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Abstract We propose a semismooth Newton-type method for nonsmooth opti-

mal control problems. Its particular feature is the combination of a quasi-Newton

method with a semismooth Newton method. This reduces the computational costs

in comparison to semismooth Newton methods while maintaining local superlinear

convergence. The method applies to Hilbert space problems whose objective is the

sum of a smooth function, a regularization term, and a nonsmooth convex function.

In the theoretical part of this work we establish the local superlinear conver-

gence of the method in an in�nite-dimensional setting and discuss its application

to sparse optimal control of the heat equation subject to box constraints. We verify

that the assumptions for local superlinear convergence are satis�ed in this applica-

tion and we prove that convergence can take place in stronger norms than that of

the Hilbert space if initial error and problem data permit.

In the numerical part we provide a thorough study of the hybrid approach on

two optimal control problems, including an engineering problem from magnetic

resonance imaging that involves bilinear control of the Bloch equations. We use

this problem to demonstrate that the new method is capable of solving noncon-

vex, nonsmooth large-scale real-world problems. Among others, the study addresses

mesh independence, globalization techniques, and limited-memory methods. We ob-

serve throughout that algorithms based on the hybrid methodology are several times

faster in runtime than their semismooth Newton counterparts.
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1 Introduction

In this paper we present a novel algorithm to solve nonsmooth optimization prob-

lems of the form

min

D∈*
ˆ5 (D) + W

2
‖D‖2* + i (D) (P)

and apply it to optimal control problems that are special instances of (P). Here,* is

a Hilbert space, W > 0, i : * → ℝ ∪ {+∞} is convex but possibly nonsmooth, and

ˆ5 : * → ℝ is smooth but possibly nonconvex. The precise problem setting is given

in Section 3. A prototypical example from PDE-constrained optimal control is

min

D∈!2 (Ω)

1

2
‖H (D) − H3 ‖2!2 (Ω) +

U

2
‖D‖2

!2 (Ω) + V ‖D‖!1 (Ω) s.t. 0 ≤ D ≤ 1 a.e. in Ω,

where 0 < 0 < 1 and U, V > 0 are real numbers, Ω is a bounded Lipschitz domain,

H3 ∈ !2 (Ω), and H = H (D) is for D ∈ !2 (Ω) the solution of the semilinear equation

−ΔH + H3 = D with appropriate boundary conditions. As
ˆ5 (D) = 1

2
‖H (D) − H3 ‖2!2 (Ω)

in this instance of (P), the evaluation of
ˆ5 and its derivatives requires PDE solves.

The new algorithm is a semismooth Newton-type method that exploits the pres-

ence of the smooth term ∇ ˆ5 in the optimality conditions of (P) by applying a quasi-

Newton method to it. Consequently, the operator ∇2 ˆ5 (D: ) that appears in semi-

smooth Newton methods is replaced by a quasi-Newton approximation �: . In PDE-

constrained optimal control problems this lowers the runtime signi�cantly because

it omits the PDE solves that occur in the evaluation of Hessian-vector products

∇2 ˆ5 (D: )3 while maintaining superlinear convergence. Note that a direct application

of quasi-Newton methods to semismooth equations cannot ensure superlinear con-

vergence. For instance, Broyden’s method on a piecewise a�ne (hence semismooth)

equation in ℝ may converge only r-linearly, cf. [9, Introduction]. We present the hy-

brid method and its convergence properties for problems of the form (P) in Section 3.

Its application to a model problem from PDE-constrained optimal control, the time-

dependent sparse optimal control of the heat equation subject to box constraints,

constitutes Section 4 and concludes the theoretical part of this paper.

The remainder of the paper is devoted to numerics. We devise various numerical

realizations of the hybrid method and compare them as part of an extensive numer-

ical study. This study addresses many theoretical and practical aspects of the hybrid

approach: We verify experimentally the superlinear convergence with respect to dif-

ferent norms, we investigate mesh independence properties, we compare di�erent

globalization strategies including a trust-region method, and we examine di�erent

quasi-Newton updates (Broyden, SR1, BFGS).

The numerical study is based on two optimal control problems, starting with the

time-dependent box-constrained sparse optimal control of the linear heat equation

from the theoretical part. This model problem allows us to display very clearly the

convergence properties of the hybrid method, e.g., its local superlinear convergence.

The second problem deals with the design of radio-frequency pulses for magnetic

resonance imaging, a topic from medical engineering. A realistic modeling yields a

nonsmooth and nonconvex optimal control problem that serves as a benchmark for

the performance of the hybrid approach on real-world applications. The numerical
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results underline that the hybrid approach can be competitive on such problems.

Indeed, a previous version of the presented trust-region method formed the kernel

of the code [21, 22] that won the ISMRM challenge on radio-frequency pulse design

in magnetic resonance imaging [10]. Here we provide an improved successor.

Since quasi-Newton methods involve the Hilbert space structure of * in an es-

sential way, it may be surprising that the numerical results for both problems clearly

indicate convergence of the control D with respect to stronger norms than that of

* . In Section 4 we establish rigorous theoretical results that explain this behavior

for the control of the heat equation. It is related to the regularity of the problem and

the quality of the initial approximation.

Although quasi-Newton methods have been applied to PDE-constrained optimal

control problems, for instance in [5, Chapter 4], [11], and [27, Chapter 11], there are

rather few in�nite-dimensional convergence results available for algorithms that

incorporate quasi-Newton methods and can handle nonsmoothness. We are aware

of [1, 9, 16, 23], but none of these yield superlinear convergence for (P).

State-of-the-art methods that can solve optimal control problems of the form (P)

are semismooth Newton methods, cf. [8, 12, 13, 27]. In the numerical study we there-

fore consistently compare the hybrid approach to semismooth Newton methods.

This paper is organized as follows. Section 2 speci�es some notions that are im-

portant for this work, e.g., semismoothness. In Section 3 we provide the problem

under consideration in full detail, introduce the hybrid method, and establish con-

vergence results for it. Section 4 discusses the application of the method to sparse

optimal control of the linear heat equation with box constraints. In Section 5 we

comment on implementation issues. Section 6 contains the numerical study and in

Section 7 we draw conclusions from this work. In Appendix A we provide the algo-

rithm that we found most e�ective in the numerical studies—a matrix-free limited-

memory truncated trust-region variant of the hybrid method.

2 Preliminaries

In this short section we �x the notation, recall the notion of proximal maps, and

specify which concept of semismoothness we use.

We set ℕ := {1, 2, 3, . . .}. All linear spaces are real linear spaces. Let - and .

be Banach spaces. We denote B
X
(Ḡ) := {G ∈ - : ‖G − Ḡ ‖- < X} for X > 0 and

Ḡ ∈ - . Moreover, L(-,. ) represents the space of bounded linear maps from - to

. . If - can be continuously embedded into . , this is indicated by - ↩→ . . In the

Hilbert space* we write ({,|)* for the scalar product of {,| ∈ * and ({, ·)* for the

linear operator | ↦→ ({,|)* from* to ℝ. Furthermore, we recall the de�nition and

elementary properties of the proximal map.

De�nition 1 Let * be a Hilbert space and let W > 0. Let i : * → ℝ ∪ {+∞} be a

proper, convex, and lower semicontinuous function and denote its e�ective domain

by � := {D ∈ * : i (D) < +∞}. The proximal mapping of iW :=
i

W
is given by

ProxiW : * → * , ProxiW (D) := argminD̃∈�

[
1

2
‖D̃ − D‖2* + iW (D̃)

]
.
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It is easy to see that ProxiW is single-valued, has image � , and satis�es the relation

D̂ = ProxiW (D) ⇐⇒ W (D − D̂) ∈ mi (D̂) (1)

forD, D̂ ∈ * and arbitrary W > 0, where mi denotes the convex subdi�erential of i . If

i is the characteristic function of a closed convex set, then ProxiW is the projection

onto that set. More on proximal mappings in Hilbert spaces can be found in [3,

Section 24], for instance.

We will use the rather general notion of semismoothness from [27, De�nition 3.1]

that includes, for instance, Newton di�erentiability, cf. [13, De�nition 8.10].

De�nition 2 Let-,. be Banach spaces and let Ḡ ∈ - . Let� : - → . be continuous

in an open neighborhood of Ḡ . Moreover, let m� : - ⇒ L(-,. ) satisfy m� (G) ≠ ∅
for all G ∈ - . We say that � is semismooth at Ḡ with respect to m� i� there holds

sup

" ∈m� (Ḡ+ℎ)
‖� (Ḡ + ℎ) −� (Ḡ) −"ℎ‖. = > (‖ℎ‖- ) for ‖ℎ‖- → 0.

The set-valued mapping m� : - ⇒ L(-,. ) is called a generalized derivative of � .

For G ∈ - every " ∈ m� (G) is called a generalized di�erential of � at G .

3 Problem setting, algorithm, and convergence results

In this section we introduce the problem class in full detail and present the hybrid

method to solve it. We provide its convergence properties and recall a result con-

cerning local uniform invertibility of generalized di�erentials.

3.1 Problem setting and algorithm

Throughout this work we consider optimization problems of the form

min

D∈*
ˆ5 (D) + W

2
‖D‖2*︸            ︷︷            ︸

=:5 (D)

+ i (D), (P)

the details of which are contained in the following assumption.

Assumption 1 Let the following conditions be satis�ed.

1) * is a Hilbert space.
2) (P) has a local solution, denoted D̄ ∈ * .
3) The function i : * → ℝ ∪ {+∞} is proper, convex, and lower semicontinuous.
4) The function ˆ5 : * → ℝ is continuously di�erentiable.
5) There is a Banach space & ↩→ * such that

∇ ˆ5 (D) ∈ & for all D ∈ * (2)

and such that

∇ ˆ5 : * → & is di�erentiable with locally Hölder continuous derivative.
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6) There are W, X,�" > 0 such that

ProxiW : & → * is semismooth at @̄ := −1
W
∇ ˆ5 (D̄)

and such that for each @ ∈ B
X
(@̄) and all" ∈ m ProxiW (@) there holds

‖" ‖L(&,* ) ≤ �" .

7) De�ning
� : & → &, � (@) := ∇ ˆ5 (ProxiW (@)) + W@ (3)

with generalized derivative

m� : & ⇒ L(&,&), m� (@) :=

{
∇2 ˆ5 (D̄) ◦" + W� : " ∈ m ProxiW (@)

}
(4)

there are ¯X,� ¯"−1 > 0 such that for each @ ∈ B
¯X
(@̄) all "̄ ∈ m� (@) are invertible

and satisfy
‖"̄−1‖L(&,&) ≤ � ¯"−1 .

Remark 1 Note that ProxiW is an operator from * to * , but is required to be semi-

smooth from & to* in 6). Note, furthermore, that @̄ ∈ & holds in 6) due to (2).

Remark 2 Under Assumption 1 there are constants !% , !∇ > 0 such that

‖ProxiW (@) −ProxiW (@̄)‖* ≤ !% ‖@− @̄‖& and ‖∇ ˆ5 (D) −∇ ˆ5 (D̄)‖& ≤ !∇‖D−D̄‖*
are satis�ed for all @ close to @̄, respectively, for all D close to D̄. The constants !%
and !∇ will appear in the convergence results below.

Remark 3 It would be enough to require 3)–5) only locally around D̄.

Since 5 can be nonconvex and since i can be nonsmooth, (P) is a nonconvex and

nonsmooth optimization problem, in general. It may also feature a convex admissible

set, as i is extended real-valued. We tackle (P) by reformulating its �rst order op-

timality condition as operator equation � (@) = 0. The approach to use Robinson’s

normal map [20] for the reformulation is inspired by [19, Section 3].

Lemma 1 Let Assumption 1 hold. Then D̄ satis�es the necessary optimality condition
0 ∈ ∇5 (D̄) + mi (D̄) of (P) and @̄ satis�es � (@̄) = 0, where � is given by (3). Moreover,
for any @̂ ∈ & with � (@̂) = 0 the point D̂ := ProxiW (@̂) satis�es 0 ∈ ∇5 (D̂) + mi (D̂). If
the objective in (P) is convex, then any such D̂ is a global solution of (P).

Proof It is well-known that the local solution D̄ of (P) satis�es 0 ∈ ∇5 (D̄) + mi (D̄).
Since @̄ = − 1

W
∇ ˆ5 (D̄) by de�nition, we obtain W (@̄ − D̄) = −∇5 (D̄) ∈ mi (D̄), hence

D̄ = ProxiW (@̄) by (1). Inserting this into @̄ = − 1
W
∇ ˆ5 (D̄) implies � (@̄) = 0.

If @̂ ∈ & with � (@̂) = 0 is given and we set D̂ := ProxiW (@̂) ∈ * , then we have

� (@̂) = 0 =⇒ −∇ ˆ5 (D̂) − WD̂ = W (@̂ − D̂) =⇒ −∇5 (D̂) ∈ mi (D̂),

where the �nal implication involves (1). The last identity yields 0 ∈ ∇5 (D̂) + mi (D̂).
The assertion concerning convexity is true since it just restates that the neces-

sary optimality condition is su�cient for global optimality in convex optimization.
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Next we provide the new algorithm. It aims at solving the operator equation

� (@) = 0. Note that � acts on the arti�cial variable @ that is related to the control D

by D: = ProxiW (@: ) for : ≥ 1, respectively, @̄ = − 1
W
∇ ˆ5 (D̄).

The key idea of the new method is to replace the Hessian∇2 ˆ5 (D: ) that appears in

semismooth Newton methods by a quasi-Newton approximation �: . In contrast, the

generalized derivative of the proximal map ProxiW is left unchanged. The algorithm

thus combines a quasi-Newton method with a semismooth Newton method and can

be regarded as a hybrid approach. It reads as follows.

Algorithm 1: Hybrid semismooth quasi-Newton method for (P)

Input: D0 ∈ * , �0 ∈ L(* ,&), 0 ≤ fmin ≤ fmax ≤ 2, W > 0

1 Let @0 := − 1
W
∇5 (D0)

2 for : = 0, 1, 2, . . . do
3 if � (@: ) = 0 then let D̄ := ProxiW (@: ); STOP

4 Choose ": ∈ m ProxiW (@: )
5 Let

˜": := �:": + W�
6 Solve

˜":B
: = −� (@: ) for B:

7 Let @:+1 := @: + B: and D:+1 := ProxiW (@:+1)
8 Let B:D := D:+1 − D: and H: := ∇ ˆ5 (D:+1) − ∇ ˆ5 (D: )
9 Choose f: ∈ [fmin, fmax]

10 if B:D ≠ 0 then let �:+1 := �: + f: (H: − �:B:D )
(B:D , ·)*
‖B:D ‖2*

;

11 else let �:+1 := �:

12 end
Output: D̄

In the numerical study in Section 6 we work exclusively with (f: ) ≡ 1 in line 9,

i.e., the classical Broyden update, as already this simple choice results in e�cient

algorithms. Also, we will compare this update to other update formulas, speci�cally

�:+1 = �: +
(
H: − �:B:D

) (
H: − �:B:D , ·

)
*(

H: − �:B:D , B:D
)
*

(SR1)

and

�:+1 = �: + H:
(
H: , ·

)
*(

H: , B:D
)
*

− �:B:D

(
�:B

:
D , ·

)
*(

�:B
:
D , B

:
D

)
*

. (BFGS)

Moreover, it should be clear that Algorithm 1 needs to be globalized for the numerical

experiments. We will observe in the �rst half of Section 6 that if
ˆ5 is convex, then

a simple line search su�ces for this. In contrast, if (P) is severely nonlinear, then a

trust-region globalization yields better results, cf. the optimal control of the Bloch

equation in the second half of Section 6.
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3.2 Convergence results

For the iterates (@: ) of Algorithm 1 we have the following convergence result.

Theorem 1 Let Assumption 1 hold and let V ∈ (0, 1). Then:
1) There exists Y > 0 such that for every initial pair (D0, �0) ∈ * × L(* ,&) with
‖D0 − D̄‖* < Y and ‖�0 −∇2 ˆ5 (D0)‖L(* ,&) < Y, Algorithm 1 either terminates after
�nitely many iterations or generates a sequence of iterates (@: ) that converges q-
linearly with rate V to @̄. If, in addition, fmin, fmax ∈ (0, 2) in Algorithm 1 and
�0 − ∇2 ˆ5 (D̄) is compact, then the convergence is q-superlinear.

2) If ∇2 ˆ5 (D0) − ∇2 ˆ5 (D̄) is compact, then the compactness of �0 −∇2 ˆ5 (D̄) in 1) can be
replaced by the compactness of �0 − ∇2 ˆ5 (D0).

Proof This follows from [15, Theorem 4.2 and Theorem 4.18] for � (D) := ∇ ˆ5 (D),
� (@) := ProxiW (@), �̂ (@) := W@, and + := & . We remark that the results in [15]

require (@0, �0) to be close to (@̄,∇2 ˆ5 (D̄)), but this is implied by the fact that (D0, �0)
is close to (D̄,∇2 ˆ5 (D̄)) since ‖@0 − @̄‖& = ‖ 1

W
∇ ˆ5 (D0) − 1

W
∇ ˆ5 (D̄)‖& ≤ !∇

W
‖D0 − D̄‖* .

Regarding convergence of (D: ), (∇ ˆ5 (D: )) and (� (@: )) we obtain the following.

Corollary 1 Let Assumption 1 hold and let (@: ) be generated by Algorithm 1. If (@: )
converges q-linearly (q-superlinearly) to @̄, then:

1) (D: ) converges r-linearly (r-superlinearly) to D̄ and satis�es, for all : su�ciently
large, ‖D: − D̄‖* ≤ !% ‖@: − @̄‖& .

2) (∇ ˆ5 (D: )) converges r-linearly (r-superlinearly) to ∇ ˆ5 (D̄) and satis�es, for all :
su�ciently large, ‖∇ ˆ5 (D: ) −∇ ˆ5 (D̄)‖& ≤ !∇‖D: −D̄‖* and ‖∇ ˆ5 (D: ) −∇ ˆ5 (D̄)‖& ≤
!∇!% ‖@: − @̄‖& .

3) (� (@: )) converges r-linearly (q-superlinearly) to zero and satis�es, for all : su�-
ciently large, ‖� (@: )‖& ≤ (!∇!% + W)‖@: − @̄‖& .

Proof This follows from [15, Corollary 4.4 and Corollary 4.20] for � (D) := ∇ ˆ5 (D),
� (@) := ProxiW (@), �̂ (@) := W@, and + := & .

3.3 A general approach for local uniform invertibility

The following result is taken from [19, Section 3]. It allows to conveniently establish

condition 7) of Assumption 1.

Lemma 2 Let conditions 1)–6) of Assumption 1 hold and let� and m� be given by (3),
respectively, (4). Moreover, suppose that m ProxiW can be extended to * in such a way
that m ProxiW (D) ⊂ L(* ,* ) for every D ∈ * . Then condition 7) of Assumption 1 is
satis�ed if there exist }, X > 0 such that for each D ∈ B

X
(D̄) and all " ∈ m ProxiW (D)

we have

– ‖" ‖L(* ,* ) ≤ 1,
– ("ℎ,ℎ)* ≥ 0 for all ℎ ∈ * ,
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– ("ℎ1, ℎ2)* = (ℎ1, "ℎ2)* for all ℎ1, ℎ2 ∈ * ,
– and

W (ℎ,"ℎ)* +
(
∇2 ˆ5 (D̄)"ℎ,"ℎ

)
*
≥ } (ℎ,"ℎ)* for all ℎ ∈ * . (5)

Proof This is [19, Lemma 3.15] for the situation at hand.

Remark 4 Inequality (5) is, in particular, valid if ∇2 ˆ5 (D̄) is positive semide�nite.

4 Application to PDE-constrained optimal control

In this section we show for a model problem how the hybrid approach can be ap-

plied to PDE-constrained optimal control problems. These problems are well-suited

for the application of the hybrid method because the assumptions for fast local con-

vergence are typically satis�ed.

4.1 An important proximal map

To facilitate the discussion of the model problem in Section 4.2, we study the asso-

ciated proximal map in this section. To this end, let # ∈ ℕ,) > 0, and* := !2 (� )# ,

where � := (0,) ) for some ) > 0. We are interested in the proximal map of

i : * → ℝ ∪ {+∞}, i (D) := X*
ad
(D) +

#∑
8=1

V8 ‖D8 ‖!1 (� ) ,

where V8 , 1 ≤ 8 ≤ # , are nonnegative real numbers,*ad is given by

*ad :=
{
D = (D1, . . . , D# )) ∈ * : 08 ≤ D8 ≤ 18 a.e. in � , 1 ≤ 8 ≤ #

}
for functions 0, 1 ∈ !∞ (� )# that satisfy 0 ≤ 1 a.e. in � (the inequality is meant

componentwise), and X*
ad

: * → {0, +∞} denotes the characteristic function of*ad.

For reasons that become clear in Section 4.2, we �x positive weights U1, . . . , U# and

endow * with the norm ‖D‖* := (∑#
8=1 U8 ‖D8 ‖2!2 (� ) )

1/2
. This norm is equivalent to

the standard norm in* and it is derived from a scalar product, hence* is a Hilbert

space with respect to it. We write Π*
ad

: * → * for the projection onto*ad, i.e.,

Π*
ad
(D) := max(0,min(D,1)) for a.e. G ∈ Ω.

Furthermore, let us introduce the soft-shrinkage operator f : * → * , which is given

componentwise for 1 ≤ 8 ≤ # and constants U8 > 0 and V8 ≥ 0 by

f8 (D) (C) := d8 (D8 (C)) for d8 : ℝ→ ℝ, d8 (B) :=

(
B − V8

U8

)+
+

(
B + V8

U8

)−
,

where (A )+ := max(0, A ) and (A )− := min(0, A ) for all A ∈ ℝ.

The proximal map for W = 1 can now be characterized as follows.

Lemma 3 The proximal map Proxi1 : * → *ad is given by Proxi1 = Π*
ad
◦ f .
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Proof This can be established as in [19, Section 3.3] or through direct computation.

It is important to note that Proxi1 is semismooth.

Lemma 4 Proxi1 is semismooth at every @ ∈ & when considered as a mapping from
& := � ( [0,) ])# to* with respect to the generalized derivative m Proxi1 (@) ⊂ L(&,* )
given by

m Proxi1 (@) :=
⋃

A ∈!∞ (� )# with
0≤A ≤1 a.e. in �

{
" (@, A )

}
,

where 0 ≤ A ≤ 1 is meant componentwise and " = " (@, A ) ∈ L(&,* ) is for (@, A ) ∈
& × !∞ (� )# de�ned as

("ℎ)8 (C) :=


ℎ8 (C) if |@8 (C) | > V8

U8
∧ f8 (@) (C) ∈ (08 (C), 18 (C)),

0 if |@8 (C) | < V8
U8
∨ f8 (@) (C) ∉ [08 (C), 18 (C)],

A8 (C)ℎ8 (C) else

(6)

if 8 ∈ {1, . . . , # } is such that V8 > 0. If V8 = 0, then the conditions involving V8
U8

have to

be dropped in (6) and there holds f8 (@) = @8 . In any case, ‖" ‖L(&,* ) ≤ )
1
2 (∑#

8=1 U8 )
1
2

holds for each @ ∈ & and all" ∈ m Proxi1 (@).

Proof Since Proxi1 = Π*
ad
◦f , respectively, Proxi1 = Π*

ad
is a superposition opera-

tor, the representation (8) can, for instance, be deduced from [12, Theorem 2.13]. The

estimate for ‖" ‖L(&,* ) follows since forℎ ∈ & with ‖ℎ‖& ≤ 1we have ("ℎ)8 (C) ≤ 1
for a.e. C ∈ � and all 1 ≤ 8 ≤ # .

Remark 5 We emphasize that the superposition operator Π*
ad
◦f is not semismooth

from * to * , cf. [24, 27]. Correspondingly, the role of the additional space & in

Assumption 1 is to ensure the necessary norm gap. In turn, the demand for ∇ ˆ5 to

map* to & , cf. 5) of Assumption 1, is a smoothing property.

4.2 Time-dependent control of the heat equation

Let # ∈ ℕ, & := � ( [0,) ])# , * := !2 (� )# , and . := % := , (� ;!2 (Ω), �1
0 (Ω)).

We consider the optimal tracking of the linear heat equation in � × Ω with # time-

dependent controls D (C) = (D1 (C), . . . , D# (C))) , where Ω ⊂ ℝ3 , 1 ≤ 3 ≤ 3, is a

nonempty and bounded Lipschitz domain, and the time domain is � := (0,) ) for a

�xed �nal time ) > 0:

min

(H,D) ∈.×*
ad

1

2
‖H − Hd‖2!2 (�×Ω

obs
) +

#∑
8=1

U8

2
‖D8 ‖2!2 (� ) +

#∑
8=1

V8 ‖D8 ‖!1 (� )

s. t.


HC − ΔH =

#∑
8=1

68 (G)D8 (C) in � × Ω,

H = 0 on Σ,

H (0, G) = H0 (G) in Ω,

(OCP)
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where Σ := � × mΩ. Moreover, Hd ∈ !2 (� × Ωobs) is the desired state, Ωobs ⊂ Ω is the

observation domain, U8 > 0 are the control cost parameters per control function,

V8 ≥ 0 in�uences the size of the support of D8 , H0 ∈ !2 (Ω) is the initial state, and

68 ∈ !2 (Ω) are �xed spatial functions whose support is denoted by l8 ⊂ Ω, 1 ≤
8 ≤ # . For instance, 68 could be the characteristic function jl8 of a given control

domain l8 ⊂ Ω. The set of admissible controls is given by

*ad :=
{
D = (D1, . . . , D# )) ∈ * : 08 ≤ D8 ≤ 18 a.e. in � , 1 ≤ 8 ≤ #

}
(7)

with functions 0, 1 ∈ !∞ (� )# that satisfy 0 ≤ 1 a.e. in � . By using the same norm on

* as in Section 4.1 we can regard (OCP) as a special instance of (P) with W = 1.

From [26, Theorem 3.13] we obtain that for every D ∈ * there exists a unique

H = H (D) ∈ . such that the PDE-constraints in (OCP) are satis�ed; the depen-

dence D ↦→ H (D) is linear and continuous from * to . . This implies that the solu-

tion operator D ↦→ H (D) is in�nitely many times continuously di�erentiable. Thus,

ˆ5 (D) := 1
2
‖H (D) − Hd‖2!2 (�×Ω

obs
) is continuously di�erentiable from * to ℝ. Since

the control reduced version (P) of (OCP) is a convex problem with strongly convex

objective, it is standard to show that it possesses a unique solution D̄ ∈ *ad; the

associated state is denoted by H̄ := H (D̄) ∈ . . We can now derive the following

result.

Lemma 5 For the control reduced version of (OCP) the mapping � de�ned in (3) is
for W = 1 given by

� : & → &, �8 (@) (C) =
∫
l8

68 (G)?
(
Π*

ad
(f (@))

)
(C, G) 3G +U8@8 (C), 1 ≤ 8 ≤ # .

(8)

Here, ? = ? (D) ∈ % is the adjoint state, i.e., the unique solution of the adjoint equation
−?C − Δ? = j�×Ω

obs
· (H (D) − H3 ) in � × Ω,

? = 0 on Σ,

? () ) = 0 in Ω.

(9)

Moreover, � has a unique root @̄ ∈ & .

Proof Adjoint calculus yields (∇ ˆ5 (D))8 (C) =
∫
l8
68 (G)? (C, G)/U8 dG for 1 ≤ 8 ≤ # ,

where ? = ? (D) is the adjoint state. Inserting this in � (@) = ∇ ˆ5 (Proxi1 (@)) + @
yields (8) due to Lemma 3. Moreover, the assumptions on the problem data imply

? (D) ∈ % for the solution of the adjoint equation, cf. [26, Lemma 3.17]. To show that

� maps to & we deduce from the continuous embedding % ↩→ � ( [0,) ];!2 (Ω)),
cf. [7, Theorem 11.4], that ? (D) ∈ � ( [0,) ];!2 (Ω)). Therefore, de�ning _ = _(D) by

_8 (C) :=
∫
l8
68 (G)? (C, G)/U8 dG , C ∈ [0,) ], where 1 ≤ 8 ≤ # , implies _ ∈ & . Since

_(D) = ∇ ˆ5 (D), it follows that ∇ ˆ5 maps * to & and hence that � maps to & . From

Lemma 1 we infer by convexity that the unique solution D̄ of the control reduced

version of (OCP) corresponds to a unique root @̄ of � .
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Remark 6 The proof of Lemma 5 demonstrates that we have to choose & in such a

way that C ↦→
∫
l8
68 (G)? (C, G) dG belongs to & , where ? solves (9). Thus, the avail-

able regularity of the adjoint state ? , respectively, of the multiplier _, restricts the

choice of& . If additional regularity is available, then& may be chosen as a space of

smoother functions than � ( [0,) ])# . For instance, from [12, Theorem 1.39] we de-

duce that if Ωobs = Ω and H3 ∈ . , then there holds
m? (D)
mC
∈ , (� ;!2 (Ω), �1

0 (Ω)),
hence ? (D) ∈ �1 (� ;�1

0 (Ω)). This implies _ ∈ & for the choice & := �1 (� )# . In fact,

using , (� ;!2 (Ω), �1
0 (Ω)) ↩→ � ( [0,) ];!2 (Ω)) we obtain ? ∈ �1 ( [0,) ];!2 (Ω)),

which implies _ ∈ & for & := �1 ( [0,) ])# . We stress that Lemma 5 is valid for all

these choices of & .

Assumption 1 holds unconditionally for (OCP).

Lemma 6 The control reduced version of (OCP) ful�lls Assumption 1 with� : & → &

given by (8).

Proof Conditions 1)–4) of Assumption 1 were already established, cf. the remarks

above Lemma 5. In the proof of Lemma 5 we have demonstrated that∇ ˆ5 maps* to& .

Since ∇ ˆ5 : * → & is linear and continuous, it is in�nitely many times continuously

di�erentiable. This yields 5). Condition 6) follows from Lemma 4. To establish 7) we

use Lemma 2. The representation in Lemma 4 shows that m Proxi1 (@), @ ∈ & , can be

extended in a canonical way to m Proxi1 (D), D ∈ * . From the linearity of D ↦→ H (D)
we obtain that

ˆ5 (D) = 1
2
‖H (D) − H3 ‖2!2 (�×Ω

obs
) is convex, hence (5) is ful�lled. Also,

we readily check that the �rst three properties listed in Lemma 2 are satis�ed by the

elements of m Proxi1 (D), D ∈ * . Thus, 7) holds.

Remark 7 If Ωobs = Ω and H3 ∈ . , then Lemma 6 is also true for the choices & :=

�1 (� )# and % := �1 (� ;�1
0 (Ω)) as well as& := �1 ( [0,) ])# and % := �1 ( [0,) ];!2 (Ω)),

cf. Remark 6.

We obtain the following convergence result for Algorithm 1, in which we write

∇2 ˆ5 for the constant Hessian. Note in 2) and 3) that (D: ) converges in various norms.

Theorem 2 1) Let (H̄, D̄) ∈ . ×*ad be the solution of (OCP), let � be given by (8),
and denote by @̄ ∈ & the unique root of� . Moreover, let V ∈ (0, 1). Then there exists
Y > 0 such that for every initial pair (D0, �0) ∈ *×L(* ,&) with ‖D0−D̄‖* < n and
‖�0−∇2 ˆ5 ‖L(* ,&) < Y, Algorithm 1 either terminates after �nitely many iterations
or generates a sequence of iterates (@: ) that converges q-linearly with rate V to @̄
in & . If, in addition, fmin, fmax ∈ (0, 2) in Algorithm 1 and (�0 − ∇2 ˆ5 ) ∈ L(* ,&)
is compact, then the convergence is q-superlinear.

2) If (@: ) is generated by Algorithm 1, then (D: ):≥1 ⊂ *ad, i.e., every D: except pos-
sibly the starting point D0 is feasible for (OCP). Moreover, (D: ):≥1, {D̄} ⊂ !∞ (� )#
and there are !H , !? > 0 such that

‖D: − D̄‖!B (� )# ≤ ‖@: − @̄‖!B (� )# , ‖D: − D̄‖!2 (� )# ≤ )
1
2 ‖@: − @̄‖� ( [0,) ])# ,

‖H (D: ) − H̄ ‖. ≤ !H ‖@: − @̄‖& , ‖? (D: ) − ?̄‖% ≤ !? ‖@: − @̄‖&

hold for all : ≥ 1 and all B ∈ [1,∞].
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If, in addition, 0, 1 ∈ & holds, then we have (D: ):≥1, {D̄} ⊂ & and for all : ≥ 1

‖D: − D̄‖& ≤ ‖@: − @̄‖& . (10)

In particular, ‖@: − @̄‖& → 0 for : →∞ implies ‖D: − D̄‖& → 0.
3) If (@: ) is generated byAlgorithm 1 and converges q-linearly (q-superlinearly) to @̄ in
& , then (D: ), (H (D: )) and (? (D: )) converge r-linearly (r-superlinearly) in !B (� )# ,
respectively, . and % , where B is as in 2). Moreover, (� (@: )) converges r-linearly
(q-superlinearly) in & to zero, then.

Proof Proof of 1): The claim of 1) follows from Theorem 1, part 1), which can be

applied since Assumption 1 is satis�ed, cf. Lemma 6.

Proof of 2): The feasibility of the D: is valid since Proxi1 (&) ⊂ *ad and since

D: = Proxi1 (@: ) for : ≥ 1. Moreover, the property (D: ):≥1, {D̄} ⊂ !∞ (� )# follows

from *ad ⊂ !∞ (� )# . To show the �rst inequality, we remark that @: , @̄ ∈ & implies

@: , @̄ ∈ !B (� )# for all B ∈ [1,∞] and all : ≥ 0. It is straightforward to infer for

@, @̄ ∈ !B (� )# that |d8 (@8 (C)) − d8 (@̄8 (C)) | ≤ |@8 (C) − @̄8 (C) | for a.e. C ∈ � , 1 ≤ 8 ≤
# . The same can be established for d8 replaced by (Π*

ad
)8 . Together, this implies

|D8 (C) − D̄8 (C) | ≤ |@8 (C) − @̄8 (C) | for a.e. C ∈ � , 1 ≤ 8 ≤ # , proving the �rst error bound

in 2). Moreover, this also implies (10) provided that (Π*
ad
◦ f) (&) ⊂ & if 0, 1 ∈ & .

This property of Π*
ad
◦f is elementary to see, for instance by showing it separately

for f and Π*
ad

. The second error bound follows from the �rst for B = 2 by use of

‖@: − @̄‖!2 (� )# ≤ |� |
1
2 ‖@: − @̄‖� ( [0,) ])# , where |� | is the Lebesgue measure of � . Since

D ↦→ H (D) andD ↦→ ? (D) are linear and continuous from* to. = % , they are globally

Lipschitz, too. This in combination with the estimate ‖D: −D̄‖!2 (� )# ≤ ‖@: −@̄‖!2 (� )#
and the continuous embedding& ↩→ !2 (� )# yields the third and fourth error bound.

Proof of 3): The claims follow from the error estimates in 2) and, for (� (@: )),
from part 3) of Corollary 1.

Remark 8 It is not di�cult to argue that Theorem 2 also holds for & := !B̂ (� )# for

any B̂ ∈ (2,∞]. Of course, the !B estimates of that theorem are then only true for

B ∈ [1, B̂]. The use of a weaker norm in& relaxes the assumption on (D0, �0) and the

compactness requirement in that theorem.

In Theorem 2 we have worked with & = � ( [0,) ])# and % = , (� ;!2 (Ω),
�1
0 (Ω)). If Ωobs = Ω and H3 is more regular, then we can employ stronger spaces,

resulting in stronger convergence properties, but also in the need for better initial

data (D0, �0). For simplicity we consider constant bounds.

Lemma 7 Let Ωobs = Ω, H3 ∈ . , and let 08 , 18 be constant for each 1 ≤ 8 ≤ # .
Then all claims of Theorem 2 except (10) are true for & := �1 (� )# , * := !2 (� )# ,
. :=, (� ;!2 (Ω), �1

0 (Ω)), and % := �1 (� ;�1
0 (Ω)). If & := !∞ (� ) is used instead, then

all claims of Theorem 2 except for the second error estimate in part 2) are true and the
operator ∇2 ˆ5 ∈ L(* ,&) is compact.

Proof Proof for Q := H1 (I)N: The proof is completely analogue to the one of The-

orem 2, except for the claim above (10) and the one below (10). That is, we have to

establish that (D: ):≥1, {D̄} ⊂ & = �1 (� )# and D: → D̄ in & provided that @: → @̄
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in & . In fact, this follows since Proxi1 = Π*
ad
◦ f satis�es Proxi1 (&) ⊂ & and since

Proxi1 : & → & is continuous. Both properties can be proven separately for Π*
ad

and f . For Π*
ad

these properties follow from [14, Chapter II, Corollary A.5], which

shows that Π*
ad
(, 1,B (Ω)) ⊂, 1,B (Ω) for all B ∈ [1,∞], and from [2, Theorem 9.5].

Using the fact that cut-o� does not increase the �1
-norm, cf. [14, Theorem A.1], the

corresponding proof for f is elementary.

Proof for Q := L∞ (I)N: The compactness of ∇2 ˆ5 follows from the compactness of

�1 (� )# ↩→ !∞ (� )# . All other claims can be established as in the proof of Theorem 2.

Still higher regularity is available in the situation of Lemma 7.

Lemma 8 Let Ωobs = Ω, H3 ∈ . , and let 08 , 18 be constant for each 1 ≤ 8 ≤ # . Then all
claims of Theorem 2 except (10) and the convergence assertion below it are true for& :=

�0,B̂ ( [0,) ])# with arbitrary B̂ ∈ (0, 1], * := !2 (� )# , . := , (� ;!2 (Ω), �1
0 (Ω)), and

% := �1 ( [0,) ];!2 (Ω)). In this setting @: → @̄ in& implies D: → D̄ in�0,B̂−g ( [0,) ])#
for any g ∈ (0, B̂). Moreover, if B̂ ≠ 1, then ∇2 ˆ5 ∈ L(* ,&) is compact.

Proof The main task is to establish that Proxi1 = Π*
ad
◦ f satis�es Proxi1 (&) ⊂ &

and that Proxi1 : & → �0,B̂−g ( [0,) ])# is continuous at @̄ for any g ∈ (0, B̂). The

proof can be undertaken separately for Π*
ad

and f . The property Proxi1 (&) ⊂ &
follows from [2, Theorem 7.1], and the continuity at @̄ is a consequence of [2, �rst

part of Theorem 7.6]. The compactness of ∇2 ˆ5 ∈ L(* ,&) is implied by the fact that

�0,1 ( [0,) ])# ↩→ �0,B̂ ( [0,) ])# is compact for B̂ ∈ (0, 1).

5 Implementation

The hybrid framework is tested with three di�erent quasi-Newton updates: Broy-

den, SR1, and BFGS. The methods are implemented with limited-memory techniques

storing the last up to ! (called the limit) updates as vectors and matrix-free. Con-

sequently, the Newton systems are solved with iterative methods, speci�cally with

GMRES or cg. The limited-memory BFGS method is implemented in the compact

variant according to [6], see also [17, (7.24)]. Additionally, the quasi-Newton meth-

ods are compared to Newton’s method itself, i.e., setting �: = ∇2 ˆ5 (D: ) for all : and

dropping lines 8–11 in Algorithm 1. Here, the matrix-free evaluation in a direction is

implemented via forward-backward solve. We stress that when Newton’s method is

used, Algorithm 1 is a standard semismooth Newton method.

The methods are applied with three di�erent globalization techniques. First, a stan-

dard backtracking line search on the residual norm ‖� ‖* is used together with GM-

RES (ls-GMRES). The line search selects the smallest integer 0 ≤ 9 ≤ 18with ‖� (@:+
0.59B: )‖* < ‖� (@: )‖* , and 9 = 19 otherwise. GMRES from Matlab is used with a

tolerance of 10−10 and a maximum number of 50 iterations. Second, a non-monotone

line search (nls-GMRES) with#ls ∈ ℕ steps is used, where the step size d 9 = 0.59 , 0 ≤
9 ≤ 18, is accepted as soon as '(@: + d 9B: ) < max{'(@: ), '(@:−1), . . . , '(@:−#ls+1)}
holds, and 9 = 19 otherwise. Therein, ' will be the residual norm ‖� (·)‖* or the

objective 5 (·) + i (·) of (P). Third, a trust-region method is investigated based on

Steihaug-cg (tr-cg), cf. [25]. The precise algorithm is included in Appendix A. It is
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started with a radius r0 = 0.1 and stopped with a relative tolerance of 10−5. The

parameters are f1 = 0.05, f2 = 0.25, f3 = 0.7, radius factors 51 = 0.4, 52 = 2, 53 = 0.6,

and a maximum radius rmax = 2. Up to 300 iterations are allowed. The update of the

quasi-Newton matrix is also carried out at rejected steps. Additionally, in case of

BFGS, the update is only applied if the curvature condition (H: , B:D )* > 0 holds.

To be able to use Steihaug-cg, the linear system is �rst reduced to a symmetric

one by restricting to the Hilbert space induced by the inner product (·, ": ·)* with

": ∈ m ProxiW (@: ), cf. Lemma 2 and [19, Def. 3.4]. Then a correction step gives the

full update, cf. [19, (3.25)]. The cg method is limited to 100 iterations and stopped

with a relative tolerance of 10−10. We use small tolerances to suppress the in�uence

of inexact linear system solves.

6 Numerical experiments

The numerical experiments below show the application of the hybrid method to

optimal control problems. The �rst example is the heat equation, the second the bi-

linear control of the Bloch equation in magnetic resonance imaging. As nonsmooth

problem parts we deal with pointwise box constraints on the controls and sparsity

promoting objectives. All computations are carried out using Matlab 2017a and a

workstation with two Intel Xeon X5675 (24GB RAM, twelve cores with 3.06GHz).

All time measurements are performed on a single CPU without multi-threading.

6.1 Time-dependent tracking of the heat equation

The �rst example problem is sparse control of the linear heat equation with Ωobs =

Ω = (−1, 1)2 and time domain � = (0, 1). Speci�cally, we consider

min

(H,D) ∈.×*
ad

1

2
‖H − Hd‖2!2 (�×Ω

obs
) +

U

2
‖D‖2

!2 (� ) + V ‖D‖!1 (� )

s. t.


HC − ΔH = jl (G)D (C) in � × Ω,

m}H = 0 on Σ,

H (0, G) = H0 (G) in Ω.

Therein, *ad = {D ∈ * : 0 ≤ D (C) ≤ 1 for a.e. C ∈ � } with 0 = −1 and 1 = 1,

Hd (C, G) = 2 sin(2cC), U > 0, V ≥ 0, jl (G) ∈ !∞ (Ω) is the characteristic function of

the right halfl = (0, 1) × (−1, 1), and H0 ≡ 0. The example is a special case of (OCP)

with # = 1, however using Neumann instead of Dirichlet boundary conditions. We

emphasize that the results of Section 4.2 can also be developed for these boundary

conditions. In view of Lemma 7 and Lemma 8 we expect convergence in rather strong

norms. Speci�cally, we are interested in q-superlinear convergence of (@: ) in �1 (� )
and in�0,B ( [0,) ]) for all B ∈ (0, 1), convergence of (D: ) in�1 (� ) and in�0,B−g ( [0,) ])
for all g ∈ (0, B), and r-superlinear convergence of (D: ) in !2 (� ) and !∞ (� ). Further-

more, we should be able to observe the error estimates ‖D: − D̄‖!B (� ) ≤ ‖@: − @̄‖!B (� )
for B ∈ {2,∞}, cf. part 2) of Theorem 2. We will investigate these properties numer-

ically.
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Fig. 1: Optimal control D̄ for di�erent U with V = 0 (left), with V > 0 (mid), and

domain Ω with triangulation (right).

We use an unstructured triangular mesh with 725 P1 elements generated by

Matlab’s initmeshwith Hmax=0.1, see Figure 1. As time-stepping scheme the CG(1)
method is chosen (corresponding to the Crank-Nicolson method) with 101 equidis-

tant time points and a piecewise constant discretization of @ and D. We initialize

the algorithm with D0 = 0, corresponding to @0 = 0. Since the problem is strongly

convex, the solution is possible based on the simple globalization ls-GMRES. The

optimal controls for di�erent U, V are depicted in Figure 1. We will use varying pa-

rameters U, V , with U = 0.01 as default value. For the limit we use ! = 30.

The proximal mapping is Π*
ad
(f (@)) from Lemma 3. In the algorithm we select

the di�erential ": ∈ m(Π*ad
◦ f) (@: ) that satis�es, for all ℎ ∈ & , (":ℎ) (C) = ℎ(C) if

|@: (C) | ≥ V/U and 0 < f (@: ) (C) < 1, and (":ℎ) (C) = 0 otherwise; cf. (6).

SN Broyden SR1 BFGS

U |A | U�
H) B

B) B
�

H) H

H) B
� 0 U�

H) B

B) B
�

H) H

H) B
� 0 U�

H) B

B) B
�

H) H

H) B
� �

100 12 2 12 10 10 6 8 9 10 5 12 7 9 12

10−1 80 4 12 15 − 7 10 17 − 6 14 11 14 18

10−2 95 6 11 19 − 7 9 − − 7 10 13 20 22

10−3 99 11 10 17 − 9 9 − − 12 9 12 12 14

Table 1: Iterations of the quasi-Newton implementations for di�erent U (rows) and

for di�erent �0 (columns per method) with V = 0. |A| is the number of control

components on the bounds out of 101,− means no convergence within 50 iterations.

The �rst study shows the performance of the optimization methods for di�erent

initializations of �0. Table 1 shows the results for V = 0. The �rst two columns

show U and the resulting number of active points |A| (optimal control on upper

or lower bound) out of 101. The other columns depict the iteration numbers that

are needed to reach the relative tolerance 10−8, separately for semismooth Newton

(SN) and the three hybrid methods. Here, four di�erent initializations are applied,

including the scaled identityU� , the zero matrix 0, and the two formulas [6, Eq.(3.23)]

�0 = H) B/(B) B)� and [17, Eq.(7.20)] �0 = H) H/(H) B)� . We note that both formulas

are implemented in the �rst step with �0 = 0 for Broyden/SR1 and �0 = U� for

BFGS. A good performance for any U and for all three methods can be obtained
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by choosing �0 = U� . However, Broyden and SR1 show faster convergence with the

zero initialization, and BFGS shows in the mean less iterations with�0 = H
) B/(B) B)� ,

which are the default initializations for all other studies below. We point out that

from an in�nite-dimensional point of view the choice �0 = 0 results in �0−∇2 ˆ5 (D̄) ∈
L(* ,&) being compact, cf. Lemma 7 and Lemma 8, whereas this is not the case for

the scaled identities. We recall that the compactness of �0 − ∇2 ˆ5 (D̄) is required for

superlinear convergence, cf. Theorem 2, part 1).

The results for V > 0 are depicted in Table 2. Here, |O| collects the number of time

points with zero control out of 101. We note that the inequality constraints are in

general inactive (|A| = 0) in the optimum if U ≥ 1. On the other hand, smaller

values U ≤ 0.01 result in only one or two inactive points (the number of inactive

points is 101−|A|− |O|). Increasing the parameter V between 0.1 and 1 increases the

sparsity from around 20% to 80%. For V ≥ 2 the optimal solution is zero. The four last

columns show the iteration counts of the four methods with default initializations.

All methods convergence quickly for all values ofU and V . They tend to require fewer

iterations for larger V , which corresponds to more degrees of freedom being �xed

to zero. The desired tolerance is reached after at most 8 iterations for Broyden (Br),

respectively, 7 iterations for SR1. BFGS needs up to 17 iterations.

U V |A | |O | SN Br SR1 BFGS

1.00 0.1 0 18 4 6 5 8

0.10 0.1 68 20 4 8 6 12

0.01 0.1 79 20 6 6 6 13

1.00 0.2 0 34 3 6 5 7

0.10 0.2 56 30 4 8 7 12

0.01 0.2 68 31 5 7 6 17

1.00 0.5 0 48 3 5 5 7

0.10 0.5 41 53 3 6 5 8

0.01 0.5 45 53 5 7 6 9

1.00 1.0 0 71 3 4 4 6

0.10 1.0 14 77 4 6 5 10

0.01 1.0 21 77 5 7 6 9

Table 2: Iteration counts for di�erent U and V . |A| and |O| denote the number out

of 101 control points that are on the bounds, respectively, that are zero.

The iteration counts of the hybrid methods for di�erent discretizations are de-

picted in the upper part of Table 3 for U = 0.01, V = 0 using #2 + 1 equidistant time

points and three di�erent meshes from initmesh with #G nodes. The results show

mesh independence for all three quasi-Newton methods with respect to both the

spatial and the temporal discretization. The lower part of the table shows the cor-

responding runtimes in seconds. All values are averages of �ve runs. Broyden and

SR1 show nearly identical runtimes in this example and are twice as fast as BFGS.

All three methods outperform the semismooth Newton method in runtime. For all
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time and space discretizations a speedup factor of �ve to six is observed for Broyden

and SR1, and three to four for BFGS.

iterations SN Broyden SR1 BFGS

#2 \ #G 725 1938 7701 725 1938 7701 725 1938 7701 725 1938 7701

100 6 6 6 7 7 7 7 7 7 13 13 13

400 5 5 5 7 8 7 7 7 7 14 14 14

1600 5 5 5 7 7 7 7 7 7 14 14 14

6400 5 5 5 7 8 7 7 7 7 14 14 14

runtimes

100 11 40 210 2 5 33 2 6 31 3 9 56

400 40 128 681 6 22 112 6 20 111 12 37 211

1600 158 486 2755 27 83 446 27 82 449 51 154 841

6400 643 1971 10855 137 456 2095 148 419 2102 290 763 3945

Table 3: Iterations and runtimes (in sec.) for di�erent discretizations with U =

0.01, V = 0. The rows show results for #2 control points. The three columns per

method show results for triangulations with #G = 725, 1938, 7701 nodes. All run-

times are mean values of �ve runs.

The next study analyzes the superlinear convergence properties numerically.

For comparison the optimal solution @̄ is �rst computed in high precision with the

semismooth Newton method and GMRES using �ne relative tolerances of 10−14 for

both. Then the indicators of superlinear convergence

A:D :=
‖D:+1 − D̄‖/
‖D: − D̄‖/

and A:@ :=
‖@:+1 − @̄‖/
‖@: − @̄‖/

are computed for each method for the norms / = !2 (� ), !∞ (� ) and the seminorms

/ = �1 (� ),�0,1( [0,) ]). For q-superlinear convergence these indicators should con-

verge to zero in the last steps of an optimization run. Table 4 depicts the indicators

for the last four iterations. The results are obtained for U = 0.1, V = 0.2, and a rela-

tive tolerance of 10−8. We observe that the semismooth Newton method converges

in one step as soon as the active set has converged. Broyden and SR1 show fast su-

perlinear convergence with �nal indicators between 7 · 10−3 and 6 · 10−4 both for

the control D and the optimization variable @. For BFGS the indicators are slightly

larger, but also decrease towards the end. If U is further reduced to 0.01, we ob-

serve one-step convergence for all three limited-memory methods, too, which can

be explained by the fact that all but one time point are either active or zero then.

Next we consider the convergence ofD and @ in di�erent norms. Table 5 displays

the following errors for the last four steps of each optimization method:

4:
D,!2

:= ‖D: − D̄‖!2 , 4:
D,�1

:= ‖D: − D̄‖�1 , 4:D,!∞ := ‖D: − D̄‖!∞ , (11)

and analogue de�nitions 4:
@,!2

, 4:
@,�1

, 4:
@,!∞ for @. The semismooth Newton method

exhibits one-step convergence as soon as the active sets have converged. The other

methods show a quick decrease of all values towards the relative tolerance during
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SN Broyden SR1 BFGS

A:D A:@ A:D A:@ A:D A:@ A:D A:@

3 · 10−2 2 · 10−1 3 · 10−3 3 · 10−3 5 · 10−2 5 · 10−2 6 · 10−2 3 · 10−2
3 · 10−1 7 · 10−2 1 · 10−1 1 · 10−1 2 · 10−3 3 · 10−3 4 · 10−1 3 · 10−1
4 · 10−2 5 · 10−2 5 · 10−2 5 · 10−2 3 · 10−2 2 · 10−2 6 · 10−2 1 · 10−1

!
2
-
n

o
r
m

2 · 10−10 9 · 10−11 6 · 10−3 7 · 10−3 7 · 10−4 6 · 10−4 1 · 10−2 1 · 10−2

1 · 100 3 · 100 3 · 10−3 3 · 10−3 5 · 10−2 5 · 10−2 7 · 10−2 7 · 10−2
3 · 10−1 9 · 10−2 1 · 10−1 1 · 10−1 3 · 10−3 3 · 10−3 3 · 10−1 3 · 10−1
4 · 10−2 4 · 10−2 5 · 10−2 5 · 10−2 2 · 10−2 2 · 10−2 4 · 10−2 5 · 10−2

!
∞

-
n

o
r
m

3 · 10−10 3 · 10−10 9 · 10−3 9 · 10−3 1 · 10−3 1 · 10−3 1 · 10−2 1 · 10−2

1 · 100 7 · 10−1 5 · 10−3 1 · 10−2 6 · 10−2 4 · 10−2 8 · 10−2 1 · 10−1
3 · 10−1 8 · 10−2 1 · 10−1 4 · 10−2 4 · 10−3 1 · 10−2 4 · 10−1 3 · 10−1
6 · 10−2 4 · 10−2 4 · 10−2 4 · 10−2 3 · 10−2 2 · 10−2 4 · 10−2 5 · 10−2

�
1
-
s
e
m

i
-

n
o

r
m

3 · 10−10 3 · 10−9 1 · 10−2 2 · 10−2 1 · 10−3 3 · 10−3 1 · 10−2 2 · 10−2

4 · 101 1 · 101 4 · 10−3 2 · 10−2 4 · 10−2 4 · 10−2 7 · 10−2 2 · 10−1
3 · 10−1 1 · 10−1 1 · 10−1 2 · 10−2 4 · 10−3 2 · 10−2 3 · 10−1 3 · 10−1
5 · 10−2 3 · 10−2 4 · 10−2 4 · 10−2 2 · 10−2 2 · 10−2 4 · 10−2 5 · 10−2

�
0
,1

–
s
e
m

i
-

n
o

r
m

4 · 10−10 8 · 10−9 9 · 10−3 2 · 10−2 2 · 10−3 5 · 10−3 1 · 10−2 2 · 10−2

Table 4: Indicators of superlinear convergence with U = 0.1, V = 0.2: The two

columns per method show A:D and A:@ for the four �nal iterations. Each group of

four rows shows these indicators for di�erent (semi-)norms.

the last four steps of the optimization run. In particular, SR1 yields the fastest re-

duction, while BFGS shows a signi�cantly slower convergence here. As predicted

by Theorem 2, part 2), we have 4:
D,!2
≤ 4:

@,!2
and 4:

D,!∞ ≤ 4
:
@,!∞ (since these inequal-

ities are a consequence of the fact that Proxi1 : !B → !B is nonexpansive for any

B ∈ [1,∞], they hold in all four methods under consideration). We observe that,

in contrast, 4:
D,�1

≤ 4:
@,�1

does not hold in general. However, the results indicate

that 4:
D,�1

still goes to zero, which agrees with part 2) of Theorem 2 for the choice

& = �1 (� ) described in Lemma 7.

SN Broyden

4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞ 4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞

3 · 10−2 2 · 10−1 1 · 100 7 · 10−1 1 · 100 3 · 100 3 · 10−6 5 · 10−6 2 · 10−4 6 · 10−5 9 · 10−5 9 · 10−5
9 · 10−3 2 · 10−2 4 · 10−1 5 · 10−2 3 · 10−1 3 · 10−1 3 · 10−7 6 · 10−7 2 · 10−5 2 · 10−6 1 · 10−5 1 · 10−5
4 · 10−4 8 · 10−4 2 · 10−2 2 · 10−3 1 · 10−2 1 · 10−2 1 · 10−8 3 · 10−8 7 · 10−7 1 · 10−7 4 · 10−7 4 · 10−7
6 · 10−14 7 · 10−14 7 · 10−12 7 · 10−12 4 · 10−12 4 · 10−12 9 · 10−11 2 · 10−10 7 · 10−9 2 · 10−9 4 · 10−9 4 · 10−9

SR1 BFGS

4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞ 4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞

1 · 10−4 2 · 10−4 4 · 10−3 6 · 10−4 3 · 10−3 3 · 10−3 1 · 10−7 1 · 10−7 1 · 10−5 1 · 10−5 8 · 10−6 8 · 10−6
2 · 10−7 5 · 10−7 2 · 10−5 7 · 10−6 1 · 10−5 1 · 10−5 3 · 10−8 3 · 10−8 3 · 10−6 4 · 10−6 2 · 10−6 2 · 10−6
5 · 10−9 1 · 10−8 4 · 10−7 1 · 10−7 2 · 10−7 2 · 10−7 1 · 10−8 1 · 10−8 1 · 10−6 2 · 10−6 8 · 10−7 8 · 10−7
4 · 10−12 7 · 10−12 4 · 10−10 3 · 10−10 2 · 10−10 2 · 10−10 1 · 10−9 3 · 10−9 1 · 10−7 1 · 10−7 6 · 10−8 6 · 10−8

Table 5: Errors in di�erent norms for U = 0.1, V = 0.2, for the �nal iterations.
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6.2 Sparse control of the Bloch equation

As example for a nonconvex optimization problem we investigate the bilinear con-

trol of the Bloch equations in magnetic resonance imaging (without relaxation, in

the rotating frame, and on-resonance). A realistic optimal control modeling for radio-

frequency (RF) pulse design in slice-selective imaging is considered based on [21].

However, we add sparsity to the control model, which is a desirable feature in prac-

tice since the duty cycle of the RF ampli�er is often limited. For details on magnetic

resonance imaging we refer to [4]. As model problem we consider the slice-selective

imaging with a single slice. Here, imaging data of a whole slice is to be acquired. The

spatial �eld of view is described by its extent Ω ⊂ ℝ perpendicular to the slice di-

rection. The slice itself is described by Ωin ⊂ Ω while the remaining part of Ω is

denoted by Ωout = Ω \ Ωin. The latter should not contribute to the data acquisition.

The control problem is modeled as tracking of the nuclear magnetization vector

M = M(D) = ("1, "2, "3) at the terminal time ) . Speci�cally, we consider

min

D∈*
ad

ˆ5 (D) + U
2
‖D‖2

!2 (� ) + V ‖D‖!1 (� ) s.t. (12)

¤M(C, G) = WM(C, G) × B(C, G) a.e. in � × Ω, M(0, G) = M0 (G) a.e. in Ω (13)

with U > 0, proton gyromagnetic ratio W = 267.5380 [rad/s/`T], given initial condi-

tion M0 (G), spatial domain G ∈ Ω = (−2, 2) with 2 = 0.06 [m], and time C ∈ � = (0,) )
with) = 2.69 [ms]. The term

ˆ5 (D) is a tracking-type functional at the terminal time

) describing the intended use of the RF pulse, see below. The external magnetic �eld

B(C, G) = (D (C), { (C), |(C)G) depends on the RF pulse (D, {) ∈ !2 (� )2 and the slice-

selective gradient amplitude | = | (C) ∈ !2 (� ). While these three time-dependent

functions can often be controlled, we consider for simplicity the situation in which

| ≡ 2 is given and the RF pulses are real-valued, i.e., { ≡ 0. Hence, D is the control

variable. Technical limitations of the RF ampli�er are modeled as control constraints

*ad = {D ∈ !2 (� ) : |D | ≤ Dmax} with Dmax = 1.2 [102`T]. This value re�ects a typical

3T magnetic resonance scanner hardware.

The speci�c example here is the optimization of a refocusing pulse, which is,

among others, a central building block of the clinically important turbo spin echo

based sequences. The initial condition results from assuming that an ideal 90◦-excitation

pulse for the same slice has been applied before, keeping the net magnetization vec-

tors out of the slice in the steady state (0, 0, 1)) while exciting the slice itself. In

particular, we set M0 = jΩout
(G) (0, 0, 1)) + jΩin

(G) (0, 1, 0)) . A slice of 1.65 [cm]

thickness is assumed: Ωin = [−0.00825, 0.00825]. The aim of the refocusing is to �ip

the magnetization vectors in the G − H−plane in the interior Ωin of the slice, which

is modeled as rotation around the G axis with angle c . This desired magnetization

pattern at the end time C = ) of the refocusing pulse is given by

ˆ5 (D) = 1

2

∫
Ωin

("1 (), G))2 + ("2 (), G) + 1)23G +
1

2

∫
Ωout

(1 −"3 (), G))23G,

recalling that M = M(D). However, this tracking term for basic refocusing pulses is

typically not used in numerical practice. Instead, we apply a more involved formula-

tion of the desired state at the terminal time for advanced refocusing pulses, that we
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describe now. Because of practical reasons including robustness issues, refocusing

pulses are generally applied within crusher gradients, cf. [4], which are additional

sequence elements surrounding the RF pulse. These crusher gradients cannot be

modeled by the depicted
ˆ5 (D). It seems that the only practical way to model track-

ing terms for refocusing pulses with ideal crusher gradients is to de�ne them in the

spin domain, cf. [4, 21]. Therefore, we choose an equidistant time grid C: = (: − 1)g ,

: = 1, . . . , #C with #C = 270 points and step size g = ) /(#C − 1) = 0.01 [ms], to-

gether with piecewise constant| and controlD with values|<, D< ,< = 1, . . . , #C−1.
This implies that the magnetic �eld B is piecewise constant. It is well-known that

for piecewise constant magnetic �eld the Bloch equations (13) in a spatial point G0
can be solved analytically as a sequence of rotations. This is expressed by using the

Cayley–Klein parameters (0<), (1<) ∈ ℂ,< = 1, . . . , #C − 1 with evolution

0< = U<0<−1 − V∗<1<−1, 1< = V<0<−1 + U∗<1<−1,

and with initial conditions 00 = 1, 10 = 0, cf. [18]. For the formula relating 0<, 1<
and M(C<−1, G0) see [4, eq.(2.15)]. The coe�cients U< , V< are given by

U< = cos(q</2) + 8WgG0|< sin(q</2)/q<, V< = 8WgD< sin(q</2)/q<,

with q< = −Wg
√
D2< + (G0|<)2. Since it is well-known that perfect refocusing with

ideal crusher gradients is obtained through |1 (), G) |2 = jΩin
(G) for a.e. G ∈ Ω, the

tracking term is given by

ˆ5 (D) = 1

2

 |1 (), G) |2 − jΩin
(G)

2
!2 (Ω) . (14)

Note that 1 = 1 (D). In the numerical experiments we use
ˆ5 as de�ned in (14). The

adjoint equation and the reduced gradient for this formulation are derived in the

appendix of [21]. The spatial domain is discretized equidistantly in #G = 481 points.

In accordance with the presentation in Section 4 we use a control-reduced prob-

lem formulation for (12–13). For the problem at hand this bears the advantage to

iterate only on the small control vector with #C − 1 = 269 entries, but not on the

large state vector with 3#G#C = 389610 entries. Consequently, �: is a rather small

matrix of format 269×269, and the linear algebra operations for its update and eval-

uation are cheap. In e�ect, the numerical e�ort is dominated clearly by the state and

adjoint solves; concrete values are reported below.

We consider the same four optimization methods as in Section 6.1, i.e., a semis-

mooth Newton method and the hybrid method with the Broyden, SR1 and BFGS

update, respectively. If not mentioned otherwise, these methods are globalized with

tr-cg. The stopping criterion is a relative tolerance of 10−5 for the residual norm

‖� ‖!2 (� ) . Unless declared otherwise, the following settings are applied for the hy-

brid methods: a limit of ! = 75, �0 = 0 for Broyden and SR1 methods, and �0 = U�

for BFGS. These initializations are selected because they turned out to be the most

e�ective for the respective methods on this problem. Note that for Broyden and

SR1 this is consistent with the numerical results for the optimal control of the heat

equation in Section 6.1, cf. Table 1.
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6.2.1 Comparison of the optimization methods

The optimization is initialized with a sinc-shaped RF pulse 5 0 (C) = 1.8 · sinc(−2.2 +
4C/) ). To maintain a good initial slice pro�le we use @0 = 5 0 + sign(5 0)V/U , which

implies 5 0 = f (@0) and D0 = Π*
ad
(f (@0)) = Π*

ad
(5 0). The initialization, the corre-

sponding slice pro�le "3 (), G), and the desired slice pro�le are depicted in the top

of Figure 2. Also depicted are optimal controls for di�erent U, V . The sparsity and

bound properties of the solutions for di�erent U , V are depicted in Table 6. If not

mentioned otherwise, then we use U = 5 · 10−4 and V = 10−4 below. In all experi-

ments we monitor that only runs leading to the same local minimizer are compared,

which is important since the problem possesses several di�erent minimizers.
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Fig. 2: Top: Initial @0 and D0 = Π*
ad
(f (@0)) (left) and the corresponding slice pro�le

"3 (), G) compared to the desired slice pro�le (right). Bottom: Optimal controls for

di�erent U with V = 5 · 10−4 (left) and V = 5 · 10−5 (right).

|O | |A |
U \ V 5 · 10−4 3 · 10−4 10−4 5 · 10−5 10−5 5 · 10−4 3 · 10−4 10−4 5 · 10−5 10−5

10−3 73 58 37 31 11 47 47 44 43 42

5 · 10−4 93 76 20 5 1 57 57 54 51 50

10−4 104 75 12 8 3 68 66 65 65 67

5 · 10−5 106 75 14 10 4 70 69 71 75 101

Table 6: Number of time instances with sparsity (|O|), respectively, active box con-

straint (|A|) out of 269 for di�erent U (rows) and V (�ve columns each).

The �rst study compares the performance of four di�erent semismooth Newton-

type methods embedded in a trust-region cg framework for varying U, V and for

di�erent initializations of the quasi-Newton matrix �0. First, the limited-memory
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methods are analyzed in Table 7 and compared to the semismooth Newton method.

The up to four columns per method show the iteration counts for di�erent �0. The

last row shows the mean value per column taken over the converged runs only. The

runs that do not converge are marked with −. The �rst three columns display the

parameters U, V and the iteration number of SN. The next two column groups show

that the hybrid method with Broyden updates behaves quite similar to the variant

with SR1 updates, the latter often requiring slightly fewer iterations. The choices

�0 = 0 and �0 = U� yield fast convergence throughout all (U, V)-pairings, while

the other two formulas turn out to be less e�cient in this setting. Looking at the

hybrid method with BFGS in the last column group we observe that its performance

degenerates for large values of U . Apart from this surprising phenomenon the scaled

identity yields good results also for BFGS. Using the best choice �0 for each method,

Broyden requires 41 iterations on average, SR1 35, and BFGS 83, compared to 16 for

the semismooth Newton method. Since the latter has much more costly iterations

due to the forward-backward solve of the second-order equations, it is important to

compare the corresponding runtimes. They are included below, cf. Table 9.

U V SN Broyden SR1 BFGS

U�
H) B

B) B
�

H) H

H) B
� 0 U�

H) B

B) B
�

H) H

H) B
� 0 U�

H) B

B) B
�

H) H

H) B
�

10−3 3 · 10−4 9 44 102 − 28 33 84 − 28 296 222 −
5 · 10−4 3 · 10−4 11 29 97 − 38 31 143 − 27 137 143 −
10−4 3 · 10−4 28 52 206 − 51 48 − − 49 70 90 128

5 · 10−5 3 · 10−4 32 64 243 − 61 52 − − 61 67 76 149

10−3 10−4 9 43 70 − 23 27 71 − 23 − 122 −
5 · 10−4 10−4 9 32 65 − 35 30 58 − 30 58 84 211

10−4 10−4 21 40 101 174 48 43 − − 39 44 58 76

5 · 10−5 10−4 30 51 145 − 56 49 − − 54 54 63 89

10−3 5 · 10−5 9 27 59 − 22 28 53 − 23 104 98 −
5 · 10−4 5 · 10−5 15 34 53 106 38 27 65 170 23 39 55 298

10−4 5 · 10−5 16 44 104 135 50 40 131 − 41 41 46 71

5 · 10−5 5 · 10−5 21 49 115 284 54 46 265 − 49 49 46 90

10−3 10−5 10 27 52 − 22 20 66 174 19 218 83 −
5 · 10−4 10−5 7 31 69 86 33 33 67 162 23 44 38 72

10−4 10−5 16 37 78 − 50 33 191 − 34 37 39 60

5 · 10−5 10−5 15 46 124 168 46 45 223 − 42 49 52 78

∅ 16 41 105 159 41 38 109 127 35 87 120 83

Table 7: Iteration numbers of the trust-region hybrid quasi-Newton implementations

with ! = 75 for di�erent U, V (rows) and �0 (columns per method). The symbol

− indicates that the relative tolerance is not met within 300 iterations. The last line

depicts the mean iteration counts per column for the converged runs.

To address the choice of the limit parameter ! we compare the performance

of the hybrid methods for di�erent limits in Table 8 based on the iteration counts.

Depicted are four columns per method which di�er in the choice of the limit ranging

from ! = 25 to ! = 100. The rows show results for di�erent U while keeping V = 10−4
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�xed. We stress that in combination with tr-cg it is appropriate to choose a limit !

that is larger than typical values from the literature for globalization by line search

methods. This is due to the fact that Steihaug-cg employs earlier breaks in the cg

method leading to smaller and more steps. We observe that a limit of 25 is only

adequate for Broyden and SR1 in the case of large U ≥ 5 · 10−4. For smaller U the

limit should be increased to 50. In contrast, the performance of BFGS is less sensitive

to the values of ! that are investigated.

In the particular setting of optimal control problems with many state variables

and few control variables, which is typically the case in practical applications of

PDE-constrained optimization or Bloch-models, it pays o� in runtime to use larger

limits since this helps to save some iterations of the trust-region method while it

increases the required time per trust-region iteration only marginally. This is due

to the fact that the costs per trust-region iteration are largely dominated by the

evaluation of objective and gradient. For example, the runtime of Broyden with U =

5 · 10−5 for a limit of 75 (56 iterations) is 5.1 seconds, which is signi�cantly lower

than the 6.4 seconds that are needed with a limit of 50 (73 iterations). In both cases,

around 90% of the runtime is spent on the evaluation of objective and gradient.

Therefore, a limit of ! = 75 is chosen for all subsequent studies. We emphasize that

all runs converge to the same local minimizer independently of the limit parameter.

Broyden SR1 BFGS

U \ ! 25 50 75 100 25 50 75 100 25 50 75 100

10−3 23 23 23 23 23 23 23 23 − − − −
5 · 10−4 61 35 35 35 69 30 30 30 54 58 58 58

10−4 82 48 48 48 − 39 39 39 53 44 44 44

5 · 10−5 127 73 56 56 150 67 54 54 64 54 54 54

Table 8: Iterations of the hybrid quasi-Newton methods for di�erent U and di�erent

limits !. The symbol − stands for not converging within 300 iterations.

To investigate mesh independence properties of the hybrid methods we perform

runs with di�erent temporal and spatial mesh sizes. The results are shown in Table 9

using iteration counts in the left table, respectively runtime (mean runtime in 5

runs, in seconds) in the right table. The rows depict results for di�erent temporal

re�nements with #2 = #C − 1 control points. The two columns per method show

di�erent spatial grids with #G = 481, respectively, #G = 4811 points. The �nest

example with #2 = 17216 and #G = 4811 features 248 million degrees of freedom

for the state variable. In all cases the same initial guess is used. Furthermore, the

same local minimizer is attained in all runs, which allows for a direct comparison.

The left table shows that the iteration counts of all four methods do not increase with

#2 or #G . In particular, SN, Broyden and SR1 exhibit nearly the same iteration count

for any of the discretizations. The hybrid method with BFGS displays a constant

iteration number per column with a reduced iteration count for the right column

(larger #G ). Interestingly, its performance is rather similar to that of Broyden and

SR1 for #G = 4811, while for #G = 481 it requires roughly twice as many iterations

and twice as much runtime as Broyden and SR1.
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The right table shows the mean values of �ve runtimes in seconds, measured for

a single CPU without parallelization. Despite their higher iteration counts, the three

hybrid methods have much smaller runtimes than the semismooth Newton method.

The bottom line depicts the mean value per column of the runtime in microseconds

divided by #G#2 , a number that varies only slightly per column (and per row, al-

though not displayed). We regard this quantity as an e�ciency index and denote it

by E. In contrast, the runtime of the semismooth Newton method increases faster

in #2 than linearly. We attribute this to the fact that the cg method requires more

iterations for larger systems and that these iterations involve expensive operations

for SN. Therefore, the speedup factor of the Broyden variant of the hybrid method

over the semismooth Newton method rises with the number of time instances, start-

ing at 7 and reaching 70 for #2 = 17216 and #G = 481. Using SR1 updates leads to

similar runtimes with a speedup of up to 68. As already seen in the left table, the use

of BFGS updates produces higher iteration counts resulting in an increased runtime.

Still, a speedup factor of up to 37 over the semismooth Newton method is reached.

Iteration count

#2 SN Broyden SR1 BFGS

269 10 10 32 34 35 27 89 41

538 9 9 28 34 29 27 73 38

1076 9 9 31 33 30 27 55 32

2152 9 9 31 39 25 26 54 40

4304 9 9 29 28 29 26 53 36

8608 9 9 28 34 30 26 53 36

17216 9 9 28 28 27 30 53 36

∅ 9.1 9.1 29.6 32.9 29.3 27 61.4 37

Runtime

SN Broyden SR1 BFGS

23 181 3 33 3 26 8 39

46 507 7 69 5 52 13 73

117 1193 13 139 11 114 20 137

322 3199∗ 23 317 18 213 40 319

1106∗ 43 438 45 407 77 559

4485∗ 90 1092 95 841 168 1154

12755∗ 183 2120∗ 188 1796∗ 341 2390∗

E 23.2 26.1 21.2 20.6 44.0 28.5

Table 9: Iterations (left table) and runtime in seconds (right table) for di�erent num-

bers of control points #2 (rows) and #G = 481, 4811 (two columns per method). The

runtimes are mean values from �ve runs, respectively, one run if marked with an

asterisk. For the e�ciency index E a smaller value indicates greater e�ciency.

Let us take a closer look at the convergence properties of the di�erent quasi-

Newton updates in the trust-region method. To this end, the solution is �rst com-

puted in high precision with the semismooth Newton method and a relative toler-

ance of 10−13. Then the di�erent optimization runs are performed with a relative

tolerance of 10−7, measured in ‖� (·)‖!2 (� ) . The results are displayed in Table 10,

with the error norms de�ned as in the �rst example, see (11). The table shows that

all methods reduce all six errors to approximately the size of the relative tolerance,

but the semismooth Newton method needs much fewer iterations to achieve this, cf.

Table 9. We attribute this to the strong nonconvexity of the bilinear problem at hand.

As in the �rst example we have 4:
D,!2
≤ 4:

@,!2
and 4:

D,!∞ ≤ 4
:
@,!∞ , but this relationship

is not satis�ed for the �1 (� )-norm, which, however, does not impede 4:
D,�1
→ 0.
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SN Broyden

4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞ 4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞

3 · 10−3 3 · 10−3 4 · 10−2 3 · 10−2 7 · 10−2 7 · 10−2 6 · 10−7 9 · 10−7 2 · 10−5 6 · 10−6 1 · 10−5 1 · 10−5
6 · 10−4 9 · 10−4 2 · 10−2 6 · 10−3 1 · 10−2 1 · 10−2 2 · 10−7 2 · 10−7 4 · 10−6 2 · 10−6 2 · 10−6 2 · 10−6
1 · 10−5 2 · 10−5 4 · 10−4 1 · 10−4 2 · 10−4 2 · 10−4 8 · 10−8 1 · 10−7 2 · 10−6 8 · 10−7 1 · 10−6 1 · 10−6
2 · 10−9 3 · 10−9 4 · 10−8 2 · 10−8 3 · 10−8 5 · 10−8 7 · 10−9 9 · 10−9 2 · 10−7 8 · 10−8 1 · 10−7 1 · 10−7

SR1 BFGS

4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞ 4:
D,!2

4:
@,!2

4:
D,�1

4:
@,�1

4:
D,!∞ 4:

@,!∞

8 · 10−7 2 · 10−6 3 · 10−5 2 · 10−5 1 · 10−5 4 · 10−5 5 · 10−8 8 · 10−8 2 · 10−6 6 · 10−7 1 · 10−6 1 · 10−6
3 · 10−7 9 · 10−7 1 · 10−5 8 · 10−6 6 · 10−6 2 · 10−5 4 · 10−8 7 · 10−8 1 · 10−6 5 · 10−7 9 · 10−7 1 · 10−6
8 · 10−8 1 · 10−7 2 · 10−6 2 · 10−6 1 · 10−6 2 · 10−6 4 · 10−8 6 · 10−8 1 · 10−6 4 · 10−7 7 · 10−7 9 · 10−7
1 · 10−8 3 · 10−8 2 · 10−7 3 · 10−7 2 · 10−7 6 · 10−7 3 · 10−8 5 · 10−8 1 · 10−6 3 · 10−7 6 · 10−7 8 · 10−7

Table 10: Errors of the hybrid methods in di�erent norms for the �nal iterations.

6.2.2 Comparison of the globalization techniques

This section is devoted to comparing the three globalizations tr-cg, ls-GMRES and

nls-GMRES on the bilinear control problem of the Bloch equations. The globaliza-

tions are paired with the semismooth Newton method and the three limited-memory

quasi-Newton methods. For each of these twelve combinations, 2000 optimization

runs from a random initial (Matlab rand) @0 are performed with the following pa-

rameters: #2 = 269, #G = 481, U = 5 · 10−4, V = 10−4, up to 300 iterations, rela-

tive tolerance 10−4, cg/GMRES tolerance 10−10, up to 100 cg/GMRES iterations. The

monotone line search operates on the residual ‖� (@)‖!2 (� ) , while the non-monotone

line search is tested with #ls = 2, 3, 4, 5 based on the objective 5 (D) +i (D) and based

on the residual ‖� (@)‖!2 (� ) . Due to space limitations we show only the best results,

which are obtained with #ls = 2 and '(D) = 5 (D) + i (D).
Throughout the 8000 optimization runs with tr-cg, twelve di�erent stationary

points are observed, whose controls are depicted in Figure 3, divided into three sets

(top row). Every set of four controls yields identical optimal values <̄ := 5 (D̄)+i (D̄),
control norms ‖D̄‖* , and �nal magnetization (bottom row). The four controls are

related by axial symmetry to the C-axis and the axis C = ) /2. Since these four controls

are equivalent in practical application, they are counted henceforth as one solution

with multiplicity four. The relative occurrences of the resulting three candidates for

a minimizer are depicted in the upper three rows of Table 11 in columns �ve to eight.

The lower part of the table additionally displays the relative occurrences of runs that

do not reach the prescribed relative tolerance within 300 iterations; they are labeled

“not converged”. The average objective value returned by the optimizer ∅ <̄ and

the average runtime in seconds are also shown. In contrast to previous experiments

they are taken over all runs here, i.e., they include also the “not converged” runs.

In particular, we observe that SN, Br and SR always meet the relative tolerance.

In contrast, one seventh of the BFGS runs does not converge. In fact, these runs

yield the same twelve minimizers but fail to reach the prescribed tolerance, which

is underlined by the agreeing values of ∅ <̄. This mean objective value is ∅ <̄ =

0.64 · 10−3 for all four methods with tr-cg, which is signi�cantly smaller than the
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Fig. 3: Four optimized controls with the same objective value (top) and their slice

pro�les (bottom, desired state in red) for the three best observed candidates <̄ ·103 =
0.61906 (left), <̄ · 103 = 0.64959 (mid), and <̄ · 103 = 0.67280 (right).

values achieved with the other globalization techniques. The mean runtime shows

a clear speedup of the hybrid methods compared to SN, despite the fact that this is

a small scale example with #C = 270 and #G = 481.

In contrast to the trust-region method, the line search globalizations �nd many

more stationary points, 78 in total. However, 49 of these have a prohibitively high

cost. They are summarized in lines number 10 and 11 of Table 11. The results with

monotone line search (ls-GMRES) are depicted in the fourth column group of Ta-

ble 11. Semismooth Newton with a basic monotone line search on the residual ‖� (@)‖!2 (� )
quickly converges to a noncompetitive minimizer in nearly all cases. The three

quasi-Newton methods yield smaller cost values in the mean, but most of the runs

fail to match the prescribed relative tolerance. The mean optimal values of all four

methods are much larger than those obtained with tr-cg.

The non-monotone line search nls-GMRES is more e�ective than ls-GMRES for

all three quasi-Newton methods, see the last column group of Table 11. We note

that the number of runs that do not converge is smaller than for the monotone line

search. In particular, Broyden and BFGS converge in most of the cases. Moreover, the

best control and the top three controls are found more often leading to much better

average optimal values compared to ls-GMRES. However, excellent values similar to

those of tr-cg are attained only for BFGS. Notably, the semismooth Newton method

does not bene�t from the non-monotone line search; it behaves similarly as with

ls-GMRES. It is also worth mentioning that the average runtimes of the tr-cg hybrid

quasi-Newton methods are only slightly above those of the nls-GMRES variant.

Summarizing, in this application problem the tr-cg globalization robustly deliv-

ers the top-three candidates for all four optimization methods. In contrast, the line

search globalizations often have di�culties with convergence for the quasi-Newton

methods, and tend to noncompetitive solutions for the semismooth Newton method.

Thus, for optimal control of the Bloch equations tr-cg should clearly be preferred

over a line search globalization for the semismooth Newton, the hybrid Broyden,

and the SR1 method. For BFGS, both tr-cg and nls-GMRES work equally well.
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% (tr-cg) % (ls-GMRES) % (nls-GMRES)

nr mult <̄ · 103 ‖D̄ ‖!2 SN Br SR BF SN Br SR BF SN Br SR BF

1 4 0.61906 1.1961 41.6 36.7 38.4 37.3 11.1 0.2 7.7 0.2 39.6 18.8 44.8

2 4 0.64959 1.1367 45.2 43.8 43.7 40.9 3.8 0.2 1.9 0.1 20.9 7.8 31.7

3 4 0.67280 1.1215 13.2 19.6 17.9 7.7 1.1 0.1 1.0 6.7 4.3 6.6

4 2 0.67608 1.1020 0.1 0.1

5 3 0.69636 1.1488 0.1 0.2 0.1

6 3 1.11919 1.1522 0.1 0.1 0.5

7 1 1.57083 1.0094 0.1 0.1

8 4 1.61472 1.0902 0.1 0.1 0.2

9 4 1.82260 1.6886 1.4 0.3 0.2

10 36 ∈ [2, 3] 0.1 4.2 0.3 1.9 14.6 2.8 4.8

11 13 > 3 99.2 88.4

not converged 14.2 0.7 79.5 99.2 87.6 11.1 16.9 65.3 11.9

∅ <̄ · 103 0.64 0.64 0.64 0.64 4.18 2.78 2.78 2.78 4.14 0.94 1.17 0.72

∅ runtime 23 4 3 6 19 3 2 3 19 3 4 5

Table 11: Quality of the solutions for di�erent optimization and globalization meth-

ods for U = 5 · 10−4, V = 10−4. 2000 optimization runs from random initializations

are performed for each combination. Depicted are the multiplicity of the minimizer,

the optimal value <̄, and the norm of the optimal control. The next three column

groups show the relative occurrence (%) of the respective solution, separately for tr-

cg, ls-GMRES and nls-GMRES. Each column group is divided into the four methods

semismooth Newton (SN), Broyden (Br), SR1 (SR), and BFGS (BF). The three bottom

lines depict the percentage of runs that did not converge, the average objective value

∅ <̄, and the average runtime, both averaged over all runs.

7 Conclusions

In this paper we have studied a hybrid approach for nonsmooth optimal control

problems that blends semismooth Newton and quasi-Newton methods. We estab-

lished its local superlinear convergence and provided numerical results to show that

it has signi�cantly lower runtime than semismooth Newton methods. A matrix-free

limited-memory truncated trust-region variant seems to be particularly promising.
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A Trust-region globalization of the hybrid method

We state the precise algorithm of tr-cg that is employed in the numerical experiments. It is designed

for solving (P) from Section 3 and uses the notation of that section. The objective of (P) is denoted by

� : * → ℝ, i.e., � (D) := 5 (D) + i (D) . For the norm ‖ · ‖ that appears in the algorithm we used ‖ · ‖* ,

which worked well. The mapping � is given by � (@) = ∇ ˆ5 (ProxiW (@)) + W@, cf. Lemma 1.

Algorithm 2: Hybrid semismooth quasi-Newton-cg method with trust-

region globalization

Input: 0 < toltr, tolcg � 1; maxittr, maxitcg ∈ ℕ; initial guess (D0, �0) ;
trust-region parameters 0 < r0 ≤ rmax, 0 < f1 < f2 < f3 < 1, 0 < 51, 53 < 1 < 52

1 Set : = 0, r = r0; compute @0 := − 1
W
∇ ˆ5 (D0) ; compute � (@0) ; choose " ∈ m ProxiW (@0)

2 De�ne 〈G, H 〉 = (G,"H)*
3 while

[
‖� (@: ) ‖ > toltr ‖� (@0) ‖ and : ≤ maxittr

]
do // trust-region loop

4 Set ?0 = A0 = −� (@: ) , X@ = 0, 8 = 0

5 while
[
‖A 8 ‖ > tolcg ‖A0 ‖ and 8 ≤ maxitcg

]
do // Steihaug-cg loop

6 Set "̃ = �:" + W� ; compute "̃?8

7 if 〈?8 , "̃?8 〉 ≤ 0 then // negative curvature

8 Compute max{g : ‖X@ + g?8 ‖ ≤ r } // go to boundary of trust-region

9 Set X@ = X@ + g?8
10 break
11 end
12 Compute U = ‖A 8 ‖/〈?8 , "̃?8 〉
13 if ‖X@ + U?8 ‖ ≥ r then // step too large

14 Compute max{g : ‖X@ + g?8 ‖ ≤ r } // go to boundary of trust-region

15 Set X@ = X@ + g?8
16 break
17 end
18 Set A 8+1 = A 8 − U"̃?8
19 Set ?8+1 = A 8+1 + ‖A 8+1 ‖2/‖A 8 ‖2?8
20 Set X@ = X@ + U?8 , 8 = 8 + 1
21 end
22 Compute X �0 = � (ProxiW (@: )) − � (ProxiW (@: + X@)) // actual decrease

23 Compute X �< = − 1
2
〈X@, "̃X@〉 − 〈X@,� (@: ) 〉 // predicted decrease

24 if
[
X �0 > Y and X �0 > f1X �<

]
then // accept step

25 Set @:+1 = @: + X@
26 Compute � (@:+1) ; choose " ∈ m ProxiW (@:+1)
27 De�ne 〈G, H 〉 = (G,"H)*
28 if |X �0/X �< − 1 | ≤ 1 − f3 then // increase radius
29 Set r = min {52r, rmax }
30 else if |X �0/X �< − 1 | > 1 − f2 then // decrease radius
31 Set r = 53r

32 end
33 else
34 Set r = 51r , @:+1 = @: // decrease radius
35 end
36 Set B:D = ProxiW (@:+1) − ProxiW (@: ) , H: = ∇ ˆ5 (ProxiW (@:+1)) − ∇ ˆ5 (ProxiW (@: ))
37 Compute �:+1 by quasi-Newton update

38 Set : = : + 1
39 end

Output: (@: , ProxiW (@: ))
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