## Exercise sheet 10

Let $f \in C^{1}, \gamma \in(0,1 / 2)$ and $\eta \in(\gamma, 1)$. Then $\sigma>0$ satisfies the Powell-Wolfe condition, if

$$
\begin{align*}
f(x+\sigma s)-f(x) & \leq \sigma \gamma \nabla f(x)^{\top} s,  \tag{PW1}\\
\nabla f(x+\sigma s)^{\top} s & \geq \eta \nabla f(x)^{\top} s . \tag{PW2}
\end{align*}
$$

Exercise 1 [Existence and admissibility of the Powell-Wolfe step size]
a) Visualize (PW1) and (PW2) with a sketch in dimension 1.
b) Prove Lemma 2.88 from the lecture.
c) Prove Lemma 2.90.

Implementation of the Powell-Wolfe step size rule:

1. If $\sigma=1$ satisfies (PW1) go to step 3
2. Find the biggest number $\sigma_{-} \in\left\{2^{-1}, 2^{-2}, \ldots\right\}$, such that $\sigma=\sigma_{-}$satisfies (PW1). Set $\sigma_{+}=2 \sigma_{-}$and go to step 5 .
3. If $\sigma=1$ satisfies ( PW2), Stop with $\sigma=1$.
4. Find the smallest number $\sigma_{+} \in\left\{2,2^{2}, 2^{3}, \ldots\right\}$, such that (PW1) for $\sigma=\sigma_{+}$is not satisfied. Set $\sigma_{-}=\frac{\sigma_{+}}{2}$.
5. As long as $\sigma=\sigma_{-}$does not satisfy (PW2) do the following:
5.1 Set $\sigma=\frac{\sigma_{-}+\sigma_{+}}{2}$.
5.2 If $\sigma$ satisfies (PW1), set $\sigma_{-}=\sigma$, otherwise set $\sigma_{+}=\sigma$.
6. Stop with $\sigma=\sigma_{-}$.

Exercise 2 [Powell-Wolfe step size algorithm]
Prove that under the assumptions of Lemma 2.88 the above algorithm terminates after finitely many steps with a step size $\sigma>0$ satisfying (PW1) and (PW2).

Exercise 3 [Global Newton method for strongly convex $f$ ]
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be in $C^{2}$ and strongly convex. We apply the global Newton method for optimization problems Algorithm 2.9.1 to $f$. Though we do not use gradient steps, i.e. we always use the Newton step. We choose $\gamma \in(0,1 / 2)$. Prove the following:
a) The described algorithm is well-defined.
b) The sequence $\left(x^{k}\right)$ generated by the algorithm converges to the unique minimum $x^{*}$ of $f$.
c) For all sufficiently large $k \in \mathbb{N}$ there holds $\sigma_{k}=1$.
d) The sequence $\left(x^{k}\right)$ converges q-superlinearly to $x^{*}$.
e) If $\nabla^{2} f(x)$ is Lipschitz continuous in a neighbourhood of $x^{*}$, the convergence rate is q-quadratic.

Exercise 4 [Programming exercise: Globalized Newton and inverse BFGS-Method] Repeat Exercise 4 a) from exercise sheet 4 using the globalized Newton method (Algorithm 2.9.1) for tol $=10^{-3}, 10^{-4}, \ldots, 10^{-12}$. Implement the following function

```
function[x] = gnewt(fct,gradfct,hessfct,x0,tol,maxsteps)
```

where hessfct is a function handle for the evaluation of $\nabla^{2} f(x), \alpha_{1}=\alpha_{2}=10^{-6}$ and $p=0.1$. Use your function for the calculation of the Armijo stepsize from Sheet 4. Moreover implement the globalized, inverse BFGS method (Algorithm 2.11.1) and apply it for solving Exercise 4 a) from exercise sheet 4 with tol $=10^{-3}, 10^{-4}, \ldots, 10^{-12}$. Implement the following function

```
function[x] = bfgs(fct,gradfct,x0,tol,maxsteps)
```

with $\eta=0.9$. Moreover write a function which calculates the Powell-Wolfe step size similar to your function which calculates the Armijo step size. Create a table for each method which contains $\left\|x^{k}-(1,1)^{\top}\right\|_{2}, f\left(x^{k}\right),\left\|\nabla f\left(x^{k}\right)\right\|_{2}, \sigma_{k}$ and the number of function and gradient evaluations in the line search in step $k$ for all $k$ in the case tol $=10^{-9}$. Describe your results. What convergence rate do you observe?
Hand in by email (philip.trautmann@uni-graz.at) until 07.01.2019, 23:59 o'clock.

