and interpret s^{k} as a solution of a suitable quadratic optimization problem.
c) Let $\bar{x} \in \mathbb{R}^{n}$ be a solution of (1) and $F^{\prime}(\bar{x})$ has full rank. Argue, that Algorithm 1 is well defined in a neighbourhood of \bar{x}.
d) Furthermore let $F(\bar{x})=0$ and let $\left(x^{k}\right)$ with $x^{k} \rightarrow \bar{x}$ be generated by Algorithm 1. Show, that $\left(x^{k}\right)$ converges q -superlinear to \bar{x}.

