Exercise sheet 1

Exercise 1 [Optimal design of a building]

We are looking for an optimal design of a box-shaped building. Let l be the length of the building, b its width, h its height (over ground) and t its depth (under ground). In the following we neglect the thickness of the walls, floors and ceilings. The owner has the following demands:

- The building should be at least as long as broad, but should have at most double the length as its width.
- The length l must not be longer than 40 m.
- The height h must not be longer than its length.
- All floors should have the same height of at least $3.50 \ m$.
- At least 10%, but at most 25% of the building should be under ground.
- The ground floor should be flat.
- The combined area of all floors should be at least 10000 m^2 .
- The average yearly cost for heating are estimated to be 100 Euro per m^2 of the outer walls of the building over ground. The yearly cost for heating must not be greater than 500000.

The building should be designed in such a way that the amount of soil excavated is minimal.

- a) Formulate this problem as constrained optimization problem.
- b) Does this optimization problem have admissible points?
- c) Does the optimization problem have a solution?

Exercise 2 [First- and second-order necessary and sufficient optimality conditions] Let $f: \mathbb{R}^n \to \mathbb{R}$ be a twice continuously differentiable function. Let \bar{x} be a local minimizer of f, that is to say, there exists $\varepsilon > 0$ such that for all $x \in \mathbb{R}^n$,

$$||x - \bar{x}|| \le \varepsilon \Longrightarrow f(x) \ge f(\bar{x}).$$

- a) Prove that $Df(\bar{x}) = 0$ and that $D^2f(\bar{x})$ is positive semi-definite.
- b) If $Df(\bar{x}) = 0$ and $D^2f(\bar{x})$ is positive definite, then \bar{x} is a local minimizer of f.

c) We consider now the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x, y) = \cos(x + y) + \sin(xy) + 2y^{2}.$$

Is the point (0,0) a local minimizer?

Exercise 3 [Proving the existence of a minimizer]

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuous function. We say that the function f is coercive if the following property holds: for all sequences $(x_k)_{k\in\mathbb{N}}$ in \mathbb{R}^n ,

$$||x_k|| \underset{k \to \infty}{\longrightarrow} +\infty \Longrightarrow f(x_k) \underset{k \to \infty}{\longrightarrow} +\infty.$$

a) Assume that f is coercive and prove the existence of a global minimizer. To this purpose, you can first prove that for a fixed $x_0 \in \mathbb{R}^n$, the following set A is non-empty and compact:

$$A = \{ x \in \mathbb{R}^n \mid f(x) \le f(x_0) \}.$$

- b) Prove that the coercivity of f is independent of the choice of the norm.
- c) Compute a minimizer of $f(x,y) = x^4 + x^2 + y^2 xy$. Justify carefully your answer.

Exercise 4 [Strongly convex functions]

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function. We assume that f is strongly convex, that is to say, that there exists m > 0 such that for all x and $y \in \mathbb{R}^n$,

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge m \|y - x\|^2.$$

In this exercise, the norm $\|\cdot\|$ denotes the Euclidean norm.

a) Let $\tilde{x} \in \mathbb{R}^n$. Prove the following inequality: for all $x \in \mathbb{R}^n$,

$$f(x) \ge g(x) := f(\tilde{x}) + \langle \nabla f(\tilde{x}), x - \tilde{x} \rangle + \frac{1}{2} m \|x - \tilde{x}\|^2.$$

- b) Prove that g possesses a unique minimizer. Calculate it. Calculate also $\min_{x \in \mathbb{R}^n} g(x)$.
- c) Deduce from the above inequality that f possesses a unique minimizer \bar{x} .
- d) Prove that

$$\|\tilde{x} - \bar{x}\| \le \frac{\|\nabla f(\tilde{x})\|}{m}$$
 and $f(\tilde{x}) - f(\bar{x}) \le \frac{1}{2m} \|\nabla f(\tilde{x})\|^2$.

Exercise 5 [Normal equations]

Let $A \in \mathbb{R}^{m \times n}$ with $m \geq n$ and $b \in \mathbb{R}^m$. We consider the optimization problem

$$\min_{x \in \mathbb{R}^n} ||Ax - b||_2^2 = f(x),$$

where $\|\cdot\|_2$ is the Euclidean norm in \mathbb{R}^m .

- a) Under which assumption on A is f strongly convex?
- b) Conclude that $\min_{x \in \mathbb{R}^n} f(x)$ has a unique solution \bar{x} and characterize it.
- c) Prove: \bar{x} solves $\min_{x \in \mathbb{R}^n} f(x)$ if and only if the residuum Ax b is orthogonal to $\operatorname{im}(A)$. Interpret and illustrate this statement using a sketch.