Exercise sheet 2

Exercise 1 [Convex minimization]

Let $X \subseteq \mathbb{R}^n$ be open and $C \subseteq X$ be convex. Moreover the function $f: X \to \mathbb{R}$ is assumed to be continuously differentiable as well as convex on C, i.e.

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) \quad \forall \lambda \in [0, 1], \ x, y \in C.$$

The function f is strict convex, if the inequality sign is strict for $x \neq y$ and $\lambda \in (0,1)$.

- a) Prove: Every local minimum of f on C is a global minimum of f.
- b) Prove that f is convex resp. strict convex on C iff there holds:

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle \quad \forall x, y \in C$$

resp. with > and $x \neq y$.

- c) Prove: A strongly convex function on C is strictly convex on C, but not necessarily the other way around.
- d) Prove: $\bar{x} \in C$ solves $\min_{x \in C} f(x)$ iff

$$\langle \nabla f(\bar{x}), x - \bar{x} \rangle > 0 \quad \forall x \in C$$

and \bar{x} is unique, if f is strictly convex.

Exercise 2 [Quadratic minimization problems]

Let $A \in \mathbb{R}^{n \times n}$ symmetric, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then we consider the minimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \langle Ax, x \rangle + \langle b, x \rangle + c = f(x). \tag{1}$$

- a) Prove that the following statements are equivalent:
 - (1) The point \hat{x} satisfies $\nabla f(\hat{x}) = 0$ and A is positive semi-definite.
 - (2) The point \hat{x} is a global minimum of (1)
 - (3) The point \hat{x} is a local minimum of (1).
- b) Prove that the following statements are equivalent:
 - (1) The vector b is an element of column space of A and A is positive semi-definite.

- (2) The problem (1) has at least one global solution.
- (3) The function f is bounded from below.
- c) Let $C \subseteq \mathbb{R}^n$ be closed and convex and A positive definite. Prove that $\min_{x \in C} f(x)$ has a unique solution. Formulate its first order optimality conditions.

Exercise 3 [Regularized Least Squares Problem]

Let $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{k \times n}$ with $m, k \geq n$, $\alpha > 0$ and $b \in \mathbb{R}^m$. We consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \frac{\alpha}{2} ||Bx||_2^2.$$
 (2)

a) Prove that $A^{\top}A + \alpha B^{\top}B$ is positive definite if $\ker A^{\top}A \cap \ker B^{\top}B = \{0\}$. Conclude that (2) then has a unique solution and characterize it.

Next we consider the optimization problem

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} ||Ax - b||_2^2 + \alpha ||x||_1 \tag{3}$$

with $||x||_1 = \sum_{i=1}^n |x_i|$.

b) Prove that problem (3) has a solution. Is it unique? Reformulate (3) as a constrained quadratic optimization problem and formulate its first order optimality conditions.

Exercise 4 [Polynomial Interpolation]

Let $t_1 < ... < t_m$ and $y_1, ..., y_m$ be 2m real numbers. In this exercise, the coordinates of a vector $x \in \mathbb{R}^{n+1}$ are denoted $x_0, x_1, ..., x_n$. For all $x \in \mathbb{R}^{n+1}$, we denote by P_x the polynomial function defined by:

$$P_x(t) = \sum_{i=0}^n x_i t^i.$$

We consider the following optimization problem:

$$\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} \sum_{j=1}^m \left(P_x(t_j) - y_j \right)^2. \tag{4}$$

- a) Motivate the problem.
- b) Find a matrix $C \in \mathbb{R}^{m \times (n+1)}$ such that for all $x \in \mathbb{R}^{n+1}$,

$$Cx = (P_x(t_1), ..., P_x(t_m)).$$

- c) Find a matrix $A \in \mathbb{R}^{(n+1)\times(n+1)}$, a vector $b \in \mathbb{R}^{n+1}$, and a real number c such that (4) has the form (1).
- d) Prove that (4) has a unique solution in the case that $m \ge n + 1$.

Exercise 5 [Programming exercise: Sparse deconvolution]

Let $u \in \mathbb{R}^n$ be a sparse signal, i.e. the components of u are mostly zero. Moreover we are given a kernel $k \in \mathbb{R}^m$, for example a Gaussian kernel

$$k(i) = \exp\left(\frac{-x(i)^2}{2\sigma^2}\right)$$

for $\sigma > 0$ and $x(i) \in [-L, L]$ for i = 1, ..., m. The convolution of u and k is defined by

$$y(j) = (k * u)(j) = \sum_{i} k(i)u(j-i)$$
 $j = 1, ..., n+m-1.$

with u(l) = 0 for $l \leq 0$. The vector y is a blurred version of the signal u. The convolution between k and u is linear in u and thus can be represented by a matrix $C \in \mathbb{R}^{n+m-1\times n}$. Now we assume that we are given a noisy observation y_n of y = Cu of the form $y_n = y + d$ where d is a random vector in \mathbb{R}^n . Now we intend to reconstruct the exact signal u from y_n by solving

$$\min_{u \in \mathbb{R}^n} \|Cu - y_n\|_2^2 \tag{5}$$

as well as the problem (2) with A=C, $b=y_n$ and $B=\mathrm{Id}_n$ resp. (3) with A=C and $b=y_n$.

- a) Solve the sparse deconvolution problem by completing the following m-file.
- b) Compare the reconstruction computed by (5), (2) resp. (3). Which is the best? Why? In which sense is the deconvolution problem ill-posed? How do (3) and (2) compensate for the ill-posedness. Write your answer in the email for the assignment.
- c) Change the noise level in your code. Does the quality of the solution change and how can you compensate for that?

Hand in by email (philip.trautmann@uni-graz.at) until 14.10.2019, 23:59 o'clock.

```
function [u]=11deconv()
n = 256; %Length signal
m = 256; %Length kernel
ue = zeros(n,1); %Exact signal
ue(20) = 100;
ue(100) = 20;
ue(200) = -100;
ue(250) = -20;
alpha = 1; %Regularization parameter
x_k = linspace(-10,10,m); %Build kernel
sigma = 1.0;
k = \exp(-x_k^2 (2 * sigma^2)); %Gaussian kernel
C = \text{toeplitz}([k'; zeros(n-1,1)], [k(1), zeros(1,n-1)]); %Convolution matrix
rng(1234)
noise = 0.03; %Relative noise level
dis = rand(n+m-1,1); %Additive noise
y = C*ue+noise*dis*norm(C*ue,inf)*norm(dis,inf)^-1; %Disturbed convolution
figure(1)
plot(y) %Plot disturbed convolution
ul1 = ??? %Calculate L1-reconstruction with quadprog in Matlab or Octave
ul2 = ??? %Calculate L2-reconstruction by solving a linear system
uls = ??? %Calculate the least-squares reconstruction
          %by solving the normal equations.
figure(2)
plot(ul1) %Plot L1-reconstruction
hold on
plot(ul2) %Plot L2-reconstruction
plot(ue) %Plot exact signal
hold off
figure(3)
plot(uls) %Plot least-squares reconstruction
```