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Exercise 1 [Convex minimization]

Let X ⊆ Rn be open and C ⊆ X be convex. Moreover the function f : X → R is
assumed to be continuously differentiable as well as convex on C , i.e.

f (λx + (1− λ)y) ≤ λf (x ) + (1− λ)f (y) ∀λ ∈ [0, 1], x , y ∈ C .

The function f is strict convex, if the inequality sign is strict for x 6= y and λ ∈ (0, 1).

a) Prove: Every local minimum of f on C is a global minimum of f .

b) Prove that f is convex resp. strict convex on C iff there holds:

f (y) ≥ f (x ) + 〈∇f (x ), y − x 〉 ∀x , y ∈ C

resp. with > and x 6= y .

c) Prove: A strongly convex function on C is strictly convex on C , but not neces-
sarily the other way around.

d) Prove: x̄ ∈ C solves minx∈C f (x ) iff

〈∇f (x̄ ), x − x̄ 〉 ≥ 0 ∀x ∈ C

and x̄ is unique, if f is strictly convex.

Exercise 2 [Quadratic minimization problems]

Let A ∈ Rn×n symmetric, b ∈ Rn and c ∈ R. Then we consider the minimization
problem

min
x∈Rn

1

2
〈Ax , x 〉+ 〈b, x 〉+ c = f (x ). (1)

a) Prove that the following statements are equivalent:

(1) The point x̂ satisfies ∇f (x̂ ) = 0 and A is positive semi-definite.

(2) The point x̂ is a global minimum of (1)

(3) The point x̂ is a local minimum of (1).

b) Prove that the following statements are equivalent:

(1) The vector b is an element of column space of A and A is positive semi-
definite.



(2) The problem (1) has at least one global solution.

(3) The function f is bounded from below.

c) Let C ⊆ Rn be closed and convex and A positive definite. Prove that minx∈C f (x )
has a unique solution. Formulate its first order optimality conditions.

Exercise 3 [Regularized Least Squares Problem]

Let A ∈ Rm×n , B ∈ Rk×n with m, k ≥ n, α > 0 and b ∈ Rm . We consider the
optimization problem

min
x∈Rn

1

2
‖Ax − b‖22 +

α

2
‖Bx‖22. (2)

a) Prove that A>A + αB>B is positive definite if kerA>A ∩ kerB>B = {0}.
Conclude that (2) then has a unique solution and characterize it.

Next we consider the optimization problem

min
x∈Rn

1

2
‖Ax − b‖22 + α‖x‖1 (3)

with ‖x‖1 =
∑n

i=1 |xi |.

b) Prove that problem (3) has a solution. Is it unique? Reformulate (3) as a cons-
trained quadratic optimization problem and formulate its first order optimality
conditions.

Exercise 4 [Polynomial Interpolation]

Let t1 < ... < tm and y1, ..., ym be 2m real numbers. In this exercise, the coordinates
of a vector x ∈ Rn+1 are denoted x0,x1,...,xn . For all x ∈ Rn+1, we denote by Px the
polynomial function defined by:

Px (t) =
n∑

i=0

xi t
i .

We consider the following optimization problem:

min
x∈Rn

f (x ) :=
1

2

m∑
j=1

(
Px (tj )− yj

)2
. (4)

a) Motivate the problem.

b) Find a matrix C ∈ Rm×(n+1) such that for all x ∈ Rn+1,

Cx = (Px (t1), ...,Px (tm)).



c) Find a matrix A ∈ R(n+1)×(n+1), a vector b ∈ Rn+1, and a real number c such
that (4) has the form (1).

d) Prove that (4) has a unique solution in the case that m ≥ n + 1.

Exercise 5 [Programming exercise: Sparse deconvolution]

Let u ∈ Rn be a sparse signal, i.e. the components of u are mostly zero. Moreover we
are given a kernel k ∈ Rm , for example a Gaussian kernel

k(i) = exp

(
−x (i)2

2σ2

)
for σ > 0 and x (i) ∈ [−L,L] for i = 1, . . . ,m. The convolution of u and k is defined
by

y(j ) = (k ∗ u)(j ) =
∑
i

k(i)u(j − i) j = 1, . . . , n + m − 1.

with u(l) = 0 for l ≤ 0. The vector y is a blurred version of the signal u. The
convolution between k and u is linear in u and thus can be represented by a matrix
C ∈ Rn+m−1×n . Now we assume that we are given a noisy observation yn of y = Cu of
the form yn = y + d where d is a random vector in Rn . Now we intend to reconstruct
the exact signal u from yn by solving

min
u∈Rn
‖Cu − yn‖22 (5)

as well as the problem (2) with A = C , b = yn and B = Idn resp. (3) with A = C
and b = yn .

a) Solve the sparse deconvolution problem by completing the following m-file.

b) Compare the reconstruction computed by (5), (2) resp. (3). Which is the best?
Why? In which sense is the deconvolution problem ill-posed? How do (3) and
(2) compensate for the ill-posedness. Write your answer in the email for the
assignment.

c) Change the noise level in your code. Does the quality of the solution change
and how can you compensate for that?

Hand in by email (philip.trautmann@uni-graz.at) until 14.10.2019, 23:59 o’clock.



function [u]=l1deconv()

n = 256; %Length signal

m = 256; %Length kernel

ue = zeros(n,1); %Exact signal

ue(20) = 100;

ue(100) = 20;

ue(200) = -100;

ue(250) = -20;

alpha = 1; %Regularization parameter

x_k = linspace(-10,10,m); %Build kernel

sigma = 1.0;

k = exp(-x_k.^ 2 / (2 * sigma ^ 2)); %Gaussian kernel

C = toeplitz([k’; zeros(n-1,1)],[k(1),zeros(1,n-1)]); %Convolution matrix

rng(1234)

noise = 0.03; %Relative noise level

dis = rand(n+m-1,1); %Additive noise

y = C*ue+noise*dis*norm(C*ue,inf)*norm(dis,inf)^-1; %Disturbed convolution

figure(1)

plot(y) %Plot disturbed convolution

ul1 = ??? %Calculate L1-reconstruction with quadprog in Matlab or Octave

ul2 = ??? %Calculate L2-reconstruction by solving a linear system

uls = ??? %Calculate the least-squares reconstruction

%by solving the normal equations.

figure(2)

plot(ul1) %Plot L1-reconstruction

hold on

plot(ul2) %Plot L2-reconstruction

plot(ue) %Plot exact signal

hold off

figure(3)

plot(uls) %Plot least-squares reconstruction


