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Abstract We study the convergence properties of the matrices generated
by the Broyden–like method for the solution of nonlinear systems of equa-
tions, with particular emphasis on Broyden’s original method. We develop
various sufficient conditions for the convergence of these matrices and use high-
precision numerical experiments to demonstrate on several examples that these
conditions are satisfied. We also show how the developed sufficient conditions
are related to the rate of convergence of the iterates of the method. In particu-
lar, this work contains the following findings: In all numerical experiments the
Broyden–like updates converge at least r-linearly, and if the Jacobian at the
root is regular then the iterates appear to converge with an asymptotical q-
order larger than one. Furthermore, the cluster points of the normalized steps
span a one-dimensional linear space in all numerical experiments. This implies
that the steps consistently violate uniform linear independence and indicates
that the available convergence results for the Broyden–like matrices require
assumptions that are unlikely to be satisfied. For the special case of the Broy-
den updates the numerical results suggest 2n-step q-quadratical convergence
under the standard assumptions for q-superlinear convergence of the iterates.
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Mathematics Subject Classification (2010) 49M15 · 65H10 · 90C53

1 Introduction

This work investigates the convergence of the matrices that the Broyden–like
method generates, see Algorithm BL below. As part of this investigation we
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study the question whether the iterates of the Broyden–like method converge
faster than q-superlinearly. Several researchers have pointed out that it is un-
known if the Broyden–like matrices converge, for instance under the standard
assumptions for q-superlinear convergence of the iterates, cf., e.g., the survey
articles [11, Example 5.3], [26, p. 117], [16, p. 306] and [2, p. 940]. The main
contributions of this work are

– to propose conditions that imply convergence of the Broyden–like matrices
and hold in numerical experiments,

– to prove that these conditions are satisfied in some special cases,
– to relate these conditions to the rate of convergence of the iterates and to

study the rate of convergence of the iterates in numerical experiments,
– to present numerical evidence that the Broyden–like matrices converge un-

der the standard assumptions for q-superlinear convergence of the iterates.

Further contributions include the observations that the cluster points of the
normalized Broyden–like steps consistently span a one-dimensional space and
that the limit of the Broyden–like matrices never equals the true Jacobian.
Each of these findings implies that the normalized Broyden–like steps consis-
tently violate uniform linear independence. This suggests that the only previ-
ously available convergence result for the Broyden–like matrices requires as-
sumptions that are frequently (possibly always) violated and thus underlines
the significance of the new convergence conditions that we develop here.

The Broyden–like method, cf., e.g., [27], [32, Section 6] and [19, Algo-
rithm 1], is a well-known tool for finding a solution of a smooth system of
equations F (u) = 0, where F maps from Rn into Rn. It reads as follows.

Algorithm BL: Broyden–like method

Input: (u0, B0) ∈ Rn × Rn×n, B0 invertible, 0 < σmin ≤ σmax < 2
1 for k = 0, 1, 2, . . . do
2 if F (uk) = 0 then let u∗ := uk; STOP

3 Solve Bks
k = −F (uk) for sk

4 Let uk+1 := uk + sk and yk := F (uk+1)− F (uk)
5 Choose σk ∈ [σmin, σmax]

6 Let Bk+1 := Bk + σk(yk −Bksk)
(sk)T

‖sk‖2

7 end
Output: u∗

Choosing (σk) ≡ 1 for the updating sequence (σk) recovers Broyden’s
method [5]. An appropriate choice of σk ensures that Bk+1 is invertible if
Bk is invertible. In fact, the Sherman–Morrison formula shows that all except
at most one value of σk maintain invertibility of Bk. We emphasize that both
Broyden’s method and the more general Algorithm BL continue to attract
the interest of researchers, cf. for instance the recent extensions to set-valued
maps in, e.g., [3,1] or the incorporation into infinite-dimensional semismooth
quasi-Newton methods for PDE-constrained optimization in [28,25].
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This work is devoted to the convergence of (Bk). Following the approach
of other studies on the convergence of quasi-Newton matrices such as [6] and
[12],we develop conditions that ensure the convergence of (Bk) and verify in
numerical experiments of high-precision that these conditions are satisfied. We
also discuss the implications of these conditions for the rate of convergence of
(uk) and study this rate in the numerical experiments.

Let us briefly address the connection between convergence of (Bk) and
(uk). We restrict the discussion to the case that (uk) converges to a root ū
of F at which F ′(ū) is regular; the singular case is covered in [23]. If F ′(ū)
is invertible and (uk) converges q-superlinearly to ū, then the Broyden–like
updates (Bk+1 −Bk) and the iterates (uk) satisfy

(1) c ‖Bk+1 −Bk‖ ≤
∥∥uk+1 − ū

∥∥
‖uk − ū‖

≤ C ‖Bk+1 −Bk‖

for all k ≥ 0 with constants c, C > 0, cf. Lemma 3. Thus, by quantifying
how fast (‖Bk+1 − Bk‖) converges to zero, we obtain additional information
about the q-superlinear convergence of (uk). For instance, if (‖Bk+1 − Bk‖)
converges r-linearly to zero (which holds in all numerical experiments), then
there is c ∈ [0, 1) such that ‖uk+1− ū‖ ≤ ck‖uk − ū‖ for all k sufficiently large.

This is slower than a q-order of convergence, i.e. ‖uk+1− ū‖ ≤ C‖uk − ū‖δ for
some C > 0 and δ > 1 and all k sufficiently large, but faster than

∞∑
k=0

(∥∥uk+1 − ū
∥∥

‖uk − ū‖

)2

<∞,

a rate of convergence that has recently been proven for Algorithm BL and is
evidently faster than q-superlinear convergence; cf. [24]. The numerical experi-
ments for regular F ′(ū) indicate quite convincingly that (uk) always converges
with a q-order δ > 1; the value of δ is somewhat close to but smaller than 2n+1

2n .
This, in turn, yields that (‖Bk+1 − Bk‖) exhibits an r-order of convergence
no smaller than δ and, in particular, converges r-superlinearly to zero. The
numerical experiments with n ≤ 4 indeed display this r-superlinear rate, but
the experiments with larger n are inconclusive in this respect. However, since
2n+1

2n is rather close to 1 in the inconclusive experiments, we conjecture that
(‖Bk+1−Bk‖) does indeed tend to zero with r-order δ, but that experiments of
even higher precision would be needed to confirm or reject this. Finally, since
the concrete value of δ appears quite reliable in the experiments and since the
experiments show that (‖Bk+1−Bk‖) is not monotone, we infer from (1) that
the r-order of convergence of (‖Bk+1 − Bk‖) is no larger than δ. In a certain
sense this would be a rather complete answer to the question of how fast (uk)
and (Bk) converge in Algorithm BL. In passing let us emphasize again that
the statements concerning convergence rates are based on numerical observa-
tions, not on theoretical results. Yet, such observations have not been available
before and contribute to a better understanding of the convergence behavior
of Algorithm BL. Furthermore, they may hopefully prove to be a valuable
starting point for theoretical analysis in this direction.
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Before discussing the novel conditions for convergence of (Bk) that we
propose in this work, we now turn our attention to the conditions that are
already available. To this end, we assume that (uk) converges to a root ū of F
and distinguish the two cases that F ′(ū) is either regular or singular. In the first
case there is only one general result available that ensures convergence of (Bk):
It is established in [27, Theorem 5.7] and in [20] that if the sequence of steps
(sk) is uniformly linearly independent, cf. [6, (AS.4)] for a definition, then (Bk)
converges and limk→∞Bk = F ′(ū). However, conditions which imply uniform
linear independence of (sk) are unknown and we are not aware of a single
example—be it theoretical or numerical—in which limk→∞Bk = F ′(ū) holds
for n > 1 including the numerical examples contained in this work. Instead,
available examples for Broyden’s method such as [9, Example 5.3] and [10,
Lemma 8.2.7] show that (uk, Bk) can converge to (ū, B) with B 6= F ′(ū) in
situations where the standard assumptions for q-superlinear convergence are
satisfied. In addition, we have shown in [22, Corollary 1] that if one or more
component functions of F are affine and B0 agrees with F ′(u0) on at least one
of the corresponding rows, then (sk) violates uniform linear independence. We
conclude that while the available general convergence result may be helpful
if the matrix update uses other directions than sk, its applicability for the
matrices generated by Algorithm BL seems quite limited if F ′(ū) is regular.
This statement also holds if F ′(ū) is singular: The recent results in [23] show for
Broyden’s method that (Bk) converges, but that (sk) violates uniform linear
independence [23, Corollary 2]. Summarizing, there are no results available
for general nonlinear F with regular F ′(ū) that show convergence of (Bk) and
whose assumptions are satisfied in numerical examples. The present work aims
at closing this gap. We develop various sufficient conditions for the convergence
of the Broyden–like matrices and we verify in numerical experiments with 1000
digits accuracy that several of these conditions are consistently satisfied. On
a side note, all conditions allow for limk→∞Bk 6= F ′(ū).

Next we outline the conditions for the convergence of the Broyden–like
matrices that are developed in this work. They are grouped into two sets. The
first set evolves around the cluster points of the normalized steps

ŝk :=
sk

‖sk‖
, k ≥ 0.

Our main result states that (Bk) converges if all cluster points of (ŝk) are
contained in a set of the form {±s̄} for some unit vector s̄ and

(2)
∑
k

min
{∥∥ŝk − s̄∥∥ ,∥∥ŝk + s̄

∥∥} <∞
is satisfied (the result still holds under a somewhat weaker summability prop-
erty); cf. section ??. These assumptions may seem very restrictive, but they
are, in fact, consistently satisfied in the numerical experiments. For the case
that F ′(ū) is singular with some additional structure, we will actually prove
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that (2) holds, complementing results from [23]. This case also serves as a mo-
tivation to derive the convergence conditions in this work without requiring
invertibility of F ′(ū) or superlinear convergence of (uk) whenever possible (in
the singular setting the convergence of (uk) is only q-linear). Furthermore, we
point out that if (ŝk) satisfies (2), then it cannot be uniformly linearly inde-
pendent according to [23, Corollary 1]. For the case that F ′(ū) is regular, we
were not able to prove that (2) is satisfied, except in the special case that F
has only one nonlinear component function and the rows of B0 that corre-
spond to affine components of F match the corresponding rows of F ′(u0): [22,
Corollary 1] implies that (2) holds since for k ≥ 1 all summands vanish.

The second set of sufficient conditions does not involve the cluster points
of (ŝk). Instead, we focus on the norm of the updates

εk := ‖Bk+1 −Bk‖, k ≥ 0.

The second set is divided into three blocks of conditions. In the first block
we show, for instance, that the following condition ensures convergence of the
Broyden–like matrices: (uk) converges to some ū and there are M ∈ N ∪ {0}
and γ,C > 0 such that

(3)
∥∥uk+1 − ū

∥∥ ≤ C ∥∥uk − ū∥∥∥∥uk−M − ū∥∥γ
for all sufficiently large k. Under the standard conditions for q-superlinear
convergence of (uk) it seems natural to expect that (3) will hold for some
M proportional to n, but already for Broyden’s method—let alone the more
general Broyden–like method—such results are almost non-existent in the lit-
erature (for n > 1), so a rigorous proof that (3) holds seems unavailable. The
only result in this direction that we are aware of is [18, Theorem 4.1], but for
it to apply a uniform linear independence–type assumption is required, which,
in view of the violation of uniform linear independence that we observe in the
numerical experiments, is why we have chosen to omit results based on [18,
Theorem 4.1] in the present work. Let us, nonetheless, mention that if (3)
holds and (uk) converges at least r-superlinearly to ū, then (εk) converges at
least r-superlinearly to zero, which by (1) implies that (uk) converges quite
a bit faster than q-superlinearly. In the numerical experiments we find con-
sistently that (3) holds for M = 0 with a γ > 1 that depends on n and the
choice of (σk) (but not on k if (σk) is constant), which is nothing else but the
q-order of (uk) that we discussed above. This would imply that (εk) converges
at least with the respective r-order, which by (1) implies that (uk) converges
even faster than with q-order γ.1 It is important to note that we actually prove
convergence of (Bk) under a more general condition than (3), cf. Theorem 3.
This enables us to prove that this conditions is satisfied for singular F ′(ū), cf.
Theorem 7 2), which is not true for (3) since in the singular case (uk) does
not converge q-superlinearly.

1 Is this really true???
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The second block uses that under well-known assumptions there holds∑
k ε

2
k <∞. Therefore, if there are N ∈ N and C > 0 such that

(4) εk ≤ C max
{
ε2
k−1, ε

2
k−2, . . . , ε

2
k−N

}
is valid for all k sufficiently large, then

∑
k εk < ∞, so (Bk) converges. The

requirement that we actually use is more general than (4), cf. Theorem 4. It is
perhaps the most intriguing discovery of this work that for Broyden’s method
(4) seems to be satisfied with N = 2n under the standard assumptions for
q-superlinear convergence in a small vicinity of the root ū (smaller than is
needed for q-superlinear convergence). In fact, it seems that there we have

εk+2n ≤ Cε2
k

for some constant C > 0 and all sufficiently large k, which is to say that the
updates (‖Bk+1 − Bk‖) are 2n–step q-quadratically convergent. If this is at
all true, then it appears likely that it is connected to Gay’s famous theorem
[13] on 2n-step q-quadratic convergence of the iterates (uk). In any case it is
quite clear from the numerical experiments that the Broyden updates exhibit
multi-step convergence of q-order greater than one, which implies in particular
that they possess an r-order of convergence larger than one which matches the
rate of convergence from the discussion above.

In the third block we directly involve Gay’s theorem to derive a sufficient
condition. A simplified version of this condition asserts convergence if there
exist M ∈ N and C > 0 such that

(5) εk ≤ C min
{
εk−M−1, εk−M−2, . . . , εk−M−2n

}
holds for all k large enough; cf. Theorem 6. We regard this as a monotonicity-
type property and we point out that under the standard assumptions for q-
superlinear convergence of (uk), (εk) is a null sequence. Yet again, no result
that implies (5) is available.

In summary, the theoretical results in combination with the numerical ex-
periments presented in this work shed light on the convergence behavior of the
Broyden–like matrices (Bk) and the iterates (uk). In particular, they strongly
suggest that these matrices converge at least r-linearly which would imply that
(uk) converges somewhat faster to ū than q-superlinearly. The theoretical re-
sults contain several novel sufficient conditions for the convergence of (Bk)
and some of these conditions are satisfied in every single one of the numerical
experiments. Moreover, in the theoretical part we show that some of the novel
sufficient conditions hold on certain singular and regular problems.

Let us now point out related literature. As mentioned above the approach
to provide sufficient conditions for convergence and investigate in numerical
experiments if these conditions are met is inspired by the existing literature
on convergence of quasi-Newton matrices, where this is a common theme. For
instance, this is done in [6] with uniform linear independence (ULI) as main
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assumption, in and in [12] with positive definiteness as main assumption. Pow-
ell in [30] shows that if ULI is satisfied, then the PSB matrices converge to the
true Hessian, but in contrast to the SR1 results he applies algorithmic modifi-
cations to ensure that ULI holds. Strong convergence results are available for
the DFP and BFGS matrices. In [14] it is shown that they converge under very
general assumptions and in [33] the results of [14] are extended to the convex
Broyden class excluding DFP. We stress that ULI is not used in [14,33]. More
recent work like [4,15] is concerned with using quasi-Newton updates to invert
matrices. However, the directions that are used for the matrix updates are not
generated by a quasi-Newton method, so those works seem largely unrelated
to the subject of this article.

Results on the (single-step) convergence of the iterates of quasi-Newton
methods with q-order larger than 1 are extremely scarce. We are only aware
of the very recent [31] that establishes such estimates for the convex Broyden
class on self-concordant objectives.

This paper is organized as follows. In section 2 we establish notation and
preparatory results. Section 3 develops the sufficient conditions for convergence
of the Broyden–like matrices and section 4 shows that some of these conditions
hold for problems with singular Jacobian. Section 5 is devoted to numerical
experiments and section 6 provides a short summary of our findings.

2 Preliminaries

2.1 Notation

We use N := {1, 2, 3, . . .} and N0 := N ∪ {0}. We work in the Euclidean
Rn, n ∈ N, whose norm we denote by ‖·‖. For matrices we exclusively use the
spectral norm, which is also denoted by ‖·‖. We abbreviate [n] := {1, 2, . . . , n}.
For A ∈ Rn×n, Aj indicates the j-th row of A, regarded as a row vector. In
contrast, Ak signifies an element of a sequence (Ak). The span of C ⊂ Rn is
denoted by 〈C〉. If C = {s̄} for some s̄ ∈ Rn, then we use 〈s̄〉 instead of 〈{s̄}〉.
The number of elements of a finite set M is indicated by |M |.

2.2 The differentiability assumption

We will often require the following differentiability assumption of F .

Assumption 1 Let F : Rn → Rn be differentiable in a neighborhood of some
ū with F (ū) = 0 and let F ′ satisfy ‖F ′(u)− F ′(ū)‖ ≤ L‖u− ū‖α for all u in
that neighborhood and constants L,α > 0.

2.3 Convergence of the Broyden–like method

To conveniently state convergence results for Algorithm BL let us introduce
some notation. To this end, we remark that whenever an infinite sequence (uk)
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is generated by Algorithm BL, then sk 6= 0 for all k is ensured. We use this
tacitly from now on.

Definition 1 Let F : Rn → Rn and let (uk), (sk), (σk) and (Bk) be generated
by Algorithm BL. For all k ∈ N0 denote

ŝk :=
sk

‖sk‖
and εk := ‖Bk+1 −Bk‖ = σk

∥∥F (uk+1)
∥∥

‖sk‖
.

If F is differentiable at some ū, then we set for k ∈ N0

Ek := Bk − F ′(ū) and Rkū :=
F (uk+1)− F (uk)− F ′(ū)(sk)

‖sk‖
.

To follow standard notation for quasi-Newton methods we have suppressed a
superscript ū in Ek. It will always be clear what ū is, anyway.

Remark 1 We will often require (‖Rkū‖) to converge sufficiently fast to zero.
Therefore, note that due to Assumption 1 there holds∥∥Rkū∥∥ ≤ L∥∥uk − ū∥∥α
for all sufficiently large k, provided that uk → ū for k → ∞. We conclude
that (‖Rkū‖) inherits its r-rate of convergence from (uk). For instance, if (uk)
converges q-superlinearly to ū, then (‖Rkū‖) converges r-superlinearly to zero.

Let us collect the convergence properties of Algorithm BL that we will use.

Theorem 1 Let Assumption 1 hold.

1) If F ′(ū) is invertible, then there is δ > 0 such that for every (u0, B0) with
‖u0 − ū‖ ≤ δ and ‖B0 − F ′(ū)‖ ≤ δ Algorithm BL either terminates after
finitely many iterations with output u∗ = ū or it generates a sequence (uk)
that converges q-linearly to ū; all Bk are invertible with (‖Bk‖) < ∞ and
(‖B−1

k ‖) <∞.
2) Let (uk) be generated by Algorithm BL. If (uk) satisfies

(6)

∞∑
k=0

∥∥uk − ū∥∥α <∞,
then

(7)

∞∑
k=0

∥∥Ekŝk∥∥2
<∞

and
∞∑
k=0

‖Ek+1E
T
k+1 − EkETk ‖ <∞

are satisfied. In particular, (EkE
T
k ) converges, the singular values (Λj(Ek))k,

j ∈ [n], converge and there holds
∑
k Λ1(Ek)2 <∞ for the smallest singular

value, (‖Ek‖) converges and the row norms (‖Ejk‖)k, j ∈ [n], converge.
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3) Let (uk) be generated by Algorithm BL and suppose that it satisfies (7). If
F ′(ū) is invertible, then there holds

∞∑
k=0

(∥∥uk+1 − ū
∥∥

‖uk − ū‖

)2

<∞.

In particular, (uk) converges q-superlinearly to ū.
Moreover, there are constants c, C > 0 such that we have for all k ∈ N0

c‖sk‖ ≤ ‖F (uk)‖ ≤ C‖sk‖ and c‖uk − ū‖ ≤ ‖F (uk)‖ ≤ C‖uk − ū‖.

Proof The claims of 1) and 3) as well as (7) are established in [24]. We prove
the remaining parts of 2). To this end, we denote

Pk : Rn → Rn, Pk := I − σkŝk(ŝk)T .

It is elementary to see that Ek+1 = EkPk + σkR
k
ū(ŝk)T , and this implies

Ek+1E
T
k+1 = EkPkP

T
k E

T
k +σkEkPkŝ

k(Rkū)T +σkR
k
ū(ŝk)TPTk E

T
k +σ2

kR
k
ū(Rkū)T .

Using PkP
T
k = I − σk(2− σk)ŝk(ŝk)T and Pkŝ

k = (1− σk)ŝk we obtain∥∥Ek+1E
T
k+1 − EkETk

∥∥ ≤ σk(2−σk)
∥∥Ekŝk∥∥2

+2σk|1−σk|
∥∥Ekŝk∥∥∥∥Rkū∥∥+σ2

k

∥∥Rkū∥∥2
.

Since t(2− t) ≤ 1 for t ∈ [0, 2] and 2ab ≤ a2 + b2 for a, b ∈ R, we find that∥∥Ek+1E
T
k+1 − EkETk

∥∥ ≤ 2
∥∥Ekŝk∥∥2

+ 5
∥∥Rkū∥∥2

.

In view of (7) and
∑
k‖Rkū‖ < ∞, the latter following from (6), this proves∑

k‖Ek+1E
T
k+1 − EkETk ‖ <∞. We conclude that limk→∞EkE

T
k exists. This,

in turn, implies that the singular values of (Ek) converge for k → ∞ since
the eigenvalues of (EkE

T
k ) converge. (For Ak → A, (Ak) and A symmetric,

convergence of the eigenvalues follows, e.g., from [17, Corollary 6.3.4].) Since
the smallest eigenvalue of ETk Ek is Λ1(Ek)2, we have

Λ1(Ek)2 = min
‖v‖=1

vTETk Ekv ≤
∥∥Ekŝk∥∥2

,

hence
∑
k Λ1(Ek)2 < ∞ by (7). Since Λn(Ek) = ‖Ek‖ for all k, (‖Ek‖) con-

verges, too. Since every component of the matrix EkE
T
k converges, we obtain

the convergence of all (Ejk(Eik)T ) for k → ∞, where i, j ∈ [n]. Taking i = j

shows that (‖Ejk‖2)k converges for all j ∈ [n], which yields the claim on the
row norms. Evidently, (7) implies limk→∞Ekŝ

k = 0.
It remains to establish the existence of c, C in 3). Since it is well-known

that ‖uk − ū‖/‖sk‖ → 1 for k → ∞ if (uk) converges q-superlinearly to ū,
cf. [8, Lemma 2.1] or [10, Lemma 8.2.3], we infer that it suffices to prove the
existence of c, C > 0 such that

c‖uk − ū‖ ≤ ‖F (uk)‖ ≤ C‖uk − ū‖

holds for all k ∈ N0. Taking F (ū) = 0 into account, the inequality to the
right holds because of the differentiability of F at ū. The inequality to the left
follows from the invertibility of F ′(ū) by standard arguments. ut



10 Florian Mannel

Remark 2 Since (6) holds in particular if (uk) converges r-linearly to ū, we
note that (6) is satisfied under the assumptions of part 1). We point out that
(7) in part 2) follows from (6) without invertibility of F ′(ū); we will use this
when we treat singular problems in section 4. Regarding (‖Ejk‖)k it can also
be shown that for every j ∈ [n]

∞∑
k=0

∣∣∣‖Ejk+1‖ − ‖E
j
k‖
∣∣∣ <∞.

However, we do not need this stronger statement and therefore omit its proof.
Lastly, note that (7) implies the Dennis–Moré condition limk→∞‖Ekŝk‖ = 0.

2.4 Auxiliary results

In this section we collect results on the Broyden–like method that will be
utilized in the convergence analysis in Section 3. In addition, we establish
a connection between the convergence of the Broyden–like matrices and the
superlinear convergence of the iterates, cf. Lemma 3

We start by providing conditions under which (Ek+1ŝ
k) is summable.

Lemma 1 Let Assumption 1 hold and let (uk) be generated by Algorithm BL.

1) Suppose that

(8)

∞∑
k=0

∥∥Rkū∥∥ <∞.
Then we have∑

k

|1− σk|‖Ekŝk‖ <∞ =⇒
∑
k

‖Ek+1ŝ
k‖ <∞.

In particular, there holds
∑
k‖Ek+1ŝ

k‖ <∞ if σk = 1 for all k sufficiently
large or if (7) and

∑
k|1−σk|2 <∞ are valid, provided that (8) is satisfied.

2) Suppose that the sequences(∥∥Rkū∥∥) and
(
|1− σk|‖Ekŝk‖

)
converge r-linearly (r-superlinearly/with r-order p > 1) to zero, then (‖Ek+1ŝ

k‖)
converges r-linearly (r-superlinearly/with r-order p > 1) to zero.
In particular, (‖Ek+1ŝ

k‖) converges with the respective r-rate to zero if
(‖Rkū‖) does and σk = 1 for all k sufficiently large or if (‖Rkū‖) and (|1−σk|)
converge with the respective r-rate to zero and (‖Ek‖) is bounded.
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Proof Proof of 1): From Ek+1 = Ek[I − σkŝk(ŝk)T ] + σkR
k
ū(ŝk)T we obtain∥∥Ek+1ŝ

k
∥∥ ≤ |1− σk|∥∥Ekŝk∥∥+ σmax

∥∥Rkū∥∥
for all k ∈ N0. Summation shows

∑
k‖Ek+1ŝ

k‖ <∞ if
∑
k|1−σk|‖Ekŝk‖ <∞.

If we use Young’s inequality before taking the sum, then we find

K∑
k=0

∥∥Ek+1ŝ
k
∥∥ ≤ 1

2

K∑
k=0

|1− σk|2 +
1

2

K∑
k=0

∥∥Ekŝk∥∥2
+ σmax

K∑
k=0

∥∥Rkū∥∥
for all K ∈ N0, which implies the last claim.
Proof of 2): Similar to the proof of 1). ut

Remark 3 Boundedness of (‖Ek‖) is addressed in part 2 of Theorem 1.

The next result connects ‖Bk+1 −Bk‖ to ‖Ekŝk‖.

Lemma 2 Let (uk) be generated by Algorithm BL. Then for all k ∈ N0

σmin

∥∥Ekŝk∥∥− σmax

∥∥Rkū∥∥ ≤ ‖Bk+1 −Bk‖ ≤ σmax

∥∥Ekŝk∥∥+ σmax

∥∥Rkū∥∥ .
Proof We compute for all k ∈ N0

Bk+1 −Bk = σk
(
yk −Bksk

) (sk)T

‖sk‖2
= σkR

k
ū(ŝk)T − σkEkŝk(ŝk)T .

After some elementary considerations this yields the claim. ut

In the sufficient conditions for the convergence of the Broyden–like matrices
we will often assume that the Dennis–Moré condition holds. The previous
lemma implies that this assumption is necessary.

Corollary 1 Let Assumption 1 hold and let (uk) be generated by Algorithm BL.
Suppose that (uk) converges to ū. If limk→∞Bk exists, then limk→∞Ekŝ

k = 0.

Proof From uk → ū and Assumption 1 we infer limk→∞Rkū = 0. The con-
vergence of (Bk) implies limk→∞‖Bk+1 − Bk‖ = 0, so Lemma 2 yields the
claim. ut

We are particularly interested in rates of convergence of (‖uk − ū‖) that
are faster than q-superlinear. The following result connects the convergence
speed of (‖Bk+1 −Bk‖) to that of (‖uk − ū‖).

Lemma 3 Let (uk) be generated by Algorithm BL. Suppose that (uk) con-
verges q-superlinearly to some ū at which F is differentiable and F ′(ū) is in-
vertible. Then there are constants c, C > 0 such that

c ‖Bk+1 −Bk‖ ≤
∥∥uk+1 − ū

∥∥
‖uk − ū‖

≤ C ‖Bk+1 −Bk‖

is satisfied for all k ∈ N0.2

2 Konstanten spezifizieren!
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Proof This is established in [24].

Remark 4 Under the assumptions of Lemma 3 we have, e.g., the implication

∞∑
k=0

‖Bk+1 −Bk‖ <∞ =⇒
∞∑
k=0

∥∥uk+1 − ū
∥∥

‖uk − ū‖
<∞.

which shows that
∑
k‖Bk+1 − Bk‖ < ∞ yields a rate of convergence for (uk)

that is faster than q-superlinear, cf. also the discussion in the introduction.

3 Sufficient conditions for the convergence of the Broyden–like
matrices

3.1 First set: Conditions based on the cluster points of normalized steps

The first set of sufficient conditions involves the subspace that is spanned by
the cluster points of the normalized steps ŝk.

Definition 2 Let the sequence of steps (sk) be generated by Algorithm BL.
We denote by S the linear space

S :=
〈{

s ∈ Rn : s is a cluster point of (ŝk)
}〉

.

Remark 5 It is a surprising finding of this work that dim(S) = 1 holds in
all numerical experiments. This indicates, in particular, that (sk) frequently
violates uniform linear independence, cf. the discussion in the introduction.

The following result establishes a connection between S and the cluster
points of (Ek) in case dim(S) = 1. In addition, it will allow us to obtain the
first convergence result for (Bk) based on S.

Lemma 4 Let (uk) be generated by Algorithm BL. Let limk→∞Ekŝ
k = 0 and

dim(S) = 1. Then there holds S ⊂ ker(E) for every cluster point E of (Ek).

Proof Let K ⊂ N be such that limK3k→∞Ek = E. As limk→∞Ekŝ
k = 0 we

obtain limK3k→∞Eŝk = 0. By passing to a further subsequence we can assume
without loss of generality that there is s̄ ∈ S with ‖s̄‖ = 1 and limK3k→∞ ŝk =
s̄, which yields Es̄ = 0, hence s̄ ∈ ker(E). From dim(S) = 1 it follows that
〈s̄〉 = S, thus we arrive at the claimed inclusion S ⊂ ker(E). ut

Remark 6 The fact that S is contained in ker(E) for all cluster points E of
(Ek) says that all cluster points of (Bk) agree on S with F ′(ū). While we
have S = ker(E) = 1 in many of the numerical experiments of this paper, the
inclusion S ⊂ ker(E) can be strict: [22, Corollary 2] shows that dim(S) = 1,
but dim(ker(E)) ≥ n − 1 if F has at least n − 1 affine component functions
and the corresponding rows of F ′(u0) agree with those of B0.
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From the previous lemma we obtain the first sufficient condition for conver-
gence of (Bk), albeit only for n ∈ {1, 2}. Let us first address the case n = 1. For
n = 1 there holds dim(S) = 1 and the necessary condition limk→∞Ekŝ

k = 0
obviously implies limk→∞Bk = F ′(ū). In fact, for n = 1 it is possible to show
much more and to extend the results to the case that F has only one nonlinear
equation, cf. [22, Theorem 5]. For n = 2, we can prove the following.

Corollary 2 Let n = 2 and let Assumption 1 hold. Suppose that (6) is satis-
fied and that dim(S) = 1. Then (Bk) converges.

Proof Let j ∈ [n]. Let s̄ with ‖s̄‖ = 1 and S = 〈s̄〉 as well as s̃ with ‖s̃‖ = 1
and s̃T s̄ = 0. Let Ej be a cluster point of (Ejk) and set wj := Ej s̃. From
Ej s̄ = 0, which follows from (7), and n = 2 we infer that Ej = wj s̃

T . As

(‖Ejk‖) converges by Theorem 1 2) and s̃ is independent of the selected cluster

point Ej , it follows that Êj ∈ {±wj s̃T } for any cluster point Ê of (Ek). Thus,

(Ejk) has at most two cluster points. Lemma 2 yields limk→∞‖Ejk+1 − E
j
k‖ =

limk→∞‖Bjk+1−B
j
k‖ = 0, hence (Ejk) cannot have finitely many cluster points

except if it converges, cf. [34, Lemma 10.11]. Thus, (Bjk) converges. ut

Remark 7 Using the technique of [22], cf. in particular [22, Theorem 4], the
results for n = 1 and n = 2 can be extended to mappings F that have no
more than two nonlinear component functions and n− 2 affine ones provided
B0 agrees with F ′(u0) on the rows that correspond to affine components of F .

If n > 2, then dim(S) = 1 is not enough to ensure convergence of (Bk).
Instead, it is necessary that (ŝk) tends to ±s̄ sufficiently fast, where S = 〈s̄〉.
Moreover, it seems also mandatory that σk tends to 1 fast enough, which
is to say that Algorithm BL asymptotically turns into Broyden’s method.
Specifically, we have the following result and its corollary, the consequences of
which for the rate of convergence of (uk) are addressed in Remark 4.

Theorem 2 Let Assumption 1 hold and let (uk) be generated by Algorithm BL.
Suppose that (‖Bk‖) is bounded. Set ζk := min

{
‖ŝk+1 − ŝk‖, ‖ŝk+1 + ŝk‖

}
,

k ∈ N0.

1) If
∑
k‖Rkū‖ <∞,

∑
k‖Ek+1ŝ

k‖ <∞ and

(9)

∞∑
k=0

ζk <∞

are satisfied, then
∑
k‖Bk+1 −Bk‖ <∞.

2) If the sequences(∥∥Rkū∥∥), (∥∥Ek+1ŝ
k
∥∥) and

(
ζk
)

converge r-linearly (r-superlinearly/with r-order p > 1) to zero, then (‖Bk+1−
Bk‖) converges r-linearly (r-superlinearly/with r-order p > 1) to zero.
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Proof By use of the triangle inequality we obtain for all k ∈ N∥∥Ekŝk∥∥ ≤ ‖Ek‖min
{∥∥ŝk − ŝk−1

∥∥ ,∥∥ŝk + ŝk−1
∥∥}+

∥∥Ekŝk−1
∥∥ .

The assumptions therefore imply
∑
k‖Ekŝk‖ <∞, from which we the assertion

follows by use of Lemma 2 and
∑
k‖Rkū‖ <∞. The proof of 2) is similar. ut

Remark 8 Lemma 1 contains sufficient conditions for the summability, respec-
tively, convergence with r-rate of (‖Ek+1ŝ

k‖). In contrast, conditions that im-
ply (9) or one of the stronger assumptions for (ζk) from 2) are unknown except
for certain cases that we specify in Remark 10.

Condition (9) is less demanding than the condition (2) discussed in the
introduction, but it still implies dim(S) = 1.

Corollary 3 Let (ŝk) ⊂ Rn be a sequence with ‖ŝk‖ = 1 for all k. Then:

1) (9) implies the existence of a vector s̄ with ‖s̄‖ = 1 and S = 〈s̄〉.
2) If there is a vector s̄ with ‖s̄‖ = 1 such that

(10)

∞∑
k=0

min
{∥∥ŝk − s̄∥∥ ,∥∥ŝk + s̄

∥∥} <∞
is satisfied, then (9) holds and S = 〈s̄〉.

3) If there is a vector s̄ with ‖s̄‖ = 1 such that ζ̄k := min
{
‖ŝk− s̄‖, ‖ŝk + s̄‖

}
,

k ∈ N0, converges r-linearly (r-superlinearly/with r-order p > 1) to zero,
then so does (ζk) defined in Theorem 2 and there holds S = 〈s̄〉.

Proof Proof of 1): Let (9) be satisfied. We can inductively replace ŝk by −ŝk
if necessary to obtain a sequence (s̃k) with s̃k ∈ {±ŝk} for all k and such that∥∥s̃k+1 − s̃k

∥∥ = min
{∥∥ŝk+1 − ŝk

∥∥ ,∥∥ŝk+1 + ŝk
∥∥}

for all k. The sequence (s̃k) thus satisfies
∑
k‖s̃k+1− s̃k‖ <∞ and is therefore

convergent. Its limit, say s̄, satisfies ‖s̄‖ = 1, and by construction this implies
that (ŝk) can only have the cluster points ±s̄, so S = 〈s̄〉.
Proof of 2): (9) follows from (10) by the triangle inequality. Moreover, (10)
implies that the cluster points of (ŝk) belong to {±s̄}, which yields S = 〈s̄〉.
Proof of 3): Similar to the proof of 2). ut

Remark 9 We stress that (9) and (10) are satisfied in all numerical experi-
ments conducted for this work. Still, let us mention that (10) can fail while (9)
holds. This is the case, e.g., for (ŝk) ⊂ Rn with ŝk := (

√
1− t2k, tk, 0, 0, . . . , 0)T

and s̄ := (1, 0, . . . , 0)T , where tk := k−2
√

2k2 − 1 for k ∈ N.

Remark 10 Neither Theorem 2 nor Corollary 3 involve invertibility of F ′(ū) or
superlinear convergence of (uk). In Theorem 7 we show that if F ′(ū) is singular
of a certain type and (u0, B0) is suitable, then (10) holds. This is a situation
in which (uk) converges q-linearly, but not faster. Furthermore, the results
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of [22, Lemma 3] show that if F has n − 1 affine component functions and
the corresponding n − 1 rows of F ′(u0) agree with those of B0, then (sk)k≥1

is restricted to a one-dimensional subspace, so for k ≥ 1 all summands in
(9) and (10) vanish. In summary, the conditions developed in Theorem 2 and
Corollary 3 are satisfied in all numerical experiments and can be rigorously
proven in certain situations.

3.2 Second set: Three further sufficient conditions

In the remaining theoretical investigations we address sufficient conditions that
are independent of S, so they are complementary to those of section 3.1. To
formulate these conditions conveniently, let us introduce the following quantity.

Definition 3 Let (mk) ⊂ N0. We define C
(
(mk)

)
∈ N ∪ {+∞} by

C
(
(mk)

)
:= sup

M∈N0

∣∣∣{k ∈ N0 : mk = M
}∣∣∣.

Remark 11 C
(
(mk)

)
provides an upper bound on how many times each natural

number appears in the sequence (mk). We will often require C
(
(mk)

)
<∞.

All three sufficient conditions to come invoke the following lemma.

Lemma 5 Let (uk) be generated by Algorithm BL. Suppose that there exist
sequences (αk) ⊂ (0,∞) and (mk) ⊂ N0 with C

(
(mk)

)
<∞ such that

εk ≤ αmk
∀k ∈ N0.

Also assume that

∞∑
k=0

αk <∞.

Then
∑
k εk <∞.

Proof Summation shows for K ∈ N0 that

K∑
k=0

εk ≤
K∑
k=0

αmk
≤ C

(
(mk)

) ∞∑
k=0

αk <∞.

The right-hand side is independent of K, so the claim follows. ut
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3.2.1 Condition 1: A relationship between the updates and the steps/iterates

The following condition includes, in particular, condition (3) from the intro-
duction. The q-order/r-order of convergence is defined in [29, Chapter 9].

Theorem 3 Let (uk) be generated by Algorithm BL. Suppose that there exist
a constant C > 0 and sequences (mk) ⊂ N0 and (γk) ⊂ (0,∞) such that
C
(
(mk)

)
<∞ and

(11) εk ≤ C ‖smk‖γmk

are satisfied for all k sufficiently large.

1) If there holds

(12)

∞∑
k=0

∥∥sk∥∥γk <∞,
then

∑
k εk <∞.

2) If γk ≥ γ > 0 for all k sufficiently large, then r-superlinear convergence
[r-linear convergence with rate κ ∈ (0, 1)] of (smk) to zero implies r-
superlinear convergence [r-linear convergence with rate κγ ∈ (0, 1)] of (εk).

3) If (11) holds for (mk) ≡ k and γk ≥ γ > 0 for all k sufficiently large, if
(uk) converges to some ū and there is Ĉ > 0 such that ‖sk‖ ≤ Ĉ‖uk − ū‖
holds for all k sufficiently large, and if F is differentiable at ū with F ′(ū)
invertible, then

(13) lim sup
k→∞

∥∥uk+1 − ū
∥∥

‖uk − ū‖1+γ ≤
CĈ1+γ

∥∥F ′(ū)−1
∥∥

σmin
,

i.e., (uk) converges with q-order at least 1 + γ. Moreover, (εk) then con-
verges with r-order at least 1 + γ.

Proof Proof of 1): This follows from Lemma 5, applied with αk := ‖sk‖γk .
Proof of 2): It is easy to check that if (‖smk‖) converges r-linearly with
rate κ ∈ (0, 1) [r-superlinearly] to zero, then (C‖smk‖γ), where C, γ > 0 are
constants, has the same property with rate κγ .
Proof of 3): Since sk → 0 due to uk → ū, (11) implies

σmin

∥∥F (uk+1)− F (ū)
∥∥

Ĉ1+γ ‖uk − ū‖1+γ ≤ σk

∥∥F (uk+1)
∥∥

‖sk‖1+γ ≤ C

for all k sufficiently large, where we used that F (ū) = 0 due to (11). It is el-

ementary to infer from uk → ū that lim supk→∞
‖uk+1−ū‖

‖F (uk+1)−F (ū)‖ ≤ ‖F
′(ū)−1‖,

so (13) follows. The claim about the q-order is obviously true. By [22, Lemma 1]
this implies that (εk) converges with r-order 1 + γ. ut
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Remark 12 Using ‖sk‖ ≤ ‖uk+1 − ū‖ + ‖uk − ū‖ we can easily formulate
analogue statements with smk replaced by umk − ū. For instance, it follows
readily that (12) holds if

∑
k‖uk − ū‖γ <∞ is satisfied for some γ > 0, which

is (6) for γ = α. Also note that (smk) converges r-linearly [r-superlinearly] to
zero if (umk − ū) does.

Remark 13 Conditions that ensure either (11) and (12) or (11) and the exis-
tence of γ are unknown. In Corollary 4 we prove for the Broyden updates and
(mk) ≡ k that at least one of the 2n values εk, εk+1, . . . , εk+2n−1 satisfies (11)
for γk = 1

2n .

3.2.2 Condition 2: Multi-step q-order convergence of the Broyden–like updates

The next sufficient condition is motivated by the numerical observation that for
Broyden’s method the updates, while not monotone in their decline to zero,
appear to converge with a 2d–step q-order of convergence (in experiments
with small n this order is at least 2, which means that the Broyden updates
converge 2n–step q-quadratically just like the iterates do by Gay’s theorem),
cf. the discussion in the introduction, specifically (4), and Remark 14. For the
Broyden–like updates this does not seem to be true, but it is not difficult to
include them in the following result anyway.

Theorem 4 Let Assumption 1 hold and let (uk) be generated by Algorithm BL.
Let (7) and

∑
k‖Rkū‖2 <∞ be satisfied.

1) If there exist constants C, δ > 0 and a sequence (mk) ⊂ N0 such that
C
(
(mk)

)
<∞ and

(14) εk ≤ Cε1+δ
mk

are satisfied for all sufficiently large k, then
∑
k εk <∞.

2) If there exist constants C, δ > 0, M ∈ N, and a sequence (mk) ⊂ N0 such
that C

(
(mk)

)
<∞ and

(15) εk ≤ C max
{
ε1+δ
mk

, ε1+δ
mk−1, . . . , ε

1+δ
mk−M

}
are satisfied for all sufficiently large k, then

∑
k εk <∞.

3) If N := supk∈N0
|mk − k| is finite in 1), then (εk) converges with r-order

at least (1 + δ)N . If N is finite in 2), then (εk) converges with r-order at
least (1 + δ)N+M .

Proof Proof of 1): We observe first that by Lemma 2 and Young’s inequality
the assumptions imply

∑
k ε

2
k <∞. For δ = 1 we thus obtain 1) from Lemma 5

with αk := Cε1+δ
k = Cε2

k. Since εk → 0 due to
∑
k ε

2
k < ∞, this also implies

that 1) is true for any δ > 1. If (14) holds for some δ ∈ (0, 1), then there are
C̃ > 0 and (m̃k) ⊂ N0 with C

(
(m̃k)

)
< ∞ such that (14) holds for exponent

2, so the claim follows from the already proven case δ = 1.
Proof of 2): We show that 2) follows from 1). Indeed, let for each sufficiently
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large k the number m̃k ∈ {mk,mk − 1, . . . ,mk −M} be an index that realizes
the maximum in (15). This defines a sequence (m̃k) that satisfies C

(
(m̃k)

)
<∞

and (14) (with mk replaced by m̃k).
Proof of 3): The claims follow from the elementary fact that if (vk) ⊂ [0,∞)
satisfies vk ≤ Cv1+δ

k−L(k) for constants C, δ > 0 and a bounded sequence L(k) ⊂
N0, then (vk) also converges with r-order (1 + δ)L for L := maxk∈N0

L(k). ut

Remark 14 In the numerical experiments with regular F ′(ū) and (σk) ≡ 1
(Broyden’s method) we observe that (14) holds for mk = k − 2d. The same is
true for mk = k − 2n if σk → 1 or σk = 1 for all k sufficiently large. If F has
only one nonlinear component function and n− 1 affine ones and if B0 agrees
with F ′(u0) on the rows that correspond to affine components of F and an
additional assumption holds, then convergence of the Broyden updates with

q-order
√

5+1
2 is established in [22, Theorem 5 1)]. Further theoretical results

that confirm either (14) or (15) are not available for the time being.

3.2.3 Condition 3: Multi–step q-quadratic convergence of the iterates

In this section we derive a sufficient condition for convergence of the Broyden–
matrices from the following generalization of Gay’s result [13, Theorem 3.1]
on 2n-step q-quadratic convergence.

Theorem 5 Let Assumption 1 hold with α = 1 and let F ′(ū) be invertible.
Moreover, let J ⊂ [n] be a set of indices (possibly empty) such that Fj is affine

for j ∈ J and such that F ′j(u
0) = Bj0 for all j ∈ J , where Bj0 is the j-th row

of B0. Let d := n − |J | (with |J | := 0 if J = ∅). Then there exist δ > 0 and
C > 0 such that for all (u0, B0) with ‖u0 − ū‖ ≤ δ and ‖B0 − F ′(ū)‖ ≤ δ,
Algorithm BL with σmin = σmax = 1 either terminates with output u∗ = ū or
it generates a sequence (uk) that satisfies

(16)
∥∥uk+2d − ū

∥∥ ≤ C ∥∥uk − ū∥∥2 ∀k ∈ N.

If (uk) satisfies (16), then it converges with r-order at least 2
1
2d and its q-order

is no larger.

Proof (16) is established in [21, Theorem 3] and from this the maximal r-order

2
1
2d is elementary to conclude, cf. also [29, E 9.2-4.]. The claim on the q-order

follows from the fact that the q-order is never larger than the r-order, cf. [29,
9.3.2.]. ut

To derive a sufficient condition for convergence of the Broyden matrices we
will use the following consequence of Theorem 5.

Corollary 4 Under the assumptions of Theorem 5 there is a constant Ĉ > 0
such that for each k ∈ N there holds at least one of the 2d inequalities

εk+j ≤ Ĉ‖sk‖
1
2d , j = 0, . . . , 2d− 1.

In particular, (uk) converges q-superlinearly, then (εk) contains an r-superlinearly
convergent subsequence (εkj ) with kj+1 − kj ≤ 4d for all j ∈ N0.
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Proof From part 3) of Theorem 1 we obtain constants c, C > 0 such that

(17) c‖sk‖ ≤
∥∥F (uk)

∥∥ ≤ C‖sk‖ and c
∥∥uk − ū∥∥ ≤ ∥∥F (uk)

∥∥ ≤ C ∥∥uk − ū∥∥
hold for all k ∈ N0. Hence, it suffices to show that at least one of the inequalities∥∥F (uk+1+j)

∥∥
‖F (uk+j)‖

≤ C̄
∥∥F (uk)

∥∥ 1
2d , j = 0, . . . , 2d− 1

must hold for each k ∈ N and some constant C̄ > 0. Suppose to the contrary
that for each C̄ > 0 there is a k ∈ N such that none of the 2d inequalities is
satisfied. Then for any C̄ and the associated k we have

2d−1∏
j=0

∥∥F (uk+1+j)
∥∥

‖F (uk+j)‖
> C̄2d

∥∥F (uk)
∥∥ , hence

∥∥F (uk+2d)
∥∥ > C̄2d

∥∥F (uk)
∥∥2
.

In view of (17) we can therefore find for any C̃ > 0 a k ∈ N such that

∥∥uk+2d − ū
∥∥ > C̃

∥∥uk − ū∥∥2

is satisfied, which contradicts Theorem 5.

The additional claim follows from ‖sk‖ ≤ 2‖uk − ū‖ and the fact that

‖uk − ū‖ 1
2d is still q-superlinearly convergent. ut

Based on Corollary 4 we can derive the following sufficient condition.

Theorem 6 Let the assumptions of Theorem 5 hold and suppose that there
exist a constant C > 0 and a sequence (mk) ⊂ N0 such that C

(
(mk)

)
<∞ and

(18) εk ≤ C min
{
εmk−1, εmk−2, . . . , εmk−2d

}
are satisfied for all sufficiently large k. Then

∑
k εk <∞.

If N := supk∈N0
|mk − k| <∞, then (εk) has r-order at least ( 2d+1

2d )N+2d.

Proof Using Corollary 4 we obtain for all sufficiently large k ∈ N, say k ≥ K,

εk ≤ C min
{
εmk−1, εmk−2, . . . , εmk−2d

}
≤ C‖smk−2d‖ 1

2d ,

so the first claim follows from Theorem 3 1). The proof of the additional part
follows from the same argument as the proof of Theorem 4 3). ut

Remark 15 For divergence of (Bk) both (15) and (18) must be violated.
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4 Application to a class of singular problems

In this section we show that Theorem 2 with the stronger summability property
(10) and Theorem 3 can be applied to certain singular problems to obtain
convergence of (Bk). The results of this section extend findings from [23], where
only Broyden’s method is addressed. We stress that the following convergence
analysis of (Bk) builds on the convergence analysis of (uk) presented in [7]. In
particular, the assumptions on the singularity of the problem coincide. They
read as follows.

Assumption 2 Let F : Rn → Rn be differentiable in a neighborhood of ū and
twice differentiable at ū, where ū satisfies F (ū) = 0. Moreover, suppose that
the following conditions are satisfied:

– There is φ ∈ Rn with ‖φ‖ = 1 such that N := ker(F ′(ū)) = 〈φ〉, where 〈φ〉
denotes the linear hull of φ.

– There holds PN (F ′′(ū)(φ, φ)) 6= 0, where PN : Rn → Rn denotes the or-
thogonal projection onto N , i.e., PN (v) = vTφφ for all v ∈ Rn.

Remark 16 Assumption 2 implies Assumption 1 with α = 1.

We will use the range space X := img(F ′(ū)) and the orthogonal projection
PX : Rn → Rn onto X. Also, for ū ∈ Rn and (ρ, θ) ∈ (0,∞)× (0,∞) let

Wū(ρ, θ) :=
{
u ∈ Rn : ‖PX(u− ū)‖ ≤ θ ‖PN (u− ū)‖

}
∩ Bρ(ū),

where Bρ(ū) is the open ball of radius ρ centered at ū.
The following results are obtained in [7].

Lemma 6 Let Assumption 2 hold and let µX , µN > 0. Then there exist ρ > 0
and θ > 0 such that for all pairs (u0, B0) ∈Wū(ρ, θ)× Rn×n that satisfy∥∥(B0 − F ′(u0)

)
PX(v)

∥∥ ≤ µXρ and
∥∥(B0 − F ′(u0)

)
PN (v)

∥∥ ≤ µNρ2

for all v ∈ Rn with ‖v‖ = 1, Algorithm BL with (σk) ≡ 1 (Broyden’s method)
generates a sequence (uk) with

lim
k→∞

∥∥uk+1 − ū
∥∥

‖uk − ū‖
=

√
5− 1

2
and lim

k→∞

∥∥PX(uk − ū)
∥∥

‖PN (uk − ū)‖2
= 0.

Moreover, there holds for all k ≥ 1

(19) PN (uk+1 − ū) = λkPN (uk − ū),

where (λk)k≥1 satisfies (λk)k≥1 ⊂
(

3
8 ,

4
5

)
and limk→∞ λk =

√
5−1
2 .

Proof All claims are established in [7]: (1.13) in [7] gives the left limit and
from (2.13) together with θn → 0 we deduce the right limit. (The assumption
Rn = X⊕N imposed as part of (1.4) in [7] is superfluous and the index “n+1”
that appears in (1.14) of [7] is a misprint that should read “n”.) The claim
(19) is contained in [7, (2.14)]. ut
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The following result applies in particular to the setting of Lemma 6.

Theorem 7 Let Assumption 2 hold. Let (uk) be generated by Algorithm BL
with (σk) satisfying

∑
k|1− σk|2 <∞. Suppose that (uk) satisfies

(20)

∥∥uk+1 − ū
∥∥

‖uk − ū‖
≤ κ and lim

k→∞

∥∥PX(uk − ū)
∥∥

‖PN (uk − ū)‖2
= 0

for some κ ∈ (0, 1) and all k sufficiently large. Then:

1) The assumptions of Theorem 2 are fulfilled and for k → ∞ there holds
ζ̄k := min

{
‖ŝk−φ‖, ‖ŝk +φ‖

}
= o(‖uk− ū‖). In particular, (ζ̄k) converges

at least r-superlinearly to zero, (10) is satisfied for s̄ := φ, and S = N .
2) The assumptions of Theorem 3 are valid for mk := k and γk := 1, k ∈ N0.
3) We have

∑
k εk <∞ and (εk) converges at least r-linearly with rate κ.

Proof Proof of 1): The claim ζ̄k = o(‖uk− ū‖) is [23, Theorem 2, part 1)] (we
remark that although [23] addresses Broyden’s method, the result also holds for
the Broyden–like method ). It implies r-superlinear convergence of (ζ̄k) since
(uk) converges q-linearly to ū by (20). As a simple consequence we now obtain
that (10) holds for s̄ = φ. In turn, this yields (9) and S = 〈φ〉 = N by part 2)
of Corollary 3. Lastly, we verify the remaining assumptions of Theorem 2.

– The boundedness of (‖Bk‖) follows from part 2) of Theorem 1, which is
applicable because (uk) converges q-linearly to ū by (20).

– Inequality (8) also follows from the linear convergence of (uk).
– The boundedness

∑
k‖Ek+1ŝ

k‖ <∞ is implied by Lemma 1.

Proof of 2): We verify the assumptions of Theorem 3. Evidently, the choice
of (mk) implies that C((mk)) = 1 < ∞. Since (uk) converges q-linearly, (12)
holds. Estimate (11) follows from [23, Theorem 2, part 2)].
Proof of 3): Both Theorem 2 and Theorem 3 imply

∑
k εk <∞. The r-linear

convergence of (εk) follows from the second part of Theorem 3 as (γk) ≡ 1. ut

The majority of convergence results for (Bk) from [23] can be extended to
Algorithm BL provided

∑
k(1 − σk)2 < ∞. Exemplarily, let us demonstrate

this for [23, Corollary 3], which states q-linear convergence of (εk).

Theorem 8 Let Assumption 2 hold. Let (uk) be generated by Algorithm BL
with (σk) satisfying

∑
k|1−σk|2 <∞. Suppose that (uk) satisfies (19) as well

as

lim
k→∞

∥∥uk+1 − ū
∥∥

‖uk − ū‖
= κ and lim

k→∞

∥∥PX(uk − ū)
∥∥

‖PN (uk − ū)‖2
= 0

for some κ ∈ (0, 1). Then we have

lim
k→∞

εk+1

εk
= κ.

Proof This can be argued almost identically as in [23, Corollary 3]. ut
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5 Numerical experiments

We study the validity of the developed sufficient conditions on numerical exam-
ples. In section 5.1 we discuss the design of the experiments, while section 5.2
contains the examples and results.

5.1 Design of the experiments

5.1.1 Implementation and accuracy

The experiments are carried out in Matlab 2017a using the variable precision
arithmetic (vpa) with a precision of 1000 digits. The termination criterion
F (uk) = 0 in Algorithm BL is replaced by ‖F (uk)‖ ≤ 10−320. By k̄ ∈ N0 we
denote the final value of k in Algorithm BL.

5.1.2 Known solution and random initialization

All examples have ū = 0 as a solution and the experiments are set up in such a
way that convergence to ū takes place in all runs. Except for the last example,
F ′(ū) is invertible. The initial point u0 is always generated using rand. It has
random entries in [−α, α], where α ∈ [10−10, 0.1] will be specified for each
example. For B0 we choose B0 = F ′(u0) + α̂‖F ′(u0)‖R, where R ∈ Rn×n is a
random matrix with entries in [−1, 1] and α̂ ∈ {0} ∪ [10−10, 0.1] is example-
dependent.

5.1.3 Quantities of interest

For (uk), (sk) and (Bk) from Algorithm BL we define

Fk := F (uk), δk :=
ln
(
‖Fk‖

)
ln
(
‖sk−1‖

) , εk := ‖Bk −Bk−1‖, ρkε := k+1
√
εk,

(21) βk :=
εk

ε2k−2d

and Rk :=
ln
(
εk
)

ln
(
εk−2d

) ,
where d plays the same role as in Theorem 5. We regard d = n as the standard
choice and mention only if d 6= n is selected. Also, we set

ζk := min
{
‖ŝk − ŝk−1‖, ‖ŝk + ŝk−1‖

}
and ρkζ := k+1

√
ζk

as well as

(22) ζ̄k := min
{
‖ŝk − ŝk̄‖, ‖ŝk + ŝk̄‖

}
and ρ̄kζ :=

k+1

√
ζ̄k.

Whenever any of these quantities is undefined we set it to −1; e.g., δ0 := −1.
Let us point out some aspects that we want to study. To this end, we first

remark that (uk) converges at least q-linearly in all experiments, so we tacitly
assume in the following discussion that (6) is satisfied.
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– We want to assess if ‖Ek‖ → 0 for k → ∞. Since we find in all experi-
ments that ‖Ek‖ 6→ 0, we always have limk→∞Bk 6= F ′(ū). This implies
that (sk) is never uniformly linearly independent, cf. the discussion in the
introduction.

– It is easy to see that if δk ≥ δ for some δ > 1 and all k sufficiently large,
then (11) is satisfied for mk = k and γk = δ − 1. In particular, the last
part of Theorem 3 can be applied if F ′(ū) is invertible, which implies that
(‖Fk‖), (‖sk‖) and (‖uk − ū‖) converge to zero with q-order at least δ and
(εk) goes to zero with r-order at least δ.

– Theorem 4 1) implies that (Bk) converges if (βk) is bounded.
– From (14) it follows that an estimate of the form εk ≤ Cε1+δ

k−2d for a constant
δ > 0 and all k sufficiently large is sufficient for convergence of (Bk). Such
an estimate implies Rk ≥ 1 + δ for all k sufficiently large and we are
therefore interested to see whether Rk stays safely above 1 for large k.

– We use ζ̄k as approximation of min{‖ŝk − s̄‖, ‖ŝk + s̄‖} which appears in
(10). Observe that ζ̄k̄ = 0 by definition.

– We include the three smallest singular values Λk1 , Λk2 and Λk3 in the results.
From Theorem 1 we know that (Λk1) converges to zero and that each (Λkj ),
j ∈ [n], converges. Furthermore, if F has d affine component functions and
the corresponding d rows of B0 match those of F ′(u0), then d singular val-
ues remain exactly zero throughout the entire algorithm, cf. [22, Lemma 3].
It is now interesting to observe that in all numerical experiments the num-
ber of singular values converging to zero is exactly 1, respectively, d. Since
n > 1 and d < n this shows again that (Bk) does not converge to F ′(ū).

5.1.4 Single run and cumulative run

For each example we perform at least one single run and one cumulative run.
In single runs we display the quantities of interest during the course of the
algorithm. In cumulative runs we perform m := 2000 single runs with the
initial data varying according to section 5.1.2. With the cumulative run we
want to gauge the worst-case behavior of Algorithm BL with respect to the
quantities of interest. To explain this in more detail, consider εk and ζk. We
recall from εk = ‖Bk − Bk−1‖, respectively, Lemma 3, that (Bk) converges if∑
k εk <∞, respectively, if

∑
k ζk <∞. In single runs we provide ρkε = k+1

√
εk

and ρkζ = k+1
√
ζk for k ∈ N0 to assess if the series

∑
k εk and

∑
k ζk converge.

In addition, we compute

ρjε := max
k0(j)≤k≤k̄(j)

ρkε and ρjζ := max
k0(j)≤k≤k̄(j)

ρkζ

in each of the m single runs of the cumulative run, where j ∈ [m] indicates
the respective single run and we use here and in the remainder of this work
the value k0(j) := b0.75k̄(j)c. For the cumulative run we display

ρε := max
j∈[m]

ρjε and ρζ := max
j∈[m]

ρjζ ,



24 Florian Mannel

and we conclude that (Bk) converges in all of the m single runs if ρε, respec-
tively, ρζ are somewhat smaller than 1. In the same manner as ρζ we define ρ̄ζ
from ζ̄k. Similar considerations apply to the following quantities that we use
to display the results of cumulative runs. As before we let j ∈ [m] indicate the
respective single run. Also, we set K(j) := {k0(j), k0(j) + 1, . . . , k̄(j)}.

‖F‖ := max
j∈[m]

‖F (uk̄(j))‖ and ‖E‖ := min
j∈[m]

min
k∈[k̄]

‖Ek‖

as well as

δ := min
j∈[m]

min
k∈K(j)

δjk, β := max
j∈[m]

max
k∈K(j)

βjk and R := min
j∈[m]

min
k∈K(j)

Rjk,

and for the singular values

Λ1 := max
j∈[m]

Λ
k̄(j)
1 , Λ−2 := min

j∈[m]
Λ
k̄(j)
2 , Λ+

2 := max
j∈[m]

Λ
k̄(j)
2 , Λ3 := min

j∈[m]
Λ
k̄(j)
3 .

We observe that these definitions allow for Λ1 > Λ−2 and Λ+
2 > Λ3.

5.2 Numerical examples

5.2.1 Example 1

We first consider an example with only one nonlinear component function. Let

F : R3 → R3, F (u) =

 u1 + u2 + u3

u2 − 2(1 + u3)2 + 2
u1 − 5u3

 .

We fix α = 0.1 and α̂ = 0 in this example, so B0 = F ′(u0). Our focus is
on the effect of the choice of (σk). We use (σk) ≡ 1 (Broyden’s method),
(σk) ≡ 0.9, (σk) ≡ 1.1, (σk) ≡ 0.1, σk = 0.9 for 0 ≤ k ≤ 4 and σk = 1 else,
(σk) ≡ 1− 1

(2+k)2 , (σk) ≡ 1− 1
(2+k)4 . The numerical outcome of a single run for

Broyden’s method is displayed in Table 1 and for (σk) ≡ 0.9 in Table 2. The
results of cumulative runs are given in Table 3. From [22, Theorem 5 1)] we
know that if σk = 1 for all k sufficiently large, then (uk) converges with q-order√

5+1
2 ≈ 1.618, which implies δk ≈ 1.62 for Broyden’s method and also for the

variant that uses σk = 0.9 only for the first five updates. [22, Theorem 5 1)]
further asserts that (εk) converges faster than 2–step q-quadratically if σk is
eventually 1. For the associated two choices of (σk) we thus compute βk and
Rk using d = 1 in (21), while for the other choices of (σk) we use d = n = 3.
From [22, Lemma 3] we know that Λk1 = Λk2 = 0 for all k ≥ 0 and that, up
to its sign, ŝk is constant for all k ≥ 1, which implies that (9) and (10) are
satisfied. For the same reason ζk, ζ̄k, ρkζ and ρ̄kζ will be zero for k ≥ 1 up
to machine precision, which is why we suppress the latter two in the results
for this example. The numerical outcomes of the single runs in Table 1 and
Table 2 and of the cumulative runs in Table 3 confirm the theoretical results.
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Table 1 Example 1: Results for one run with B0 = F ′(u0) and (σk) ≡ 1

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ζ̄k Λk1 Λk2
0 0.61 0.38 -1 -1 -1 -1 -1 -1 0.64 0.0 0.0
1 0.017 0.31 2.06 0.12 0.35 -1 -1 0.64 3.8e-862 6.4e-506 6.4e-506
2 7.1e-4 0.3 1.7 0.051 0.37 -1 -1 1.1e-1007 3.8e-862 3.7e-506 6.8e-506
3 2.4e-7 0.3 2.03 4.3e-4 0.14 0.028 3.71 1.4e-1005 3.8e-862 3.7e-506 8.1e-507
4 3.5e-12 0.3 1.71 1.8e-5 0.11 7.0e-3 3.67 3.3e-1004 3.8e-862 4.8e-506 3.7e-506
5 1.7e-20 0.3 1.71 6.2e-9 0.043 0.033 2.44 1.3e-1000 3.8e-862 4.3e-506 0.0
6 1.2e-33 0.3 1.66 8.8e-14 0.014 2.7e-4 2.75 4.6e-996 3.8e-862 5.2e-506 3.7e-506
7 4.0e-55 0.3 1.65 4.3e-22 2.1e-3 1.1e-5 2.6 2.4e-987 3.8e-862 4.7e-506 3.7e-506
8 9.3e-90 0.3 1.63 3.0e-35 1.5e-4 3.8e-9 2.64 2.2e-974 3.8e-862 2.3e-506 3.7e-506
9 7.4e-146 0.3 1.63 1.0e-56 2.5e-6 5.5e-14 2.62 8.4e-953 3.8e-862 1.9e-506 3.7e-506

10 1.4e-236 0.3 1.62 2.4e-91 5.8e-9 2.7e-22 2.62 8.4e-953 3.8e-862 3.7e-506 2.9e-506
11 2.1e-383 0.3 1.62 1.9e-147 5.9e-13 1.9e-35 2.62 3.8e-862 0.0 5.7e-506 3.7e-506

They indicate convergence of
∑
k εk, of

∑
k ζk and of

∑
k ζ̄k in each of the

2000 runs due to ρε, ρζ , ρ̄ζ � 1. Since the latter two values are provably zero
in exact arithmetic, but are rather far away from this for (σk) ≡ 0.1, we will
not use the choice (σk) ≡ 0.1 in subsequent examples. Due to n = 3 there holds
‖Ek‖ = Λk3 for all k ≥ 0, so we suppress Λk3 , respectively, Λ3 in the tables.
We notice that δk and δ are significantly smaller if σk 6= 1 for sufficiently
large k. Also, 2/6–step convergence of (εk) with some q-order larger than one
seems to hold. Table 3 may be interpreted as showing the existence of a lower
bound for δ for all choices of (σk), but taking into account the development
of (δk) for (σk) ≡ 0.9 in Table 2 we are hesitant. Rather, it seems clear that
(εk) converges q-linearly with q-factor 0.1. However, the existence of a lower
bound δ > 1 implies convergence of (εk) with r-order δ, which is faster than
r-superlinear convergence, so in particular ρε would have to converge to zero
in this case. For this reason we lean towards the conjecture that the existence
of a lower bound δ > 1 may hold if σk → 1 (fast enough), but likely not if
σk is bounded away from 1. Observing in Table 2 that βk seems to grow by a
factor of 10 in each iteration, we suspect similarly that Rk → 1, so we deem
the values for R in Table 3 untrustworthy and guess that R > 1 only holds
if σk → 1 (fast enough). Since the theory of [22] has shown that the example
at hand behaves essentially like a one-dimensional example in which just the
second equation appears, we conclude that this is the best possible situation
and it is to be expected that δ and R also do not exist in other examples if
σk 6→ 1.

5.2.2 Example 2

The next example contains two nonlinear equations:

F : R4 → R4, F (u) =


25 sin(u1) + 10 cos(u2) + 10u3

3 − 0.1u2
4 − 10

u1 + u3

(1 + u1)u2(u3 − 1)
u3 − u4

 .

We fix α = 0.1 and α̂ = 0 in this example and study again the influence of (σk).
From [22] we obtain that (sk)k≥1 is confined to an affine space of dimension
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Table 2 Example 1: Results for one run with B0 = F ′(u0) and (σk) ≡ 0.9

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ζ̄k Λk1 Λk2
0 0.53 0.33 -1 -1 -1 -1 -1 -1 1.2 0.0 0.0
1 0.013 0.2 1.77 0.14 0.37 -1 -1 1.2 4.4e-984 6.0e-506 0.0
2 2.1e-5 0.2 2.36 1.8e-3 0.12 -1 -1 4.5e-1006 4.4e-984 0.0 8.2e-506
3 2.2e-9 0.2 1.81 1.2e-4 0.1 -1 -1 2.8e-1005 4.4e-984 2.6e-506 6.4e-506
4 2.2e-14 0.2 1.56 1.2e-5 0.1 -1 -1 8.9e-1004 4.4e-984 6.9e-506 2.6e-506
5 2.2e-20 0.2 1.43 1.2e-6 0.1 -1 -1 8.7e-1003 4.4e-984 0.0 5.0e-506
6 2.2e-27 0.2 1.35 1.2e-7 0.1 -1 -1 1.5e-1002 4.4e-984 2.6e-506 6.6e-507
7 2.2e-35 0.2 1.3 1.2e-8 0.1 6.1e-7 9.22 3.9e-1001 4.4e-984 0.0 6.2e-506
8 2.3e-44 0.2 1.26 1.2e-9 0.1 3.5e-4 3.26 4.3e-1000 4.4e-984 3.4e-506 0.0
9 2.3e-54 0.2 1.23 1.2e-10 0.1 8.0e-3 2.53 7.1e-999 4.4e-984 2.6e-506 3.0e-506

10 2.3e-65 0.2 1.2 1.2e-11 0.1 0.087 2.21 6.5e-998 4.4e-984 5.0e-506 2.6e-506

...
...

...
...

...
...

...
...

...
...

...
...

20 2.4e-230 0.2 1.1 1.2e-21 0.1 8.7e8 1.4 6.2e-988 4.4e-984 7.0e-506 3.7e-506
21 2.5e-252 0.2 1.1 1.2e-22 0.1 8.7e9 1.38 9.9e-987 4.4e-984 8.1e-506 0.0
22 2.5e-275 0.2 1.09 1.2e-23 0.1 8.7e10 1.35 5.1e-986 4.4e-984 2.6e-506 1.7e-506
23 2.5e-299 0.2 1.09 1.2e-24 0.1 8.7e11 1.33 6.1e-985 4.9e-984 5.2e-506 0.0
24 2.5e-324 0.2 1.08 1.2e-25 0.1 8.7e12 1.32 4.9e-984 0.0 0.0 6.2e-506

Table 3 Example 1: Results for cumulative runs with B0 = F ′(u0) and varying (σk)

(σk) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2

1 8e-321 2e-4 1.62 3e-4 2e-7 2.59 4e-68 3e-74 1e-505 0 1e-505
0.9 1e-320 2e-5 1.08 0.13 8e13 1.3 4e-37 2e-38 1e-505 0 1e-505
1.1 1e-320 2e-4 1.08 0.13 7e13 1.3 4e-37 2e-38 2e-505 0 2e-505
0.1 1e-320 2e-4 1.02 0.86 4e6 1.02 3e-11 2e-11 7e-506 0 9e-506

5× 0.9 8e-321 2e-4 1.57 9e-3 8e-6 2.25 5e-63 3e-68 2e-505 0 1e-505
1−(k+2)−2 1e-320 2e-4 1.12 0.03 7e17 1.61 7e-47 4e-49 1e-505 0 1e-505
1−(k+2)−4 9e-321 2e-4 1.17 4e-3 4 1.98 8e-57 2e-60 1e-505 0 1e-505

2 and that (Λk1) ≡ (Λk2) ≡ 0. Because of the restriction to two dimensions
we conjecture 4–step q-quadratic convergence of (εk) if σk = 1 for all large k;
accordingly, we compute βk and Rk using d = 2 in (21) for such choices of (σk),
while for all other choices we use d = n = 4. The results in Table 5 and Table 6
show that multi–step convergence of (εk) with q-order larger than one is only
ensured if σk → 1. We notice that (Bk) converges in all runs, for instance
because the worst-case rates δ are always larger than one, cf. Theorem 3 with
mk = k. Furthermore, let us point out that for Broyden’s method Corollary 4
asserts that for large k every set of the form {δk, δk+1, δk+2, δk+3} contains
at least one number close to or larger than 1.25; this behavior is apparent in
Table 5. Again (10) is satisfied in all runs for this example.

5.2.3 Example 3

Next we choose a fully nonlinear F . Let

F : R3 → R3, F (u) =

(1 + u1)2(1 + u2) + (1 + u2)2 + u3 − 2
eu1 + (1 + u2)3 + u2

3 − 2

eu
2
3 + (1 + u2)2 − 2

 .

We fix α̂ = 0 and investigate various choices for (σk), each one for α ∈
{10−1, 10−2, 10−3, 10−8}. The results are displayed in Tables 7–9. The con-
vergence of (Bk) in all runs and the validity of (10) are obvious based on the
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Table 4 Example 2: Results for one run with B0 = F ′(u0) and (σk) ≡ 1

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2 Λk3
0 1.5 0.85 -1 -1 -1 -1 -1 -1 -1 1.1 1.1 1.6e-506 2.0e-505 0.094
1 0.037 0.72 1.72 0.25 0.5 -1 -1 1.1 1.0 0.06 0.24 9.2e-506 1.2e-505 0.079
2 6.1e-3 0.26 1.1 0.62 0.85 -1 -1 0.22 0.6 0.28 0.65 4.7e-506 9.7e-506 0.065
3 2.7e-5 0.26 1.53 0.026 0.4 -1 -1 0.45 0.82 0.17 0.64 9.4e-506 4.0e-506 0.059
4 2.6e-6 0.24 1.21 0.1 0.64 -1 -1 0.18 0.71 8.7e-3 0.39 4.7e-507 6.1e-506 0.057
5 4.0e-8 0.24 1.24 0.037 0.58 0.58 2.4 8.2e-3 0.45 5.4e-4 0.29 1.6e-505 2.9e-506 0.057
6 2.9e-11 0.24 1.36 1.7e-3 0.4 4.4e-3 13.3 1.1e-3 0.38 5.2e-4 0.34 1.5e-505 3.9e-506 0.057
7 2.8e-15 0.24 1.34 2.2e-4 0.35 0.32 2.31 5.9e-4 0.39 6.6e-5 0.3 5.2e-506 5.1e-506 0.057
8 1.5e-19 0.24 1.26 1.2e-4 0.37 0.011 3.99 6.6e-5 0.34 8.7e-8 0.16 1.5e-505 5.5e-506 0.057
9 8.8e-25 0.24 1.25 1.3e-5 0.33 9.8e-3 3.4 8.7e-8 0.2 7.5e-11 0.097 1.6e-506 4.5e-506 0.057

10 6.9e-33 0.24 1.32 1.8e-8 0.2 6.5e-3 2.79 7.2e-11 0.12 3.0e-12 0.09 1.2e-505 2.4e-506 0.057
11 4.5e-44 0.24 1.33 1.5e-11 0.13 3.1e-4 2.96 3.0e-12 0.11 2.2e-14 0.073 9.3e-507 1.3e-505 0.057
12 1.2e-56 0.24 1.28 6.2e-13 0.12 4.2e-5 3.12 2.2e-14 0.089 4.0e-21 0.027 4.5e-506 6.1e-506 0.057
13 2.4e-71 0.24 1.26 4.4e-15 0.094 2.4e-5 2.95 4.0e-21 0.035 3.6e-30 7.9e-3 1.0e-505 1.7e-506 0.057
14 8.5e-93 0.24 1.3 8.2e-22 0.039 2.6e-6 2.72 3.6e-30 0.011 5.3e-36 4.4e-3 1.9e-505 2.0e-506 0.057
15 2.8e-123 0.24 1.33 7.5e-31 0.013 3.4e-9 2.78 5.3e-36 6.2e-3 1.1e-41 2.8e-3 1.2e-505 3.5e-506 0.057
16 1.3e-159 0.24 1.29 1.1e-36 7.7e-3 2.8e-12 2.95 1.1e-41 3.9e-3 2.8e-57 4.7e-4 3.7e-506 1.5e-505 0.057
17 1.4e-201 0.24 1.26 2.3e-42 4.9e-3 1.2e-13 2.9 2.8e-57 7.2e-4 4.3e-82 3.0e-5 1.3e-505 4.8e-506 0.057
18 3.4e-259 0.24 1.28 5.8e-58 9.7e-4 8.5e-16 2.71 4.3e-82 5.2e-5 8.2e-103 4.2e-6 2.2e-506 1.2e-505 0.057
19 1.3e-341 0.24 1.32 8.8e-83 7.9e-5 1.6e-22 2.72 8.2e-103 7.9e-6 0.0 0.0 8.0e-506 4.4e-506 0.057

Table 5 Example 2: Results for one run with B0 = F ′(u0) and (σk) ≡ 0.9

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2 Λk3
0 1.2 0.49 -1 -1 -1 -1 -1 -1 -1 0.93 0.93 4.7e-506i 4.3e-507i 0.068
1 0.012 0.42 1.74 0.14 0.37 -1 -1 0.97 0.98 0.14 0.38 5.5e-506 5.0e-506 0.063
2 9.1e-4 0.17 1.16 0.34 0.7 -1 -1 0.68 0.88 0.81 0.93 6.2e-506 5.0e-506 0.051
3 4.7e-6 0.16 1.29 0.057 0.49 -1 -1 0.9 0.97 0.097 0.56 2.3e-506 8.8e-506 0.044
4 3.2e-7 0.12 1.17 0.1 0.63 -1 -1 0.11 0.65 0.017 0.44 2.6e-506 3.2e-506 0.04
5 9.8e-11 0.12 1.44 8.0e-4 0.3 -1 -1 1.4 1.1 1.4 1.1 4.7e-506 1.3e-506 0.04
6 6.4e-13 0.085 1.09 0.081 0.7 -1 -1 1.4 1.0 1.4e-4 0.28 7.8e-507 4.7e-507 0.024
7 1.2e-15 0.085 1.18 4.6e-3 0.51 -1 -1 3.3e-3 0.49 3.2e-3 0.49 1.6e-507 4.2e-506 0.024
8 2.1e-19 0.085 1.22 4.3e-4 0.42 -1 -1 2.1e-4 0.39 3.4e-3 0.53 6.7e-507 4.8e-506 0.024
9 3.6e-24 0.085 1.23 4.1e-5 0.36 2.1e-3 5.1 1.5e-4 0.41 3.6e-3 0.57 4.9e-507 3.7e-506 0.024

10 4.2e-30 0.085 1.23 2.8e-6 0.31 2.5e-5 11.8 1.6e-3 0.56 5.1e-3 0.62 7.9e-507 3.4e-506 0.024
11 2.3e-35 0.085 1.16 1.3e-5 0.39 4.1e-3 3.92 5.2e-3 0.65 1.1e-4 0.47 7.9e-506 6.0e-507 0.024
12 4.0e-40 0.085 1.12 4.3e-5 0.46 4.3e-3 4.38 1.2e-4 0.5 3.4e-6 0.38 2.1e-506 8.5e-507 0.024
13 5.5e-46 0.085 1.14 3.3e-6 0.41 5.2 1.77 1.0e-6 0.37 4.4e-6 0.41 5.5e-507 7.0e-506 0.024
14 7.3e-53 0.085 1.14 3.3e-7 0.37 4.9e-5 5.96 1.2e-7 0.35 4.6e-6 0.44 6.4e-507 6.0e-506 0.024

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
29 8.7e-216 0.085 1.07 2.0e-15 0.32 5.7e5 1.44 3.8e-15 0.33 7.4e-13 0.39 4.1e-506 2.2e-507 0.024
30 6.0e-232 0.085 1.07 1.7e-16 0.31 4.8e6 1.4 1.4e-13 0.38 8.8e-13 0.41 8.8e-507 5.3e-507 0.024
31 2.9e-247 0.085 1.06 1.2e-15 0.34 4.4e9 1.21 8.9e-13 0.42 1.3e-14 0.37 4.5e-506 2.0e-507 0.024
32 8.9e-262 0.085 1.06 7.5e-15 0.37 8.2e8 1.23 1.3e-14 0.38 3.6e-17 0.32 4.5e-507 9.3e-507 0.024
33 2.3e-277 0.085 1.06 6.4e-16 0.36 1.1e6 1.43 3.4e-17 0.33 2.4e-18 0.3 4.7e-507 3.6e-506 0.024
34 6.1e-294 0.085 1.06 6.4e-17 0.34 1.5e7 1.39 1.0e-18 0.31 1.3e-18 0.31 4.8e-506 4.4e-507 0.024
35 1.6e-311 0.085 1.06 6.4e-18 0.33 1.6e8 1.35 3.2e-19 0.31 1.0e-18 0.32 1.2e-506 4.9e-506 0.024
36 4.1e-330 0.085 1.06 6.3e-19 0.32 1.6e9 1.33 1.0e-18 0.33 0.0 0.0 9.1e-506 7.8e-507 0.024

Table 6 Example 2: Results for cumulative runs with B0 = F ′(u0) and varying (σk)

(σk) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2 Λ3

1 9e-321 3e-3 1.2 0.08 3e-3 2.27 0.04 0.03 3e-505 0 2e-505 2e-4
0.9 1e-320 3e-3 1.04 0.5 2e23 0.68 0.56 0.55 2e-505 0 3e-505 3e-4
1.1 9e-321 3e-3 1.04 0.57 2e25 0.69 0.67 0.55 3e-505 0 3e-505 3e-4

5× 0.9 1e-320 3e-3 1.19 0.1 0.05 2.09 0.07 0.03 3e-505 0 3e-505 3e-4
1−(k+2)−2 1e-320 3e-3 1.07 0.23 1e16 1.19 0.26 0.21 2e-505 0 3e-505 3e-4
1−(k+2)−4 1e-320 3e-3 1.11 0.09 2e14 1.4 0.11 0.10 3e-505 0 3e-505 1e-4

indicators δ, ρε, ρζ and ρ̄ζ if (σk) ≡ 1. For (σk) ≡ 0.1 we find, judging from ρε
and δ, that (Bk) converges for α ≤ 10−3. The values of ρε may be interpreted
as showing convergence of (Bk) also for α ∈ {10−1, 10−2}, in particular taking
into account that the convergence for (σk) ≡ 1 appears to be rather slow in
comparsion to other choices of (σk), which follows from the smaller values of
δ and also from the comparably large value of Λ1. The conjectured 6–step
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Table 7 Example 3: Results for one run with B0 = F ′(u0) and (σk) ≡ 1 for α = 10−1

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2
0 0.26 0.26 -1 -1 -1 -1 -1 -1 -1 1.2 1.2 0.051 0.18
1 0.012 0.23 2.01 0.11 0.33 -1 -1 1.3 1.1 0.57 0.75 0.042 0.12
2 9.9e-4 0.18 1.31 0.19 0.58 -1 -1 0.84 0.94 0.92 0.97 3.5e-3 0.044
3 7.0e-5 0.16 1.35 0.084 0.54 -1 -1 1.1 1.0 1.1 1.0 8.3e-4 0.034
4 1.6e-6 0.15 1.27 0.057 0.56 -1 -1 0.58 0.9 0.54 0.88 4.7e-6 0.013
5 3.0e-8 0.15 1.27 0.025 0.54 -1 -1 0.51 0.89 0.036 0.57 5.7e-7 0.011
6 1.6e-9 0.15 1.21 0.031 0.61 -1 -1 0.048 0.65 0.012 0.53 6.2e-8 9.5e-3
7 5.6e-12 0.14 1.31 2.2e-3 0.47 0.2 2.72 0.012 0.58 3.7e-4 0.37 2.8e-9 9.4e-3
8 5.2e-15 0.14 1.29 5.8e-4 0.44 0.015 4.53 4.1e-4 0.42 3.7e-5 0.32 1.0e-11 9.4e-3
9 1.7e-19 0.14 1.33 2.1e-5 0.34 3.0e-3 4.34 5.3e-3 0.59 5.4e-3 0.59 9.3e-15 9.4e-3

10 6.9e-23 0.14 1.19 2.5e-4 0.47 0.077 2.9 5.4e-3 0.62 7.4e-5 0.42 3.0e-19 9.4e-3
11 2.9e-26 0.14 1.16 2.6e-4 0.5 0.43 2.23 6.7e-5 0.45 6.7e-6 0.37 1.2e-22 9.4e-3
12 1.5e-31 0.14 1.22 3.2e-6 0.38 3.3e-3 3.64 6.6e-6 0.4 4.0e-8 0.27 5.1e-26 9.4e-3
13 7.4e-38 0.14 1.21 3.1e-7 0.34 0.062 2.46 4.0e-8 0.3 1.3e-11 0.17 2.6e-31 9.4e-3
14 2.3e-46 0.14 1.24 1.9e-9 0.26 5.7e-3 2.69 8.4e-11 0.21 7.0e-11 0.21 1.3e-37 9.4e-3
15 1.4e-57 0.14 1.25 4.0e-12 0.19 9.3e-3 2.43 7.0e-11 0.23 1.4e-10 0.24 4.0e-46 9.4e-3
16 7.7e-69 0.14 1.2 3.3e-12 0.21 5.3e-5 3.19 1.4e-10 0.26 1.4e-13 0.18 2.6e-57 9.4e-3
17 8.3e-80 0.14 1.16 6.7e-12 0.24 1.0e-4 3.11 1.4e-13 0.19 1.7e-17 0.12 1.4e-68 9.4e-3
18 8.9e-94 0.14 1.18 6.7e-15 0.18 6.6e-4 2.58 1.7e-17 0.13 6.2e-23 0.068 1.5e-79 9.4e-3
19 1.2e-111 0.14 1.19 8.1e-19 0.12 8.2e-6 2.78 6.2e-23 0.078 1.6e-30 0.032 1.6e-93 9.4e-3
20 5.5e-135 0.14 1.21 3.0e-24 0.076 8.1e-7 2.7 1.7e-30 0.038 2.4e-33 0.028 2.1e-111 9.4e-3
21 6.9e-166 0.14 1.23 7.8e-32 0.039 4.9e-9 2.73 5.7e-33 0.034 8.1e-33 0.035 9.8e-135 9.4e-3
22 3.0e-199 0.14 1.2 2.7e-34 0.035 2.4e-11 2.93 8.1e-33 0.04 6.9e-39 0.022 1.2e-165 9.4e-3
23 1.9e-232 0.14 1.17 3.8e-34 0.041 8.6e-12 2.99 6.9e-39 0.026 2.4e-49 9.4e-3 5.3e-199 9.4e-3
24 9.8e-272 0.14 1.17 3.3e-40 0.026 7.3e-12 2.79 2.4e-49 0.011 3.9e-64 2.9e-3 3.3e-232 9.4e-3
25 1.8e-321 0.14 1.18 1.1e-50 0.012 1.7e-14 2.76 3.9e-64 3.6e-3 0.0 0.0 1.7e-271 9.4e-3

Table 8 Example 3: Results for one run with B0 = F ′(u0) and (σk) ≡ 1 for α = 10−3

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2
0 1.2e-3 3.4e-3 -1 -1 -1 -1 -1 -1 -1 1.0 1.0 5.8e-5 8.1e-4
1 1.6e-6 2.1e-3 1.95 1.5e-3 0.039 -1 -1 0.28 0.53 0.83 0.91 4.9e-5 7.7e-4
2 2.2e-9 1.4e-3 1.47 1.7e-3 0.12 -1 -1 0.12 0.5 0.95 0.98 2.6e-7 4.4e-4
3 1.3e-13 1.4e-3 1.47 8.0e-5 0.095 -1 -1 0.94 0.98 8.0e-3 0.3 2.9e-10 4.4e-4
4 2.1e-16 1.3e-3 1.26 5.5e-4 0.22 -1 -1 0.011 0.4 0.019 0.45 1.2e-13 2.6e-4
5 2.4e-21 1.3e-3 1.36 3.9e-6 0.13 -1 -1 3.4e-3 0.39 0.015 0.5 1.9e-16 2.6e-4
6 8.6e-27 1.3e-3 1.29 1.2e-6 0.14 -1 -1 0.015 0.55 1.4e-5 0.2 2.2e-21 2.6e-4
7 1.4e-31 1.3e-3 1.21 5.2e-6 0.22 2.2 1.88 1.4e-5 0.25 1.0e-7 0.13 8.0e-27 2.6e-4
8 1.9e-39 1.3e-3 1.27 4.7e-9 0.12 1.6e-3 3.01 5.2e-7 0.2 6.2e-7 0.2 1.3e-31 2.6e-4
9 1.0e-48 1.3e-3 1.26 1.8e-10 0.11 0.027 2.38 6.2e-7 0.24 4.4e-11 0.092 1.8e-39 2.6e-4

10 6.6e-58 1.3e-3 1.2 2.1e-10 0.13 7.1e-4 2.97 4.3e-11 0.11 1.4e-13 0.068 9.6e-49 2.6e-4
11 3.0e-71 1.3e-3 1.24 1.5e-14 0.07 9.8e-4 2.56 1.0e-12 0.1 8.6e-13 0.099 6.1e-58 2.6e-4
12 3.1e-86 1.3e-3 1.22 3.4e-16 0.065 2.5e-4 2.61 8.6e-13 0.12 4.4e-19 0.039 2.7e-71 2.6e-4
13 2.7e-101 1.3e-3 1.18 2.9e-16 0.078 1.1e-5 2.94 4.4e-19 0.049 3.9e-24 0.021 2.9e-86 2.6e-4
14 1.2e-122 1.3e-3 1.22 1.5e-22 0.035 6.8e-6 2.62 4.1e-24 0.028 2.1e-25 0.023 2.5e-101 2.6e-4
15 5.3e-149 1.3e-3 1.22 1.4e-27 0.021 4.5e-8 2.75 2.1e-25 0.029 1.2e-33 8.8e-3 1.2e-122 2.6e-4
16 1.2e-176 1.3e-3 1.19 7.2e-29 0.022 1.6e-9 2.91 1.2e-33 0.012 4.7e-41 4.2e-3 4.9e-149 2.6e-4
17 1.4e-212 1.3e-3 1.21 4.1e-37 9.5e-3 1.8e-9 2.63 4.6e-41 5.7e-3 8.0e-43 4.6e-3 1.1e-176 2.6e-4
18 6.8e-256 1.3e-3 1.21 1.6e-44 5.0e-3 1.3e-13 2.83 8.0e-43 6.1e-3 1.8e-55 1.3e-3 1.3e-212 2.6e-4
19 5.6e-301 1.3e-3 1.18 2.7e-46 5.3e-3 3.1e-15 2.93 1.8e-55 1.8e-3 8.0e-72 2.8e-4 6.3e-256 2.6e-4
20 1.0e-358 1.3e-3 1.19 6.2e-59 1.7e-3 2.7e-15 2.67 8.0e-72 4.1e-4 0.0 0.0 5.2e-301 2.6e-4

convergence of (εk) with q-order larger than one seems to hold for α ≤ 10−3 if
(σk) ≡ 1, but not for α ∈ {10−1, 10−2} and also not for other choices of (σk).
A closer inspection of α ∈ {10−1, 10−2} for Broyden’s method reveals that out
of the 2000 runs only 2, respectively, 1 fail to exhibit R ≥ 2. By Corollary 4 we
should see in Broyden’s method for large k that every set {δk, δk+1, . . . , δk+5}
contains at least one number close to or larger than 7/6 ≈ 1.17; Table 7 and
8 confirm this. Moreover, since δ ≥ 1.12 for (σk) ≡ 1 in Table 9 we conclude
that (δk) always stays safely away from 1, which implies convergence of (Bk)
via Theorem 3.
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Table 9 Example 3: Results for cumulative runs for B0 = F ′(u0), α = 10−j and (σk) ≡ σ,
respectively, σk = 0.9 for k ≤ 9 and σk = 1 else (represented by σ = X), and σk =
1− (k + 2)−2 (represented by σ = Y )

(j, σ) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2

(1, 1) 8e-321 1e-2 1.12 0.3 982 1.72 0.27 0.19 1e-257 1e-7 0.27
(2, 1) 1e-320 1e-3 1.13 0.15 644 1.74 0.14 0.11 1e-259 2e-7 0.02
(3, 1) 9e-321 7e-5 1.14 0.06 8e-3 2.17 0.08 0.06 2e-257 2e-8 2e-3
(8, 1) 9e-321 6e-10 1.13 0.02 3e-5 2.31 6e-3 0.03 5e-251 4e-14 2e-8
(1, X) 9e-321 8e-3 1.09 0.42 4e5 1.55 0.39 0.29 8e-262 9e-8 0.26
(2, X) 9e-321 8e-4 1.08 0.42 3e11 1.29 0.41 0.34 1e-263 1e-8 2e-2
(3, X) 9e-321 8e-5 1.09 0.26 1e18 1.46 0.4 0.32 6e-241 1e-8 2e-3
(1, Y ) 1e-320 1e-2 1.06 0.38 2e27 0.82 0.45 0.44 2e-71 2e-7 0.25
(2, Y ) 1e-320 9e-4 1.06 0.37 1e32 0.71 0.51 0.42 2e-68 4e-8 2e-2
(3, Y ) 1e-320 9e-5 1.05 0.33 7e27 0.77 0.49 0.48 6e-66 6e-9 2e-3
(1, 0.9) 1e-320 8e-3 1.03 0.61 1e23 0.65 0.76 0.73 5e-38 3e-9 0.26
(2, 0.9) 1e-320 8e-4 1.03 0.63 2e20 0.66 0.8 0.79 2e-37 3e-8 2e-2
(3, 0.9) 1e-320 8e-5 1.03 0.61 2e22 0.63 0.82 0.82 1e-34 2e-10 2e-3
(1, 1.1) 1e-320 5e-3 1.03 0.66 1e22 0.58 0.75 0.75 1e-39 4e-7 0.22
(2, 1.1) 1e-320 1e-3 1.03 0.63 1e23 0.64 0.82 0.81 2e-37 2e-8 2e-2
(3, 1.1) 1e-320 9e-5 1.03 0.59 3e22 0.61 0.89 0.88 1e-35 3e-9 2e-3
(1, 0.5) 1e-320 1e-2 1.01 0.91 2e18 0.35 1.0 1.01 9e-18 2e-7 0.2
(2, 0.5) 1e-320 1e-3 1.01 0.88 5e18 0.37 1.01 1.0 2e-16 3e-8 2e-2
(3, 0.5) 1e-320 1e-4 1.02 0.84 1e16 0.49 1.01 1.01 3e-15 2e-9 2e-3

5.2.4 Example 4

We consider another mapping without affine components:

F : R7 → R7, F (u) =



u1 + u2 + (1 + u3)2 + u4 + u5 + u6 − u3
7

u2 − 2(1 + u3)2 + 3u5 − sin(u7) + 2
u1 − u2

3 + u5u6u7

0.5 ln(1 + u2
2)− 2eu3 + 0.1u10

7 + 2
sin(u1 + u3 − 10u2)− u5

4 − u6

u2
1 + u2

3 + u2
5 + (1 + u7)2 − 1

u6 − u7 − u6
7


.

We use α ∈ {10−2, 10−4}, α̂ ∈ {0, 10−2, 10−4, 10−10} and (σk) ≡ 1 as well as
(σk) ≡ 0.9. The results in Table 10–12 show convergence of (Bk) in all runs,
since δ > 1 and since ρε is safely smaller than one. In contrast to previous
examples the indicators R, ρζ and ρ̄ζ are inconclusive in the case (σk) ≡ 0.9
and it is unclear if the summability property (9) holds. We mention that for
α = 10−5 and α = 10−6 there were only two runs out of 4000 with R < 2. We
confirm for (σk) ≡ 1 in Table 10 that every 2n = 14 steps there is at least one
for which δk is close to or larger than 15/14 ≈ 1.07 (in fact, all are) and infer
from δ ≥ 1.05 that (Bk) converges, cf. Theorem 3.
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Table 10 Example 4: Results for one run with B0 = F ′(u0), α = 0.01 and (σk) ≡ 1

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2 Λk3
0 0.092 0.043 -1 -1 -1 -1 -1 -1 -1 1.0 1.0 5.0e-507 9.7e-6 2.7e-5
1 2.6e-4 0.039 2.05 0.015 0.12 -1 -1 0.89 0.94 0.83 0.91 3.7e-13 7.1e-6 2.7e-5
2 1.0e-6 0.039 1.52 8.8e-3 0.21 -1 -1 0.7 0.89 0.65 0.87 1.6e-14 3.3e-6 2.6e-5
3 9.1e-9 0.038 1.31 0.013 0.34 -1 -1 1.0 1.0 1.0 1.0 1.6e-16 3.2e-6 2.5e-5
4 5.2e-11 0.037 1.25 9.4e-3 0.39 -1 -1 0.25 0.75 0.87 0.97 2.3e-19 1.8e-6 2.5e-5
5 5.5e-14 0.037 1.26 1.7e-3 0.34 -1 -1 0.38 0.85 1.2 1.0 3.3e-21 1.8e-6 2.5e-5
6 1.2e-16 0.037 1.17 4.3e-3 0.46 -1 -1 0.85 0.98 0.97 0.99 6.1e-25 1.7e-6 2.5e-5
7 3.6e-19 0.036 1.11 0.015 0.59 -1 -1 0.97 1.0 1.4e-3 0.44 4.9e-28 1.2e-6 2.5e-5
8 7.7e-22 0.036 1.1 0.01 0.6 -1 -1 0.032 0.68 0.031 0.68 1.1e-29 7.1e-7 2.5e-5
9 3.3e-26 0.036 1.17 2.1e-4 0.43 -1 -1 5.8e-3 0.6 0.025 0.69 2.3e-32 7.1e-7 2.5e-5

10 2.6e-31 0.036 1.17 3.8e-5 0.4 -1 -1 1.4e-3 0.55 0.024 0.71 1.0e-36 7.1e-7 2.5e-5
11 4.7e-37 0.036 1.16 9.1e-6 0.38 -1 -1 7.6e-3 0.67 0.016 0.71 7.9e-42 7.1e-7 2.5e-5
12 5.0e-42 0.036 1.12 5.1e-5 0.47 -1 -1 0.016 0.73 5.5e-5 0.47 1.5e-47 7.1e-7 2.5e-5
13 1.1e-46 0.036 1.09 1.1e-4 0.52 -1 -1 2.2e-4 0.55 1.6e-4 0.54 1.6e-52 7.1e-7 2.5e-5
14 3.3e-53 0.036 1.13 1.5e-6 0.41 -1 -1 1.7e-5 0.48 1.5e-4 0.56 3.5e-57 7.1e-7 2.5e-5
15 7.9e-61 0.036 1.13 1.2e-7 0.37 5.4e-4 3.79 1.3e-4 0.57 2.0e-5 0.51 1.0e-63 7.1e-7 2.5e-5
16 1.4e-67 0.036 1.1 8.5e-7 0.44 0.011 2.96 2.0e-5 0.53 9.2e-7 0.44 2.5e-71 7.1e-7 2.5e-5
17 3.9e-75 0.036 1.1 1.4e-7 0.42 8.2e-4 3.64 7.9e-6 0.52 7.0e-6 0.52 4.3e-78 7.1e-7 2.5e-5
18 4.2e-83 0.036 1.1 5.3e-8 0.41 6.0e-4 3.59 6.7e-6 0.53 3.1e-7 0.45 1.2e-85 7.1e-7 2.5e-5
19 3.9e-91 0.036 1.09 4.5e-8 0.43 0.016 2.65 3.1e-7 0.47 3.4e-10 0.34 1.3e-93 7.1e-7 2.5e-5
20 1.7e-100 0.036 1.1 2.1e-9 0.39 1.1e-4 3.67 2.6e-9 0.39 2.9e-9 0.39 1.2e-101 7.1e-7 2.5e-5
21 6.0e-112 0.036 1.11 1.7e-11 0.32 7.3e-8 5.93 6.4e-11 0.34 2.8e-9 0.41 5.3e-111 7.1e-7 2.5e-5
22 5.2e-125 0.036 1.11 4.3e-13 0.29 4.0e-9 6.23 2.8e-9 0.42 8.8e-11 0.37 1.9e-122 7.1e-7 2.5e-5
23 2.0e-136 0.036 1.09 1.8e-11 0.36 4.1e-4 2.92 8.8e-11 0.38 1.4e-14 0.26 1.6e-135 7.1e-7 2.5e-5
24 2.4e-149 0.036 1.09 5.9e-13 0.32 4.0e-4 2.77 1.7e-13 0.31 1.9e-13 0.31 6.2e-147 7.1e-7 2.5e-5
25 5.7e-165 0.036 1.1 1.2e-15 0.27 1.4e-5 2.96 6.3e-13 0.34 4.4e-13 0.33 7.5e-160 7.1e-7 2.5e-5
26 5.0e-180 0.036 1.09 4.2e-15 0.29 1.6e-6 3.35 4.4e-13 0.35 3.5e-16 0.27 1.8e-175 7.1e-7 2.5e-5
27 3.0e-195 0.036 1.08 3.0e-15 0.3 2.5e-7 3.66 3.5e-16 0.28 1.3e-19 0.21 1.6e-190 7.1e-7 2.5e-5
28 1.4e-213 0.036 1.09 2.3e-18 0.25 1.1e-6 3.02 6.5e-19 0.24 5.3e-19 0.23 9.4e-206 7.1e-7 2.5e-5
29 1.3e-234 0.036 1.1 4.4e-21 0.21 3.3e-7 2.94 5.1e-19 0.25 2.1e-20 0.22 4.5e-224 7.1e-7 2.5e-5
30 9.0e-256 0.036 1.09 3.4e-21 0.22 4.7e-9 3.37 1.9e-20 0.23 2.6e-21 0.22 4.0e-245 7.1e-7 2.5e-5
31 2.3e-278 0.036 1.09 1.2e-22 0.21 6.6e-9 3.19 3.2e-21 0.23 6.9e-22 0.22 2.8e-266 7.1e-7 2.5e-5
32 1.0e-301 0.036 1.08 2.2e-23 0.21 7.7e-9 3.12 6.9e-22 0.23 9.8e-25 0.19 7.2e-289 7.1e-7 2.5e-5
33 9.9e-326 0.036 1.08 4.7e-24 0.21 2.3e-9 3.18 9.8e-25 0.2 0.0 0.0 3.2e-312 7.1e-7 2.5e-5

Table 11 Example 4: Results for one run with B0 = F ′(u0), α = 0.01 and (σk) ≡ 0.9

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2 Λk3
0 0.092 0.043 -1 -1 -1 -1 -1 -1 -1 1.1 1.1 5.0e-507 9.7e-6 2.7e-5
1 2.6e-4 0.039 2.05 0.013 0.12 -1 -1 0.89 0.94 1.2 1.1 3.1e-13 7.2e-6 2.7e-5
2 1.1e-6 0.039 1.51 8.4e-3 0.2 -1 -1 0.66 0.87 0.86 0.95 1.3e-13 2.7e-6 2.5e-5
3 8.7e-9 0.038 1.31 0.011 0.32 -1 -1 1.1 1.0 1.4 1.1 1.5e-14 2.7e-6 2.5e-5
4 5.0e-11 0.037 1.24 8.5e-3 0.39 -1 -1 0.36 0.81 1.2 1.0 3.2e-15 1.6e-6 2.5e-5
5 6.2e-14 0.037 1.26 1.8e-3 0.35 -1 -1 0.53 0.9 1.2 1.0 3.3e-16 1.5e-6 2.5e-5
6 1.5e-16 0.037 1.17 4.5e-3 0.46 -1 -1 0.29 0.84 1.0 1.0 3.8e-17 1.4e-6 2.5e-5
7 3.2e-19 0.037 1.13 6.6e-3 0.53 -1 -1 1.4 1.0 0.6 0.94 4.0e-18 1.4e-6 2.5e-5
8 1.3e-21 0.036 1.09 0.016 0.63 -1 -1 0.22 0.85 0.38 0.9 2.6e-18 2.5e-7 2.5e-5
9 5.5e-25 0.036 1.12 2.0e-3 0.54 -1 -1 5.6e-3 0.6 0.39 0.91 4.3e-19 1.6e-7 2.5e-5

10 2.3e-29 0.036 1.15 1.9e-4 0.46 -1 -1 0.024 0.71 0.41 0.92 4.3e-20 1.5e-7 2.5e-5
11 6.8e-35 0.036 1.16 1.3e-5 0.39 -1 -1 0.44 0.93 0.026 0.74 4.3e-21 1.5e-7 2.5e-5
12 7.5e-39 0.036 1.09 5.5e-4 0.56 -1 -1 0.16 0.87 0.14 0.86 4.8e-22 1.4e-7 2.5e-5
13 2.2e-43 0.036 1.1 1.4e-4 0.53 -1 -1 0.076 0.83 0.21 0.9 4.8e-23 1.4e-7 2.5e-5
14 4.9e-48 0.036 1.09 1.1e-4 0.54 -1 -1 0.062 0.83 0.28 0.92 4.8e-24 1.4e-7 2.5e-5
15 7.4e-53 0.036 1.09 7.2e-5 0.55 0.41 2.21 0.46 0.95 0.19 0.9 4.8e-25 1.4e-7 2.5e-5
16 7.8e-57 0.036 1.06 5.2e-4 0.64 7.3 1.58 0.35 0.94 0.17 0.9 5.4e-26 1.2e-7 2.5e-5
17 5.0e-61 0.036 1.06 3.1e-4 0.64 2.7 1.78 0.015 0.79 0.15 0.9 5.6e-27 1.2e-7 2.5e-5
18 1.6e-66 0.036 1.08 1.6e-5 0.56 0.22 2.32 3.1e-3 0.74 0.15 0.9 5.6e-28 1.2e-7 2.5e-5

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
44 1.4e-257 0.036 1.04 2.8e-10 0.61 1.1e4 1.41 1.4e-5 0.78 8.9e-6 0.77 5.7e-54 1.2e-7 2.5e-5
45 3.8e-266 0.036 1.03 1.3e-8 0.67 9.7e4 1.22 8.3e-6 0.78 5.7e-7 0.73 5.7e-55 1.2e-7 2.5e-5
46 6.8e-275 0.036 1.03 9.0e-9 0.67 5.2e6 1.09 2.6e-8 0.69 5.9e-7 0.74 5.7e-56 1.2e-7 2.5e-5
47 1.2e-284 0.036 1.03 8.8e-10 0.65 8.8e4 1.29 6.4e-9 0.67 6.0e-7 0.74 5.7e-57 1.2e-7 2.5e-5
48 2.0e-295 0.036 1.04 8.2e-11 0.62 588.0 1.57 4.4e-8 0.71 6.4e-7 0.75 5.7e-58 1.2e-7 2.5e-5
49 1.3e-306 0.036 1.04 3.2e-11 0.62 7.3e4 1.37 8.1e-7 0.76 1.6e-7 0.73 5.7e-59 1.2e-7 2.5e-5
50 1.9e-316 0.036 1.03 7.5e-10 0.66 2.0e7 1.11 1.6e-7 0.74 1.4e-9 0.67 5.7e-60 1.2e-7 2.5e-5
51 3.0e-327 0.036 1.03 7.8e-11 0.64 1.7e5 1.32 1.4e-9 0.68 0.0 0.0 5.7e-61 1.2e-7 2.5e-5



On the convergence of the Broyden–like method and the Broyden–like matrices 31

Table 12 Example 4: Results for cumulative runs with B0 = F ′(u0) + α̂‖F ′(u0)‖R for
α = 10−j , α̂ = 10−l and (σk) ≡ σ

(j, l, σ) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2 Λ3

(2, 0, 1) 1e-320 6e-3 1.05 0.53 2e4 1.54 0.71 0.53 5e-299 1e-13 6e-5 6e-8
(2, 10, 1) 1e-320 6e-3 1.06 0.48 3e7 1.39 0.7 0.5 2e-297 1e-12 6e-5 6e-8
(2, 4, 1) 1e-320 5e-3 1.05 0.58 63 1.76 0.78 0.7 2e-292 1e-11 6e-4 2e-5
(2, 2, 1) 1e-320 8e-2 1.05 0.64 1e4 1.3 0.73 0.67 9e-291 3e-10 2e-2 8e-5
(4, 0, 1) 1e-320 4e-5 1.07 0.27 663 1.76 0.33 0.28 7e-309 4e-20 6e-9 5e-12
(4, 10, 1) 1e-320 4e-5 1.07 0.27 20 1.9 0.42 0.32 1e-296 5e-15 5e-9 2e-10
(4, 4, 1) 1e-320 1e-3 1.05 0.47 60 1.8 0.7 0.68 7e-288 3e-12 2e-4 1e-6
(4, 2, 1) 9e-321 1e-1 1.05 0.59 5e5 1.37 0.68 0.68 4e-289 1e-11 0.021 6e-5
(5, 0, 1) 1e-320 4e-6 1.07 0.21 183 1.95 0.37 0.28 5e-311 1e-22 5e-11 2e-14
(6, 0, 1) 1e-320 3e-7 1.08 0.13 0.03 1.97 0.3 0.23 5e-311 2e-23 6e-13 3e-15

(2, 0, 0.9) 1e-320 6e-3 1.02 0.8 1e18 0.55 1.01 0.98 3e-55 1e-13 6e-5 3e-8
(2, 10, 0.9) 1e-320 6e-3 1.02 0.78 3e16 0.54 1.01 0.98 4e-50 2e-13 6e-5 3e-8
(2, 4, 0.9) 1e-320 5e-3 1.02 0.83 7e15 0.44 1.01 1.01 1e-49 1e-12 7e-4 1e-5
(2, 2, 0.9) 1e-320 9e-2 1.02 0.87 2e15 0.53 1.01 1.01 2e-54 4e-12 3e-2 3e-4
(4, 0, 0.9) 1e-320 4e-5 1.02 0.7 1e17 0.58 1.01 1.01 7e-53 3e-20 6e-9 3e-12
(4, 10, 0.9) 1e-320 4e-5 1.02 0.69 1e18 0.56 1.01 1.01 6e-40 3e-16 6e-9 2e-10
(4, 4, 0.9) 1e-320 8e-4 1.02 0.79 1e15 0.63 1.01 1.01 4e-45 2e-13 2e-4 2e-6
(4, 2, 0.9) 1e-320 9e-2 1.02 0.85 5e15 0.47 1.01 1.0 1e-54 1e-11 2e-2 1e-4

5.2.5 Example 5

We consider F : R10 → R10 given by

F (u) =



u1 + u2 + (1 + u3)2 + u4 + u5 + u6 − u3
7 − 2u8 + sin(u10)

u2 − 2(1 + u3)2 + 3u5 − sin(u7)− u10 + 2
u1 − u2

3 + u5u6u7 − (1 + u8)(u9 − 1)− 1
0.5 ln(1 + u2

1)− 2eu3 + 0.1u10
7 + 0.3u4

9 + 2
sin(u1 + u3 − 10u2)− u5

4 − u6 − u8

u2
1 + u2

3 + (1 + u5)2 + (1 + u7)2 + sin(u9)− 1
u6 − u7 + u2

9

u1 + 0.5 ln(1 + u2
9)− 2eu10 + 2

u2 + 0.5 ln(1 + u2
8)− eu10 + 1

(1 + u3)2 + u2
8 + u2

9 + u10 − 1


.

We choose α = 0.01 and α̂ = 10−j with j ∈ {2, 3, 4} as well as (σk) ≡ 1.
The results are comprised in Table 13–14 and indicate that (Bk) converges in
all runs. At least every 20-th value of (δk) should be close to or larger than
21/20 = 1.05 and, as in previous experiments, the worst-case value δ = 1.03
in Table 14 suggests a rather uniform behavior of (δk) implying convergence
of (Bk).

5.2.6 Example 6: Degenerate Jacobian

Finally, let us consider [23, Example 2], i.e.

F : R3 → R3, F (u) =

u2
1 + u2 + u3

u2 − 2u3
3

5u3 + u2
3

 .
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Table 13 Example 5: Results for one run with B0 = F ′(u0) and α = 10−2

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2 Λk3
0 0.089 0.046 -1 -1 -1 -1 -1 -1 -1 0.89 0.89 6.5e-508 2.0e-6 2.6e-5
1 3.4e-4 0.043 2.16 0.014 0.12 -1 -1 0.89 0.94 0.027 0.17 3.6e-9 2.4e-5 4.6e-5
2 3.9e-5 0.043 1.89 8.4e-3 0.2 -1 -1 0.041 0.35 0.047 0.36 4.3e-8 2.5e-5 2.7e-4
3 6.0e-7 0.043 1.9 1.1e-3 0.18 -1 -1 0.057 0.49 0.023 0.39 3.7e-8 2.4e-5 5.4e-5
4 2.5e-8 0.043 1.65 9.9e-4 0.25 -1 -1 0.023 0.47 0.013 0.42 2.9e-9 2.2e-5 3.2e-5
5 3.3e-10 0.043 1.56 4.0e-4 0.27 -1 -1 0.018 0.51 0.024 0.54 9.6e-11 2.2e-5 3.2e-5
6 2.8e-12 0.043 1.43 3.3e-4 0.32 -1 -1 8.0e-3 0.5 0.028 0.6 9.9e-13 2.2e-5 3.2e-5
7 8.2e-15 0.043 1.39 1.1e-4 0.32 -1 -1 0.085 0.73 0.095 0.75 8.1e-15 2.2e-5 3.2e-5
8 5.8e-17 0.043 1.21 1.4e-3 0.48 -1 -1 0.61 0.95 0.66 0.95 4.5e-18 2.2e-5 3.2e-5
9 8.0e-19 0.043 1.12 0.01 0.63 -1 -1 0.65 0.96 0.021 0.68 8.6e-21 2.2e-5 3.1e-5

10 2.1e-19 0.043 1.12 8.6e-3 0.65 -1 -1 4.5e-3 0.61 0.018 0.69 1.6e-21 2.2e-5 2.8e-5
11 2.6e-22 0.043 1.25 5.1e-5 0.44 -1 -1 8.7e-4 0.56 0.018 0.72 5.7e-22 2.2e-5 2.8e-5
12 5.3e-26 0.043 1.25 8.6e-6 0.41 -1 -1 0.024 0.75 0.02 0.74 7.0e-25 2.2e-5 2.8e-5
13 2.4e-28 0.043 1.15 2.4e-4 0.55 -1 -1 0.027 0.77 0.021 0.76 1.1e-28 2.2e-5 2.8e-5
14 1.7e-30 0.043 1.13 2.9e-4 0.58 -1 -1 3.9e-3 0.69 0.023 0.78 6.6e-31 2.2e-5 2.8e-5
15 1.3e-33 0.043 1.16 3.1e-5 0.52 -1 -1 6.8e-3 0.73 0.026 0.8 4.6e-33 2.2e-5 2.8e-5
16 1.7e-36 0.043 1.13 5.8e-5 0.56 -1 -1 0.054 0.84 0.028 0.81 3.2e-36 2.2e-5 2.8e-5
17 1.3e-38 0.043 1.09 7.2e-4 0.67 -1 -1 0.029 0.82 1.4e-3 0.69 2.4e-39 2.2e-5 2.8e-5
18 1.0e-40 0.043 1.09 3.8e-4 0.66 -1 -1 1.8e-3 0.72 3.5e-4 0.66 3.1e-41 2.2e-5 2.8e-5
19 4.4e-44 0.043 1.12 2.3e-5 0.59 -1 -1 3.9e-4 0.68 4.5e-5 0.61 2.3e-43 2.2e-5 2.8e-5
20 4.4e-48 0.043 1.13 5.2e-6 0.56 -1 -1 1.4e-5 0.59 3.1e-5 0.61 1.0e-46 2.2e-5 2.8e-5
21 1.5e-53 0.043 1.15 1.8e-7 0.49 9.7e-4 3.62 2.6e-6 0.56 3.3e-5 0.63 1.0e-50 2.2e-5 2.8e-5
22 1.0e-59 0.043 1.14 3.4e-8 0.47 4.9e-4 3.59 2.4e-5 0.63 9.5e-6 0.6 3.5e-56 2.2e-5 2.8e-5
23 6.0e-65 0.043 1.11 3.1e-7 0.54 0.25 2.2 3.7e-5 0.65 4.6e-5 0.66 2.3e-62 2.2e-5 2.8e-5
24 5.5e-70 0.043 1.1 4.8e-7 0.56 0.49 2.1 3.0e-6 0.6 4.3e-5 0.67 1.4e-67 2.2e-5 2.8e-5
25 4.1e-76 0.043 1.11 3.9e-8 0.52 0.24 2.18 1.4e-5 0.65 2.9e-5 0.67 1.3e-72 2.2e-5 2.8e-5
26 1.4e-81 0.043 1.09 1.8e-7 0.56 1.7 1.94 5.7e-6 0.64 2.3e-5 0.67 9.4e-79 2.2e-5 2.8e-5
27 2.1e-87 0.043 1.09 7.5e-8 0.56 5.7 1.81 2.4e-5 0.68 9.4e-7 0.61 3.3e-84 2.2e-5 2.8e-5
28 1.3e-92 0.043 1.08 3.2e-7 0.6 0.16 2.28 5.7e-7 0.61 3.7e-7 0.6 4.7e-90 2.2e-5 2.8e-5
29 1.8e-99 0.043 1.09 7.5e-9 0.54 6.9e-5 4.1 2.1e-8 0.55 4.0e-7 0.61 2.9e-95 2.2e-5 2.8e-5
30 9.4e-108 0.043 1.1 2.7e-10 0.49 3.7e-6 4.63 1.5e-8 0.56 3.8e-7 0.62 4.1e-102 2.2e-5 2.8e-5
31 3.5e-116 0.043 1.09 1.9e-10 0.5 0.075 2.26 4.8e-7 0.63 1.0e-7 0.6 2.1e-110 2.2e-5 2.8e-5
32 4.2e-123 0.043 1.07 6.3e-9 0.56 86.0 1.62 4.8e-7 0.64 3.8e-7 0.64 7.9e-119 2.2e-5 2.8e-5
33 5.1e-130 0.043 1.07 6.4e-9 0.57 0.11 2.27 2.1e-8 0.59 3.6e-7 0.65 9.5e-126 2.2e-5 2.8e-5
34 2.7e-138 0.043 1.07 2.8e-10 0.53 3.2e-3 2.71 8.6e-8 0.63 2.8e-7 0.65 1.2e-132 2.2e-5 2.8e-5
35 5.9e-146 0.043 1.07 1.1e-9 0.56 1.2 1.98 3.6e-7 0.66 8.6e-8 0.64 6.2e-141 2.2e-5 2.8e-5
36 5.4e-153 0.043 1.06 4.8e-9 0.6 1.4 1.96 9.5e-8 0.65 8.3e-9 0.6 1.3e-148 2.2e-5 2.8e-5
37 1.3e-160 0.043 1.06 1.2e-9 0.58 2.4e-3 2.83 2.4e-9 0.59 5.9e-9 0.61 1.2e-155 2.2e-5 2.8e-5
38 7.7e-170 0.043 1.07 3.1e-11 0.54 2.1e-4 3.08 5.9e-9 0.62 1.8e-11 0.53 2.9e-163 2.2e-5 2.8e-5
39 1.1e-178 0.043 1.06 7.8e-11 0.56 0.14 2.18 1.8e-11 0.54 4.8e-15 0.44 1.7e-172 2.2e-5 2.8e-5
40 5.2e-190 0.043 1.07 2.4e-13 0.49 8.9e-3 2.39 4.8e-15 0.45 5.9e-18 0.38 2.6e-181 2.2e-5 2.8e-5
41 6.3e-205 0.043 1.09 6.3e-17 0.41 1.9e-3 2.4 9.7e-17 0.42 9.1e-17 0.42 1.2e-192 2.2e-5 2.8e-5
42 1.5e-221 0.043 1.09 1.3e-18 0.38 1.1e-3 2.4 1.9e-16 0.43 1.0e-16 0.42 1.4e-207 2.2e-5 2.8e-5
43 7.5e-238 0.043 1.08 2.6e-18 0.4 2.6e-5 2.71 9.4e-17 0.43 9.0e-18 0.41 3.5e-224 2.2e-5 2.8e-5
44 1.8e-254 0.043 1.08 1.2e-18 0.4 5.3e-6 2.84 1.8e-17 0.42 8.7e-18 0.42 1.7e-240 2.2e-5 2.8e-5
45 7.8e-272 0.043 1.07 2.3e-19 0.39 1.5e-4 2.51 3.1e-16 0.46 3.2e-16 0.46 4.0e-257 2.2e-5 2.8e-5
46 6.1e-288 0.043 1.06 4.1e-18 0.43 1.2e-4 2.58 3.5e-16 0.47 3.3e-17 0.45 1.8e-274 2.2e-5 2.8e-5
47 5.4e-304 0.043 1.06 4.6e-18 0.44 8.3e-4 2.43 3.3e-17 0.45 2.2e-20 0.39 1.4e-290 2.2e-5 2.8e-5
48 4.4e-321 0.043 1.06 4.3e-19 0.42 4.2e-6 2.83 2.2e-20 0.4 0.0 0.0 1.2e-306 2.2e-5 2.8e-5

Table 14 Example 5: Results for cumulative runs with B0 = F ′(u0), α = 10−j , and
(σk) ≡ 1 (represented by σ = 1), respectively, σk = 0.9 for k ≤ 4 and σk = 1 else
(represented by σ = Y )

(j, σ) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2 Λ3

(2, 1) 1e-320 9e-3 1.03 0.73 1e9 0.99 0.96 0.81 5e-300 2e-10 1e-4 2e-7
(2, Y ) 1e-320 9e-3 1.03 0.72 2e8 1.0 0.89 0.83 9e-300 3e-12 1e-4 2e-7
(5, 1) 1e-320 9e-6 1.05 0.39 2366 1.59 0.7 0.69 1e-301 1e-18 9e-11 2e-13
(5, Y ) 1e-320 9e-6 1.05 0.46 2288 1.52 0.67 0.66 1e-294 2e-16 8e-11 3e-13
(8, 1) 9e-321 9e-9 1.06 0.25 1777 1.6 0.61 0.6 2e-300 4e-23 9e-17 2e-19
(8, Y ) 1e-320 9e-9 1.06 0.25 643 1.69 0.63 0.61 1e-301 2e-22 1e-16 3e-19
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Table 15 Example 6: Results for one run with B0 = F ′(u0) + α̂‖F ′(u0)‖R for α̂ = 0.1,
α = 0.1, and (σk) ≡ 0.9

k ||Fk|| ||Ek|| δk εk ρkε βk Rk ζk ρkζ ζ̄k ρ̄kζ Λk1 Λk2
0 0.38 0.91 -1 -1 -1 -1 -1 -1 -1 0.83 0.83 0.22 0.42
1 0.023 0.95 2.05 0.13 0.36 -1 -1 0.59 0.77 0.33 0.57 0.25 0.44
2 0.023 0.85 1.39 0.31 0.68 -1 -1 0.39 0.73 0.072 0.42 0.14 0.36
3 0.015 0.77 1.37 0.29 0.73 -1 -1 0.13 0.6 0.17 0.64 0.059 0.36
4 4.4e-3 0.75 1.59 0.12 0.65 -1 -1 0.032 0.5 0.19 0.72 0.044 0.36
5 4.1e-4 0.74 1.67 0.039 0.58 -1 -1 0.11 0.7 0.076 0.65 0.039 0.36
6 1.6e-4 0.74 1.46 0.058 0.67 -1 -1 0.089 0.71 0.013 0.54 0.025 0.35
7 1.2e-4 0.74 1.45 0.054 0.69 3.2 1.43 2.0e-3 0.46 0.015 0.59 0.01 0.35
8 3.6e-5 0.74 1.82 9.0e-3 0.59 0.093 4.03 7.9e-3 0.58 6.9e-3 0.58 5.8e-3 0.35
9 2.4e-5 0.74 1.83 7.3e-3 0.61 0.088 3.95 7.8e-3 0.62 9.0e-4 0.5 3.7e-3 0.35
10 1.3e-5 0.74 1.78 6.5e-3 0.63 0.45 2.37 3.8e-3 0.6 4.7e-3 0.61 2.5e-3 0.35
11 3.4e-6 0.74 1.77 3.7e-3 0.63 2.4 1.73 5.0e-4 0.53 4.2e-3 0.63 1.9e-3 0.35
12 4.4e-7 0.74 1.81 1.3e-3 0.6 0.39 2.33 3.1e-3 0.64 1.0e-3 0.59 1.3e-3 0.35
13 2.8e-7 0.74 1.7 1.7e-3 0.64 0.61 2.17 1.5e-3 0.63 4.9e-4 0.58 7.1e-4 0.35
14 1.5e-7 0.74 1.76 1.0e-3 0.63 12.0 1.46 7.1e-6 0.45 5.0e-4 0.6 3.7e-4 0.35
15 5.0e-8 0.74 1.91 3.0e-4 0.6 5.6 1.65 3.1e-4 0.6 1.8e-4 0.58 2.3e-4 0.35
16 3.6e-8 0.74 1.88 3.0e-4 0.62 7.0 1.61 2.6e-4 0.62 7.4e-5 0.57 1.5e-4 0.35
17 1.6e-8 0.74 1.85 2.3e-4 0.63 17.0 1.49 9.6e-5 0.6 1.7e-4 0.62 1.0e-4 0.35
18 3.8e-9 0.74 1.85 1.2e-4 0.62 70.0 1.36 5.5e-5 0.6 1.1e-4 0.62 7.2e-5 0.35
19 7.0e-10 0.74 1.86 5.3e-5 0.61 17.0 1.55 1.0e-4 0.63 1.1e-5 0.57 4.7e-5 0.35

...
...

...
...

...
...

...
...

...
...

...
...

...
...

120 1.5e-49 0.74 1.98 5.9e-25 0.63 7.1e21 1.05 7.8e-26 0.62 1.2e-25 0.62 4.5e-25 0.35
121 6.7e-50 0.74 1.98 4.0e-25 0.63 1.0e22 1.05 1.1e-25 0.62 7.7e-27 0.61 2.9e-25 0.35
122 2.9e-50 0.74 1.98 2.7e-25 0.63 1.6e22 1.05 5.1e-26 0.62 4.3e-26 0.62 1.8e-25 0.35
123 1.1e-50 0.74 1.98 1.7e-25 0.63 2.8e22 1.05 7.2e-27 0.62 3.6e-26 0.62 1.2e-25 0.35
124 3.8e-51 0.74 1.98 1.0e-25 0.63 4.6e22 1.05 2.7e-26 0.62 8.6e-27 0.62 7.7e-26 0.35

...
...

...
...

...
...

...
...

...
...

...
...

...
...

460 3.2e-183 0.74 1.99 8.9e-92 0.63 4.9e88 1.01 3.8e-95 0.62 3.0e-94 0.63 6.7e-92 0.35
461 1.3e-183 0.74 1.99 5.7e-92 0.63 7.7e88 1.01 2.2e-94 0.63 8.4e-95 0.63 4.3e-92 0.35
462 5.3e-184 0.74 1.99 3.6e-92 0.63 1.2e89 1.01 1.4e-94 0.63 5.9e-95 0.63 2.7e-92 0.35
463 2.1e-184 0.74 1.99 2.3e-92 0.63 1.9e89 1.01 1.7e-95 0.62 7.6e-95 0.63 1.7e-92 0.35
464 8.7e-185 0.74 1.99 1.5e-92 0.63 3.0e89 1.01 4.5e-95 0.63 3.1e-95 0.63 1.1e-92 0.35

...
...

...
...

...
...

...
...

...
...

...
...

...
...

806 3.1e-319 0.74 2.0 8.8e-160 0.64 5.0e156 1.01 3.8e-164 0.63 3.3e-164 0.63 6.6e-160 0.35
807 1.3e-319 0.74 2.0 5.6e-160 0.64 7.9e156 1.01 7.8e-165 0.63 2.6e-164 0.63 4.2e-160 0.35
808 5.1e-320 0.74 2.0 3.5e-160 0.64 1.2e157 1.01 2.0e-164 0.63 5.3e-165 0.63 2.7e-160 0.35
809 2.1e-320 0.74 2.0 2.3e-160 0.64 1.9e157 1.01 1.2e-164 0.63 6.3e-165 0.63 1.7e-160 0.35
810 8.3e-321 0.74 2.0 1.4e-160 0.64 3.1e157 1.01 3.3e-166 0.63 6.7e-165 0.63 1.1e-160 0.35

Note that F ′(0) is not invertible, so this example does not satisfy the standard
assumptions for q-superlinear convergence of the iterates. We choose α = 0.1,
α̂ ∈ {0, 0.1} as well as (σk) ≡ 1 and (σk) ≡ 1 − (k + 2)−2. Based on The-
orem 7 1), which applies because Assumption 2 is readily seen to hold with
φ = (1, 0, 0)T , we expect s̄ = φ in this example, so we replace ŝk̄ in the defini-
tion (22) of ζ̄k by φ. The results are displayed in Table 15 and Table 16, where
we suppress (Λk3) and Λ3 since they agree with (‖Ek‖) and ‖E‖, respectively.
From Theorem 7 we obtain the convergence of (Bk), which is numerically con-
firmed in Table 16. Under the assumptions of Lemma 6 the iterates are q-linear

convergent with exact asymptotic convergence factor
√

5−1
2 , so

6 Summary

We have investigated under which conditions the matrices of the Broyden–like
method converge, with particular emphasis on Broyden’s method. Our find-
ings suggest that the Broyden–like matrices (Bk) converge frequently (possi-
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Table 16 Example 6: Results for cumulative runs with B0 = F ′(u0) + α̂‖F ′(u0)‖R, where
X represents the choice σk = 1− (k + 2)−2 for all k ≥ 0

(α, α̂, σ) ||F || ||E|| δ ρε β R ρζ ρ̄ζ Λ1 Λ−2 Λ+
2 Λ3

(1, 1, 1) 1e-320 0.23 1.95 0.73 4e160 0.98 0.72 0.72 2e-159 1e-2 0.65 0.29
(1, 0, 1) 1e-320 2e-3 2.0 0.62 3e157 1.01 0.32 0.32 5e-162 4e-4 0.19 2e-3
(2, 1, 1) 1e-320 0.24 1.95 0.72 1e160 0.99 0.72 0.72 4e-159 2e-3 0.6 0.24
(2, 0, 1) 1e-320 8e-4 2.0 0.62 3e157 1.01 0.09 0.09 3e-165 4e-5 0.01 1e-3
(10, 0, 1) 1e-320 8e-12 2.0 0.60 3e157 1.01 8e-6 8e-6 2e-188 4e-21 7e-14 2e-9
(1, 1, 0.9) 1e-320 0.23 1.94 0.76 3e162 0.98 0.76 0.76 3e-160 8e-3 0.67 0.25
(2, 1, 0.9) 1e-320 0.27 1.95 0.73 2e159 0.98 0.73 0.73 2e-159 9e-3 0.48 0.27
(1, 1, X) 1e-320 0.23 1.96 0.72 5e162 0.98 0.72 0.72 2.4e-160 1e-2 0.58 0.26
(2, 1, X) 1e-320 0.19 1.94 0.71 5e161 0.98 0.71 0.71 5e-159 2e-2 0.56 0.19

bly always) if the standard assumptions for q-superlinear convergence of the
iterates are satisfied. More precisely, the updates (Bk+1 − Bk) converge at
least r-linearly to zero and possibly with an r-order larger than one. The it-
erates (uk) were found to be convergent with a q-order larger than one. If
the Jacobian at the root is singular, we were able to prove that some of the
new conditions for convergence of (Bk) are actually satisfied. We proposed
the conjecture that for Broyden’s method the sequence (‖Bk+1 − Bk‖) con-
verges multi–step q-quadratically to zero under the standard assumptions for
q-superlinear convergence; this would imply

∑
k‖Bk+1 −Bk‖ <∞.
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10.1007/978-3-0346-0654-7

https://www.emis.de/journals/DMJDMV/vol-ismp/45_griewank-andreas-broyden.pdf
https://www.emis.de/journals/DMJDMV/vol-ismp/45_griewank-andreas-broyden.pdf
https://imsc.uni-graz.at/mannel/ImprovGay.pdf
https://imsc.uni-graz.at/mannel/ImprovGay.pdf
https://imsc.uni-graz.at/mannel/CBLMMLNSE.pdf
https://imsc.uni-graz.at/mannel/CBLMMLNSE.pdf
https://imsc.uni-graz.at/mannel/CGB_sing.pdf
https://imsc.uni-graz.at/mannel/BLMFTQS.pdf

	Introduction
	Preliminaries
	Sufficient conditions for the convergence of the Broyden–like matrices
	Application to a class of singular problems
	Numerical experiments
	Summary

