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Exercise 1 [Convex subdifferential, until 08.11]

Let g : Rn → R∪{∞} be a convex function. The convex subdifferential ∂g(x ) of g in
x ∈ Rn is defined by

∂g(x ) = {γ ∈ Rn | 〈γ, y − x 〉+ g(x ) ≤ g(y) ∀y ∈ Rn}.

a) Prove that ∂g(x ) with g(x ) = ‖x‖1 is given by

(∂g(x ))i =


{−1} xi < 0,

[−1, 1] xi = 0,

{1} xi > 0

for i = 1, . . . , n. Moreover calculate ∂g(x ) for the indicator function of the
convex set C ⊂ Rn defined by

g(x ) =

{
0 x ∈ C ,

∞ else.

b) Prove: x̂ ∈ Rn solves minx∈Rn g(x ) iff 0 ∈ ∂g(x̂ )

c) Let f : Rn → R be continuously differentiable and convex. Show ∂f (x ) =
{∇f (x )}.

d) Prove that ∂(f (x ) + g(x )) = {∇f (x )} + ∂g(x ) holds true and conclude that
x̂ ∈ Rn solves minx∈Rn f (x ) + g(x ) iff −∇f (x̂ ) ∈ ∂g(x̂ ). Hint: Use the definition
of directional differentiability and the convexity of g to prove ∂(f (x ) + g(x )) ⊂
{∇f (x )}+ ∂g(x ).

Exercise 2 [Proximal mapping, until 08.11]

The proximal mapping PLg : Rn → Rn of g is defined by

PLg(y) = argminx∈Rn

(
g(x ) +

L

2
‖x − y‖22

)
.

Note that it can be proven that g is continuous.

a) Assume that g 6= ∞ and that g is bounded from below. Note that it can be
proven that g is continuous, since it is convex on Rn and real valued (∞ is
excluded). Why is PLg a mapping?



b) Show that PLg for g(x ) = α‖x‖1 is given by

(PLg(y))i = max(0, yi − α/L) + min(0, yi + α/L)

for i = 1, . . . , n.

c) Let C additionally be closed. What is PLg for the indicator function of C .

Let additionally f ∈ C 1,1 with the Lipschitz constant of the gradient Lf . Then we
consider the following proximal gradient method for minx∈Rn f (x ) + g(x ) = F (x ):

for k = 0, 1, . . . do

Set x k+1 = PLf
g
(
x k − 1

Lf
∇f (x k)

)
;

end
Algorithm 1: Proximal gradient method

for x 0 ∈ Rn .

Exercise 3 [ISTA, until 15.11]

In the following we analyze the convergence properties of ISTA in the non-smooth
case.

a) Prove: For L ≥ Lf and for any x , y ∈ Rn there holds

F (x )− F

(
PLg

(
y − 1

L
∇f (y)

))
≥ L

2
‖PLg

(
y − 1

L
∇f (y)

)
− y‖22

+ L〈y − x ,PLg

(
y − 1

L
∇f (y)

)
− y〉

Hint: Use Lemma 2.26 from the lecture and the optimality condition for the
optimization problem in the definition of the proximal mapping.

b) Prove the following statement by using a) and modifying the proof of Theorem
2.29 from the lecture: Let {x k} be the sequence generated by Algorithm (1).
Then for any k ≥ 1

F (x k)− F (x̄ ) ≤ Lf ‖x 0 − x̄‖2

2k
∀x̄ ∈ X ∗,

where X ∗ is defined in the lecture.

Next we consider the FISTA algorithm which is given by

Set y0 = x 0 and t1 = 1
for k = 1, 2, . . . ,maxiter do

Set x k = PLf
g
(
yk − 1

Lf
∇f (yk)

)
;

tk+1 =
1+
√

1+4(tk )2

2
;

yk+1 = x k +
(

tk−1
tk+1

)
(x k − x k−1);

end
Algorithm 2: FISTA

for x 0 ∈ Rn .



Exercise 4 [Programming exercise: ISTA and FISTA]

In this programming exercise we consider the setting of Exercise sheet 2, exercise 5.
In particular we consider the problem

min
x∈Rn
‖Cu − yn‖22 + α‖u‖1 = f (u) + g(u) (1)

a) Implement Algorithm (1) and (2) for (1) in Matlab/Octave.

b) Plot the iterates xmaxiter for Algorithm (1) and (2). Moreover display the con-
vergence behavior of the functional values for both algorithms in a semilog-plot.
Describe your results. Hint: Replace x̄ by xmaxiter. Include a plot of c1/k and
c2/k

2 with the correct constants ci .

c) Which method would you use and why?

Hand in by email (philip.trautmann@uni-graz.at) until 15.11.2019, 23:59 o’clock.


