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Exercise 1 [Optimal design of a building]

We are looking for an optimal design of a box-shaped building. Let l be the length of
the building, b its width, h its height (over ground) and t its depth (under ground).
In the following we neglect the thickness of the walls, floors and ceilings. The owner
has the following demands:

• The building should be at least as long as broad, but should have at most double
the length as its width.

• The length l must not be longer than 40 m.

• The height h must not be longer than its length.

• All floors should have the same height of at least 3.50 m.

• At least 10%, but at most 25% of the building should be under ground.

• The ground floor should be flat.

• The combined area of all floors should be at least 10000 m2.

• The average yearly cost for heating are estimated to be 100 Euro per m2 of the
outer walls of the building over ground. The yearly cost for heating must not
be greater than 500000.

The building should be designed in such a way that the amount of soil excavated is
minimal.

a) Formulate this problem as constrained optimization problem.

b) Does this optimization problem have admissible points?

c) Does the optimization problem have a solution?

Exercise 2 [First- and second-order necessary and sufficient optimality conditions]

Let f : Rn → R be a twice continuously differentiable function. Let x̄ be a local
minimizer of f , that is to say, there exists ε > 0 such that for all x ∈ Rn ,

‖x − x̄‖ ≤ ε =⇒ f (x ) ≥ f (x̄ ).

a) Prove that Df (x̄ ) = 0 and that D2f (x̄ ) is positive semi-definite.

b) If Df (x̄ ) = 0 and D2f (x̄ ) is positive definite, then x̄ is a local minimizer of f .



c) We consider now the function f : R2 → R defined by

f (x , y) = cos(x + y) + sin(xy) + 2y2.

Is the point (0, 0) a local minimizer?

Exercise 3 [Proving the existence of a minimizer]

Let f : Rn → R be a continuous function. We say that the function f is coercive if
the following property holds: for all sequences (xk)k∈N in Rn ,

‖xk‖ −→
k→∞

+∞ =⇒ f (xk) −→
k→∞

+∞.

a) Assume that f is coercive and prove the existence of a global minimizer. To
this purpose, you can first prove that for a fixed x0 ∈ Rn , the following set A is
non-empty and compact:

A =
{
x ∈ Rn | f (x ) ≤ f (x0)

}
.

b) Prove that the coercivity of f is independent of the choice of the norm.

c) Compute a minimizer of f (x , y) = x 4 + x 2 + y2 − xy . Justify carefully your
answer.

Exercise 4 [Strongly convex functions]

Let f : Rn → R be a continuously differentiable function. We assume that f is strongly
convex, that is to say, that there exists m > 0 such that for all x and y ∈ Rn ,

〈∇f (y)−∇f (x ), y − x 〉 ≥ m‖y − x‖2.

In this exercise, the norm ‖ · ‖ denotes the Euclidean norm.

a) Let x̃ ∈ Rn . Prove the following inequality: for all x ∈ Rn ,

f (x ) ≥ g(x ) := f (x̃ ) + 〈∇f (x̃ ), x − x̃ 〉+
1

2
m‖x − x̃‖2.

b) Prove that g possesses a unique minimizer. Calculate it. Calculate also minx∈Rn g(x ).

c) Deduce from the above inequality that f possesses a unique minimizer x̄ .

d) Prove that

‖x̃ − x̄‖ ≤ ‖∇f (x̃ )‖
m

and f (x̃ )− f (x̄ ) ≤ 1

2m
‖∇f (x̃ )‖2.



Exercise 5 [Normal equations]

Let A ∈ Rm×n with m ≥ n and b ∈ Rm . We consider the optimization problem

min
x∈Rn
‖Ax − b‖22 = f (x ),

where ‖ · ‖2 is the Euclidean norm in Rm .

a) Under which assumption on A is f strongly convex?

b) Conclude that minx∈Rn f (x ) has a unique solution x̄ and characterize it.

c) Prove: x̄ solves minx∈Rn f (x ) if and only if the residuum Ax − b is orthogonal
to im(A). Interpret and illustrate this statement using a sketch.


