Exercise Sheet 7

Exercise 1 [Primitive Functions]

Find all primitive functions of:
(a) $\int x^{3} \sin x \mathrm{~d} x$
(b) $\int \frac{2 x^{2}+x}{\sqrt{1+x^{2}}} \mathrm{~d} x$

Exercise 2 [Primitive Functions]

For $a=0$ and $a>0$ find all primitive functions of

$$
\int \frac{\ln x}{\sqrt{a+x}} \mathrm{~d} x, x>0
$$

Hint: For any $\alpha \in \mathbb{R}$ there exist $A, B \in \mathbb{R}$ such that

$$
\frac{1}{u^{2}-\alpha^{2}}=\frac{A}{u-\alpha}+\frac{B}{u+\alpha} .
$$

A and B can be found by cross multiplication and coefficient comparison.

Exercise 3 [Primitive Functions]

For any $n \in \mathbb{N} \cup\{0\}$ there holds

$$
\begin{equation*}
S_{n}(x):=\int_{0}^{x} t^{n} e^{t} \mathrm{~d} t=P_{n}(x) e^{x}-(-1)^{n} n!, \tag{1}
\end{equation*}
$$

where P_{n} is a polynomial.
(a) Using the Fundamental Theorem of Calculus, show that

$$
\begin{equation*}
P_{n}(x)+P_{n}^{\prime}(x)=x^{n} \tag{2}
\end{equation*}
$$

is a necessary condition for the validity of (1) (notice that this implies that P_{n} must be a polynomial of degree n).
(b) Find P_{n} by computing S_{n}. To achieve that express S_{n} with respect to S_{n-1}, develop a formula for S_{n} from this, and prove the formula with induction.
(c) Verify by calculation of P_{n}^{\prime} that P_{n} satisfies (2).

Exercise 4 [Primitive Functions]

Let $k \in \mathbb{Z}$. Define $I_{k}:=((2 k-1) \pi,(2 k+1) \pi)$ and

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x):=\frac{1}{3 \cos (x)+5}
$$

(a) Using the addition theorem $\cos (a+b)=\cos a \cos b-\sin a \sin b$, prove that for all $x \in I_{k}$ we have that

$$
\cos (x)=\frac{1-\tan \left(\frac{x}{2}\right)^{2}}{1+\tan \left(\frac{x}{2}\right)^{2}} .
$$

(b) Find all the primitive functions

$$
\int f(x) \mathrm{d} x, \quad x \in I_{k}
$$

by using the u-substitution $u(x)=\tan \left(\frac{x}{2}\right)$.
(c) Construct a continuous function $F: \mathbb{R} \rightarrow \mathbb{R}$ that is a primitive function of f on any compact interval $[a, b] \subset \mathbb{R}$.

