
Nonlinear Optimization
NAWI Graz

WS 2019/20
24. Jannuary 2020

Exercise sheet 12

Exercise 1 [LICQ]

Prove Corollary 3.28 and Remark 3.29.

Exercise 2 [Optimal control]

We consider in this exercise a system which evolves over time under the control of a
’manager’. We denote by x0 ∈ Rn the state of the system at time 0, by x1 ∈ Rn the
state at time 1, and so on until time N . The variable xi is called state variable. In
our model, we consider that xi+1 depends on the previous value of the state xi and
an additional variable, ui+1 ∈ Rm , called control variable:

xi+1 = fi(xi , ui+1), for all i = 0, ...,N − 1.

The function f : {0, ...,N − 1} × Rn × Rm → Rn is known and assumed to be conti-
nuously differentiable with respect to (x , u). For example, the manager can be a gas
company: the variable xi models the level of stocks of gas at a given time and the
variable ui the quantity of gas sold or bought on a market.
Let us consider now the following optimization problem:

inf
x1,x2,...,xN∈Rn

u1,u2,...,uN∈Rm

N−1∑
i=0

`i(xi , ui+1)+φ(xN ), subject to: xi+1 = fi(xi , ui+1), ∀i = 0, ...,N−1.

The function ` : {0, ...,N − 1} × Rn × Rm → R is given and has the same regularity
as f . The function φ is given and is continuously differentiable. The initial value of
the state x0 is also known and fixed.
The problem under investigation can be recasted as a reduced unconstrained optimiza-
tion problem: it suffices to eliminate the variables x1,...,xN . Indeed, given the parame-
ter x0 and the controls u1,...,uN , the variable x1 is uniquely defined by x1 = f0(x0, u1),
the variable x2 by x2 = f1(f0(x0, u1), u2), and so on.
The goal of the exercise is to calculate the gradient of the cost function of the reduced
problem. To this purpose, we introduce the following function, for k ∈ {0, ...,N }:

Jk(xk , uk+1, ..., uN ) =
( N−1∑

i=k

`i(xi , ui+1)
)

+ φ(xN ),

where xk+1,...,xN are defined by: xi+1 = fi(xi , ui+1), for i = k , ...,N − 1. Note that
JN (xN ) = φ(xN ). The goal is now to compute the gradient of J0(x0, u1, ..., uN ) with
respect to the control variables.

a) Find a relation between Jk−1 and Jk .



b) Let us fix u1,...,uN . Let x1,...,xN be such that xi+1 = fi(xi , ui+1), for all i =
0, ...,N − 1. We set:

pk = ∇xkJk(xk , uk+1, ..., uN ),

for all k = 0, ...,N . Note that pN = ∇φ(xN ). Find a relation between pk−1 and
pk .

c) Prove the following formula:

∇ukJ0(x0, u1, ..., uN ) = ∇u`k−1(xk−1, uk) +∇u fk−1(xk−1, uk)pk .

We regard this problem as a problem with constraints and do not follow anymore
the approach consisting in eliminating the variables (x1, ..., xN ). Consider a solution
(x1, ..., xN , u1, ..., uN ) to the problem.

d) Prove that the LICQ is satisfied and write the KKT conditions (denote by p1
the Lagrange multiplier associated with the constraint f0(x0, u1)− x1 = 0, by p2
the Lagrange multiplier associated with the constraint f1(x1, u2) − x2 = 0, and
so on).

Exercise 3 [Second order optimality conditions]

We consider for n ∈ N the problem

min
x∈Rn

f (x ) =
n∑

j=1

x j
j s.t. g(x ) = 1− ‖x‖22 ≤ 0. (P1)

Let X := {x ∈ Rn : g(x ) ≤ 0}.

a) Is (P1) convex?

b) Show, that in all admissible points of (P1) a CQ is satisfied.

c) Show, that x̄ = (1, 0, 0, . . . , 0)T ∈ Rn with the multiplicator λ̄ = 1
2

a KKT pair
of (P1) is.

d) Calculate T (X , x̄ ) and T+(g , x̄ , λ̄) and simplify as far as possible.

e) Show using the second order sufficient and necessary optimality conditions, that
x̄ in the case n ≤ 2 a local minimum of (P1) is, but in the case n ≥ 3 not.

Exercise 4 [KKT conditions in the convex case]

The goal of this exercise is to prove that in the case of a convex problem, the KKT
conditions are not only necessary conditions, but also sufficient conditions for opti-
mality.



Let f : Rn → R be differentiable and convex, let g : Rn → Rm be such that for
all i = 1,...,m, gi is a differentiable convex function, let h : Rn → Rp be an affine
function. We consider the problem P2:

min
x∈Rn

f (x ), subject to: g(x ) ≤ 0, h(x ) = 0. (P2)

Let x ∗ be a feasible point satisfying the KKT conditions. We denote by L(x , λ, µ) =
f (x ) + 〈λ, g(x )〉 + 〈µ, h(x )〉 the Lagrangian, let (λ∗, µ∗) be the Lagrange multipliers
associated with x ∗. We also define:

N (x ∗) =
{

(λ, µ) ∈ Rm
+ × Rn such that λ>g(x ∗) = 0

}
. (1)

a) Prove that x ∗ is a global minimizer of x 7→ L(x , λ∗, µ∗).

b) Prove the following inequality : for all feasible point x of problem P2, for all
(λ, µ) ∈ N (x ∗),

f (x )− f (x ∗) ≥ L(x , λ, µ)− L(x ∗, λ, µ). (2)

c) Deduce that x ∗ is a global minimizer of problem P2.


