Exercise sheet 12

Exercise 1 [LICQ]

Prove Corollary 3.28 and Remark 3.29.

Exercise 2 [Optimal control]

We consider in this exercise a system which evolves over time under the control of a 'manager'. We denote by $x_{0} \in \mathbb{R}^{n}$ the state of the system at time 0 , by $x_{1} \in \mathbb{R}^{n}$ the state at time 1 , and so on until time N. The variable x_{i} is called state variable. In our model, we consider that x_{i+1} depends on the previous value of the state x_{i} and an additional variable, $u_{i+1} \in \mathbb{R}^{m}$, called control variable:

$$
x_{i+1}=f_{i}\left(x_{i}, u_{i+1}\right), \quad \text { for all } i=0, \ldots, N-1 .
$$

The function $f:\{0, \ldots, N-1\} \times \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is known and assumed to be continuously differentiable with respect to (x, u). For example, the manager can be a gas company: the variable x_{i} models the level of stocks of gas at a given time and the variable u_{i} the quantity of gas sold or bought on a market.
Let us consider now the following optimization problem:

$$
\inf _{\substack{x_{1}, x_{2}, \ldots, x_{N} \in \mathbb{R}^{n} \\ u_{1}, u_{2}, \ldots, u_{N} \in \mathbb{R}^{m}}} \sum_{i=0}^{N-1} \ell_{i}\left(x_{i}, u_{i+1}\right)+\phi\left(x_{N}\right), \quad \text { subject to: } x_{i+1}=f_{i}\left(x_{i}, u_{i+1}\right), \quad \forall i=0, \ldots, N-1 .
$$

The function $\ell:\{0, \ldots, N-1\} \times \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is given and has the same regularity as f. The function ϕ is given and is continuously differentiable. The initial value of the state x_{0} is also known and fixed.
The problem under investigation can be recasted as a reduced unconstrained optimization problem: it suffices to eliminate the variables x_{1}, \ldots, x_{N}. Indeed, given the parameter x_{0} and the controls u_{1}, \ldots, u_{N}, the variable x_{1} is uniquely defined by $x_{1}=f_{0}\left(x_{0}, u_{1}\right)$, the variable x_{2} by $x_{2}=f_{1}\left(f_{0}\left(x_{0}, u_{1}\right), u_{2}\right)$, and so on.
The goal of the exercise is to calculate the gradient of the cost function of the reduced problem. To this purpose, we introduce the following function, for $k \in\{0, \ldots, N\}$:

$$
J_{k}\left(x_{k}, u_{k+1}, \ldots, u_{N}\right)=\left(\sum_{i=k}^{N-1} \ell_{i}\left(x_{i}, u_{i+1}\right)\right)+\phi\left(x_{N}\right)
$$

where x_{k+1}, \ldots, x_{N} are defined by: $x_{i+1}=f_{i}\left(x_{i}, u_{i+1}\right)$, for $i=k, \ldots, N-1$. Note that $J_{N}\left(x_{N}\right)=\phi\left(x_{N}\right)$. The goal is now to compute the gradient of $J_{0}\left(x_{0}, u_{1}, \ldots, u_{N}\right)$ with respect to the control variables.
a) Find a relation between J_{k-1} and J_{k}.
b) Let us fix u_{1}, \ldots, u_{N}. Let x_{1}, \ldots, x_{N} be such that $x_{i+1}=f_{i}\left(x_{i}, u_{i+1}\right)$, for all $i=$ $0, \ldots, N-1$. We set:

$$
p_{k}=\nabla_{x_{k}} J_{k}\left(x_{k}, u_{k+1}, \ldots, u_{N}\right),
$$

for all $k=0, \ldots, N$. Note that $p_{N}=\nabla \phi\left(x_{N}\right)$. Find a relation between p_{k-1} and p_{k}.
c) Prove the following formula:

$$
\nabla_{u_{k}} J_{0}\left(x_{0}, u_{1}, \ldots, u_{N}\right)=\nabla_{u} \ell_{k-1}\left(x_{k-1}, u_{k}\right)+\nabla_{u} f_{k-1}\left(x_{k-1}, u_{k}\right) p_{k} .
$$

We regard this problem as a problem with constraints and do not follow anymore the approach consisting in eliminating the variables $\left(x_{1}, \ldots, x_{N}\right)$. Consider a solution $\left(x_{1}, \ldots, x_{N}, u_{1}, \ldots, u_{N}\right)$ to the problem.
d) Prove that the LICQ is satisfied and write the KKT conditions (denote by p_{1} the Lagrange multiplier associated with the constraint $f_{0}\left(x_{0}, u_{1}\right)-x_{1}=0$, by p_{2} the Lagrange multiplier associated with the constraint $f_{1}\left(x_{1}, u_{2}\right)-x_{2}=0$, and so on).

Exercise 3 [Second order optimality conditions]
We consider for $n \in \mathbb{N}$ the problem

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x)=\sum_{j=1}^{n} x_{j}^{j} \quad \text { s.t. } \quad g(x)=1-\|x\|_{2}^{2} \leq 0 . \tag{P1}
\end{equation*}
$$

Let $X:=\left\{x \in \mathbb{R}^{n}: g(x) \leq 0\right\}$.
a) Is (P1) convex?
b) Show, that in all admissible points of (P1) a CQ is satisfied.
c) Show, that $\bar{x}=(1,0,0, \ldots, 0)^{T} \in \mathbb{R}^{n}$ with the multiplicator $\bar{\lambda}=\frac{1}{2}$ a KKT pair of (P1) is.
d) Calculate $T(X, \bar{x})$ and $T_{+}(g, \bar{x}, \bar{\lambda})$ and simplify as far as possible.
e) Show using the second order sufficient and necessary optimality conditions, that \bar{x} in the case $n \leq 2$ a local minimum of (P 1$)$ is, but in the case $n \geq 3$ not.

Exercise 4 [KKT conditions in the convex case]
The goal of this exercise is to prove that in the case of a convex problem, the KKT conditions are not only necessary conditions, but also sufficient conditions for optimality.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be differentiable and convex, let $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be such that for all $i=1, \ldots, m, g_{i}$ is a differentiable convex function, let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be an affine function. We consider the problem $P 2$;

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x), \text { subject to: } g(x) \leq 0, h(x)=0 \tag{P2}
\end{equation*}
$$

Let x^{*} be a feasible point satisfying the KKT conditions. We denote by $L(x, \lambda, \mu)=$ $f(x)+\langle\lambda, g(x)\rangle+\langle\mu, h(x)\rangle$ the Lagrangian, let $\left(\lambda^{*}, \mu^{*}\right)$ be the Lagrange multipliers associated with x^{*}. We also define:

$$
\begin{equation*}
N\left(x^{*}\right)=\left\{(\lambda, \mu) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{n} \text { such that } \lambda^{\top} g\left(x^{*}\right)=0\right\} . \tag{1}
\end{equation*}
$$

a) Prove that x^{*} is a global minimizer of $x \mapsto L\left(x, \lambda^{*}, \mu^{*}\right)$.
b) Prove the following inequality : for all feasible point x of problem $P 2$, for all $(\lambda, \mu) \in N\left(x^{*}\right)$,

$$
\begin{equation*}
f(x)-f\left(x^{*}\right) \geq L(x, \lambda, \mu)-L\left(x^{*}, \lambda, \mu\right) . \tag{2}
\end{equation*}
$$

c) Deduce that x^{*} is a global minimizer of problem $P 2$.

