Exercise sheet 3

Exercise 1 [Goldstein's rule]

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a differentiable function. We assume that its gradient is Lipschitzcontinuous with modulus $L>0$. Let $x \in \mathbb{R}^{n}$, let $p \in \mathbb{R}^{n}$ be a descent direction, let $c \in(0,1 / 2)$. We set $\phi(\alpha)=f(x+\alpha p)$ for $\alpha \geq 0$. We consider the following rules:

$$
\begin{aligned}
& A(\alpha) \Longleftrightarrow \phi(\alpha) \leq \phi(0)+c \phi^{\prime}(0) \alpha \\
& B(\alpha) \Longleftrightarrow \phi(\alpha)>\phi(0)+(1-c) \phi^{\prime}(0) \alpha
\end{aligned}
$$

a) Show the existence of $\bar{\alpha}>0$ such that for all $\alpha \in[0, \bar{\alpha}], B(\alpha)$ does not hold.
b) Prove that $\phi(\alpha)<\phi(0)$ is satisfied for all α satisfying both rules.
c) Propose an algorithm for finding a steplength satisfying both rules and justify that it terminates.

Exercise 2 [A simple gradient-descent method]
In this exercise, $\|\cdot\|$ denotes the Euclidean norm. We recall first two results, which will be used for this exercise.

- Let D be a closed subset of \mathbb{R}^{n}. Let $F: D \rightarrow D$ be a contraction, that is to say, a mapping such that there exists $\lambda \in[0,1)$ such that for all x and $y \in D$,

$$
\|F(y)-F(x)\| \leq \lambda\|y-x\| .
$$

Then, there exists a unique $\bar{x} \in D$ such that $F(\bar{x})=\bar{x}$. Moreover, all sequences $\left(x_{k}\right)_{k \in \mathbb{N}}$ satisfying $x_{k+1}=F\left(x_{k}\right)$ (for all $k \in \mathbb{N}$) converge to \bar{x}.

- Let S_{n} denote the set of symmetric matrices of size n. For all $M \in S_{n}$, denote by $\sigma^{-}(M)$ its smallest eigenvalue and by $\sigma^{+}(M)$ its largest eigenvalue. The operator norm of a symmetric matrix M (associated with the Euclidean norm) is given by:

$$
\|M\|=\max \left(\left|\sigma^{-}(M)\right|,\left|\sigma^{+}(M)\right|\right) .
$$

We consider now a twice continuously differentiable function f. We assume that there exists \bar{x} such that $D f(\bar{x})=0$ and such that $D^{2} f(\bar{x})$ is positive definite. We aim at proving the following result: there exist $\delta>0$ and $\rho>0$ such that for all $x \in \mathbb{R}^{n}$ with $\|x-\bar{x}\| \leq \delta$, the sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ defined below converges to \bar{x} :

$$
x_{0}=x, \quad x_{k+1}=x_{k}-\rho \nabla f\left(x_{k}\right), \forall x \in \mathbb{N} .
$$

a) It is possible to show that there exist $\delta>0, a>0$ and $A \geq a$ such that for all $x \in \mathbb{R}^{n}$ with $\|x-\bar{x}\| \leq \delta$,

$$
a \leq \sigma^{-}\left(D^{2} f(x)\right) \leq \sigma^{+}\left(D^{2} f(x)\right) \leq A
$$

Prove the existence of $\rho>0$ and $\lambda \in[0,1)$ such that for all $x \in \mathbb{R}^{n}$ with $\|x-\bar{x}\| \leq \delta$, we have $\left\|\operatorname{Id}-\rho D^{2} f(x)\right\| \leq \lambda$.
b) Prove the main result of the exercise, by applying the fixed-point theorem.

