A Variational Approach to Magnetic Resonance Coil Sensitivity Estimation

Stephen Keeling
Institute of Mathematics
University of Graz

Roland Bammer

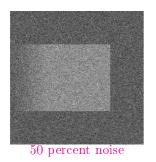
Magnetic Resonance Institute and Department of Neurology
University of Graz

Outline

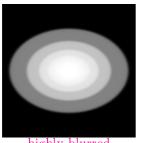
- Overview of Medical Imaging Projects.
- Introduction to MR Coils.
- Definition of Estimation Problem.
- Road to Current Variational Formulation.
- Numerical Methods Developed.
- Application to SENSE Reconstruction.
- The Next Step.

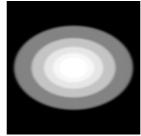
Medical Imaging – Projects Undertaken

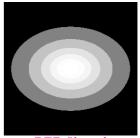
• Edge-flat-grey scale image enhancement by convex functional minimization.



• Multiscale edge enhancement by nonlinear anisotropic diffusion filtering.



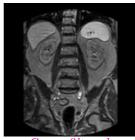




• Application to contrast enhancement of medical images.

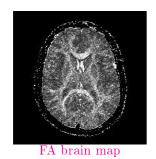


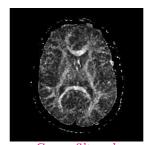
abdominal MRI

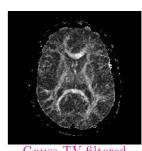


Gauss filtered

• Application to magnetic resonance diffusion tensor imaging.





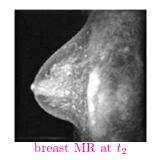


Medical Imaging – Projects Underway

- Restoration of images corrupted by noise and background variations.
- Phase unwrapping by regularized phase construction in a region growing setting.

• Well-posedness analysis of new image enhancement schemes.

- Image registration
 - Image registration
 by optical flow
 with maximal rigidity.

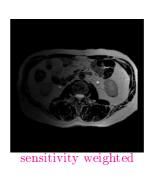


• Kernel estimation, for

- o perfusion imaging
- tracer exchange kinetics imaging

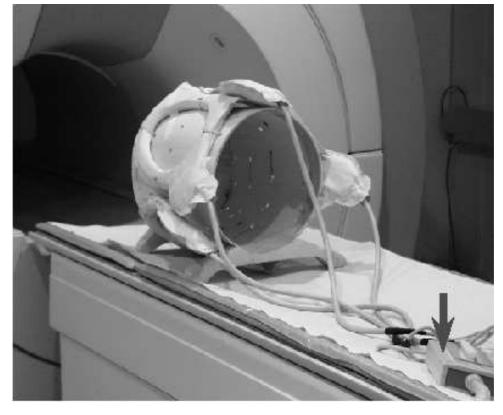
by discontinuity-preserving spatio-temporal regularization.

• Coil sensitivity estimation for high-speed parallel MRI strategies.



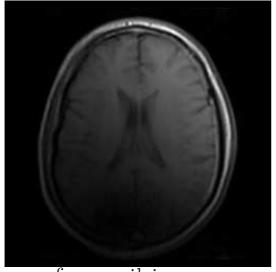
Magnetic Resonance Coils

Four surface coils mounted on a rack.

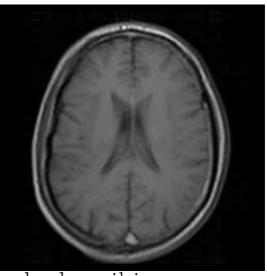


Body coil in background.

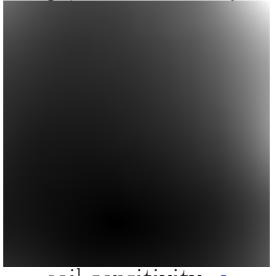
Coil Measured Images



surface coil image, $u_{\rm s}$



body coil image, $u_{\rm b}$



coil sensitivity, c

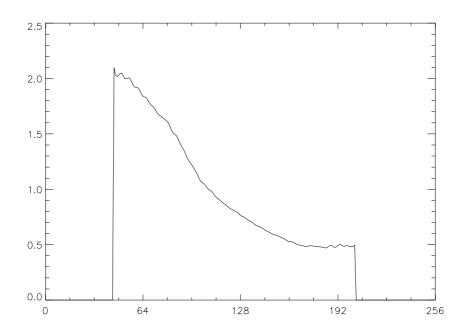
Problem: Estimate $c \approx \frac{u_{\rm s}}{u_{\rm b}}$.

Issues:

- Motion of signal boundaries.
- Quotient indeterminant after masking.
- Data discontinuous while *c* smooth.

Simple Estimation Method: Local Polynomials

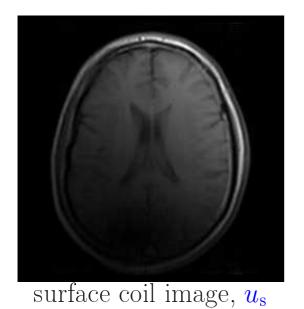
• Extrapolation especially sensitive to Gibbs effect:



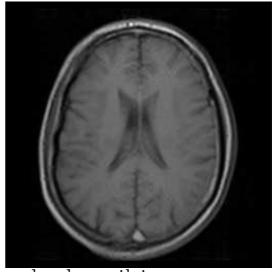
• Stencil size uncertain for gap treatment:



Variational Formulation



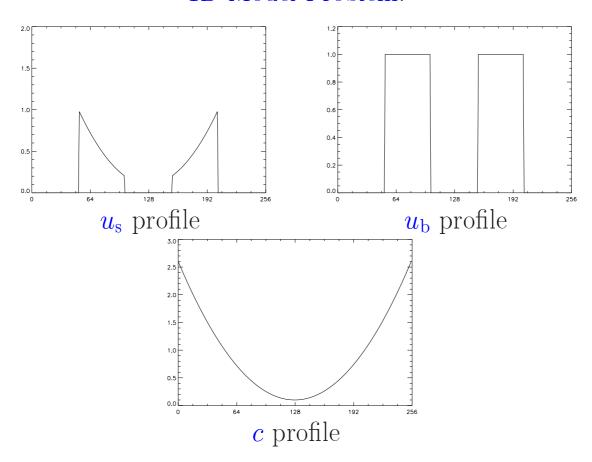
 $c pprox rac{u_{
m s}}{u_{
m b}}$



body coil image, $u_{\rm b}$

$$J(\mathbf{c}) = \int_{\Omega} |\mathbf{c}\mathbf{u}_{\mathrm{b}} - \mathbf{u}_{\mathrm{s}}|^2 d\mathbf{x} + P(\mathbf{c})$$

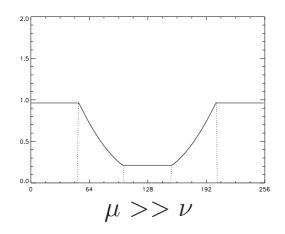
1D Model Problem:

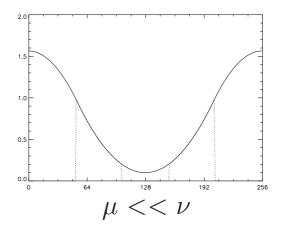


Prospective Penalty Terms

$$J(c) = \int_{\Omega} |cu_{\rm b} - u_{\rm s}|^2 d\boldsymbol{x} + \mu \int_{\Omega} |\nabla c|^2 d\boldsymbol{x} + \nu \int_{\Omega} |\Delta c|^2 d\boldsymbol{x}$$

$$\begin{cases} \nu \Delta^2 c - \mu \Delta c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \frac{\partial c}{\partial n} = \frac{\partial \Delta c}{\partial n} = 0, \ \partial \Omega \end{cases}$$



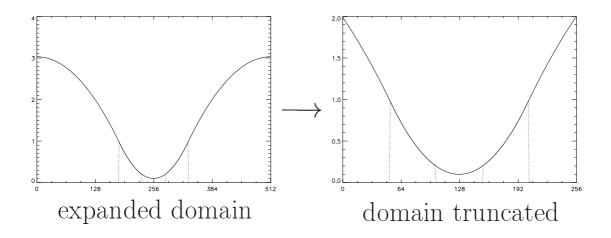


Observations:

- Behavior in data zone greatly different than in non-data zone.
- How to influence boundary behavior:
 - o boundary conditions, or
 - o penalty terms.
- μ term suspect.

Boundary Treatment

- Should be as if boundary were absent.
- Pull boundary ever further away:



• Apply vanishing weight in penalty:

$$P(c) = \nu \int_{\Omega} w |\Delta c|^2 d\mathbf{x}, \quad w > 0, \Omega; \ w = 0, \partial\Omega.$$

Difficulties:

- Need $w \ge \varepsilon > 0$ on $\bar{\Omega}$ for ellipticity.
- Results unstable:
 - \circ dependence on ε , and
 - \circ shape of w.

Higher Order Boundary Conditions

Originally:
$$\begin{cases} \nu \Delta^2 c - \mu \Delta c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial c}{\partial n} = \frac{\partial \Delta c}{\partial n} = 0, \ \partial \Omega \end{cases}$$

$$\Delta \approx L = \begin{bmatrix} -1 & 1 & & & \\ 1 & -2 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 1 & -1 \end{bmatrix} \qquad [\nu L^2 - \mu L + U_b^2]C = U_b U_s$$

$$\frac{\partial c}{\partial n} = 0$$
 is obviously flattening: $\mu \longrightarrow 0$.

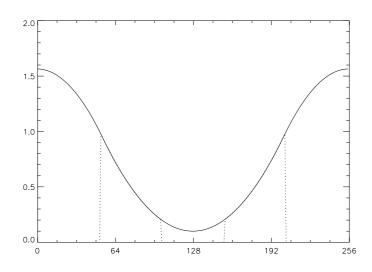
Now:
$$\begin{cases} \nu \Delta^2 c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial^2 c}{\partial n^2} = \frac{\partial^3 c}{\partial n^3} = 0, \ \partial \Omega \end{cases}$$

$$\Delta^{2} \approx B = \begin{bmatrix} 1 & -2 & 1 \\ -2 & 5 & -4 & 1 \\ 1 & -4 & 6 & -4 & 1 \\ & \ddots & \ddots & \ddots & \ddots \\ & & 1 & -2 & 1 \end{bmatrix} [\nu B + U_{b}^{2}]C = U_{b}U_{s}$$

B symmetric, PDE to $\partial\Omega$.

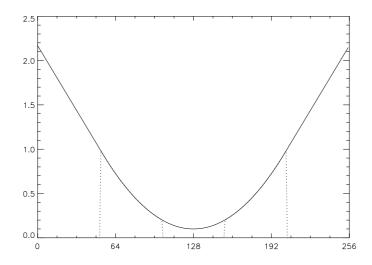
1D Comparison

Low Order BCs:
$$\begin{cases} \nu \Delta^2 c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial c}{\partial n} = \frac{\partial \Delta c}{\partial n} = 0, \ \partial \Omega \end{cases}$$



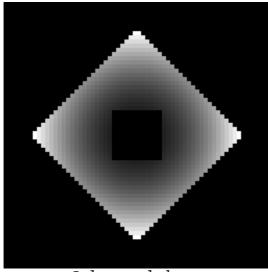
High Order BCs:
$$\begin{cases} \nu \Delta^2 c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial^2 c}{\partial n^2} = \frac{\partial^3 c}{\partial n^3} = 0, \ \partial \Omega \end{cases}$$

$$\frac{\partial^2 c}{\partial n^2} = \frac{\partial^3 c}{\partial n^3} = 0, \ \partial \Omega$$



2D Comparison

Low Order BCs:
$$\begin{cases} \nu \Delta^2 c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial c}{\partial n} = \frac{\partial \Delta c}{\partial n} = 0, \ \partial \Omega \end{cases}$$

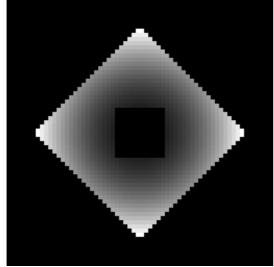


2d model $u_{\rm s}$

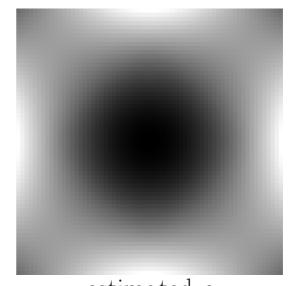
estimated c

$$\nu\Delta^2c + u_{\rm b}^2c = u_{\rm b}u_{\rm s}, \ \Omega$$

2d model
$$u_{\rm s}$$
 estimated c High Order BCs:
$$\begin{cases} \nu \Delta^2 c + u_{\rm b}^2 c = u_{\rm b} u_{\rm s}, \ \Omega \\ \\ \frac{\partial^2 c}{\partial n^2} = \frac{\partial^3 c}{\partial n^3} = 0, \ \partial \Omega \end{cases}$$



 $2d \mod u_s$



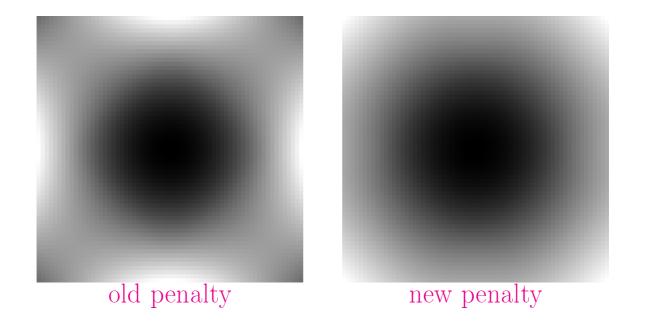
estimated cFailure in rotational invariance. BCs, numerics, or penalty?

Toward Rotational Invariance

• Stencil Experimentation:

• Finally, $\Delta^2 c$ replaced by $\partial_x^4 c + \partial_y^4 c \approx$

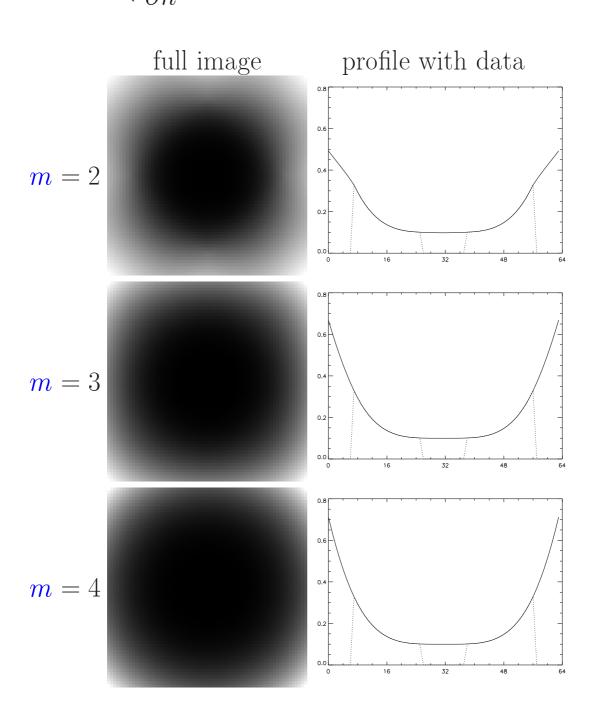
• Improvement:



Higher Order Penalties

$$J(c) = \int_{\Omega} |cu_{b} - u_{s}|^{2} d\boldsymbol{x} + \nu \int_{\Omega} \sum_{i} |\partial^{m} c/\partial x_{i}^{m}|^{2} d\boldsymbol{x} d\boldsymbol{x}$$

$$\begin{cases} \nu \sum_{i} \partial^{2m} c/\partial x_{i}^{2m} + u_{b}^{2} c = u_{b} u_{s}, \ \Omega \\ \frac{\partial^{p} c}{\partial n^{p}} = 0, \ m \leq p \leq 2m - 1, \ \partial \Omega \end{cases}$$

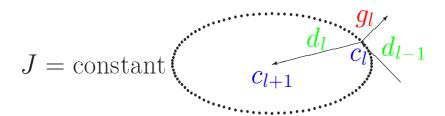


Numerical Solution

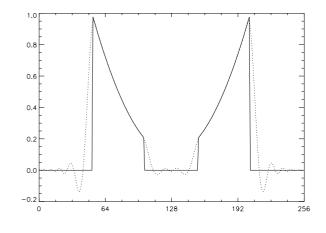
• For iterative schemes, discrete operator symmetric:

Boundary			Fringe			Field		
0	1	1	0	1	1	1	1	1
C) -4 -	2	-2	2 -4 -4	4	-4	-4 -4	4
0 0	9 -	2 1	0 - 2	2 21 -	4 1	1 -4	24 -	4 1
\mathcal{C}) -4 -	2	-2	2 -4 -4	4	-4	-4 -4	4
0	1	1	0	1	1	1	1	1

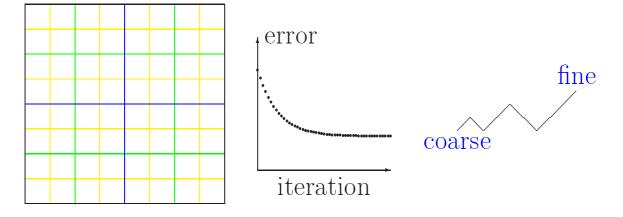
 \bullet Jacobi-preconditioned conjugate gradient: $P^{-1}AC=P^{-1}R$



- Slowed by incomplete data:
- Slowed by large systems, e.g., 256×256 .
- Smaller systems used for tests.

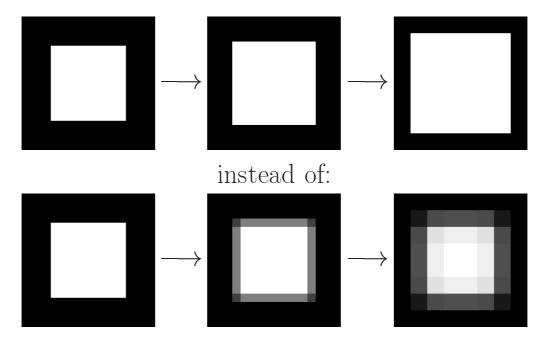


• Need multigrid treatment:

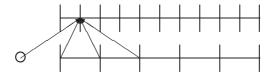


Multigrid Treatment

- High order PDEs and BCs: asking for trouble! Even $\Delta c = 0$, Ω ; $\partial c/\partial n = 0$, $\partial \Omega$ problematic.
- Data discontinuities require injective restriction:



- PDE order = expansion order + restriction order, so expansion order = PDE order.
- Use BCs, not extrapolation, for expansion.

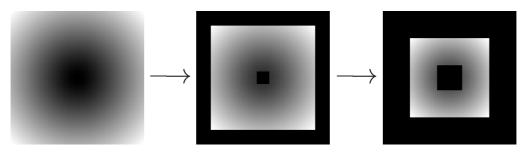


However, BCs here amount to extrapolation:

$$0 = \frac{\partial^2 c}{\partial n^2} \approx c_1 - 2c_2 + c_3 \implies c_1 = 2c_2 - c_3$$

Multigrid Treatment

• Delays increase as data gaps increase:



boundary behavior invades domain.

• Iteration should be smoothing operation.

o Jacobi for
$$-\nu c'' + c = f$$
:

$$\nu[-c_{i+1} + 2c_i - c_{i-1}] + c_i = f_i$$

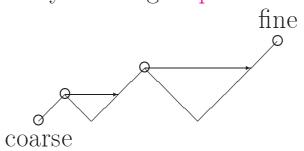
$$c_i = \frac{\nu}{1 + 2\nu} [c_{i+1} + c_{i-1}] + \frac{f_i}{1 + 2\nu}$$

 \circ Jacobi for $-\nu c'''' + c = f$:

$$\nu[c_{i+2} - 4c_{i+1} + 6c_i - 4c_{i-1} + c_{i-2}] + c_i = f_i$$

$$c_i = \frac{\nu}{1 + 6\nu} \left[-c_{i+2} + 4c_{i+1} + 4c_{i-1} - c_{i-2} \right] + \frac{f_i}{1 + 6\nu}$$

- Can as well use conjugate gradient.
- Can as well use only coarse grid predictions not corrections.



Summary

• Variational formulation:

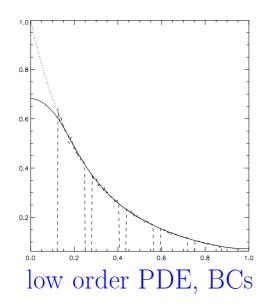
$$J(c) = \int_{\Omega} |cu_{b} - u_{s}|^{2} d\boldsymbol{x} + \nu \int_{\Omega} \sum_{i} |\partial^{m} c/\partial x_{i}^{m}|^{2} d\boldsymbol{x} d\boldsymbol{x}$$

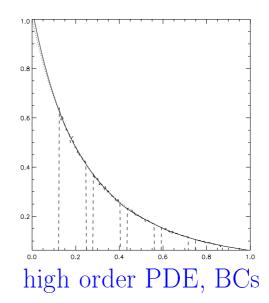
$$\begin{cases} \nu \sum_{i} \partial^{2m} c/\partial x_{i}^{2m} + u_{b}^{2} c = u_{b} u_{s}, \ \Omega \\ \frac{\partial^{p} c}{\partial n^{p}} = 0, \ m \leq p \leq 2m - 1, \ \partial \Omega \end{cases}$$

• Numerical methods:

- Symmetric discretization to the boundary.
- Multigrid coarse to fine grid prediction.
- Injective restriction, PDE order expansion.
- Jacobi preconditioned conjugate gradient on each grid.

• Results:

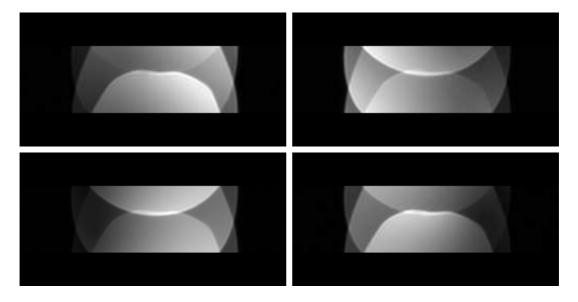




• Evaluation of accuracy?

Sensitivity Encoded MRI

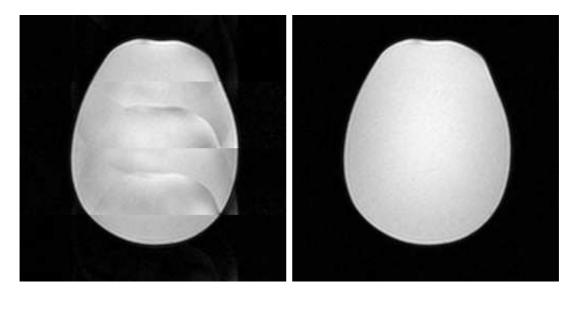
• Coil measurements u_i aliased by rapid undersampling:



 \bullet Relation to underlying unaliased u with uniform sensitivity:

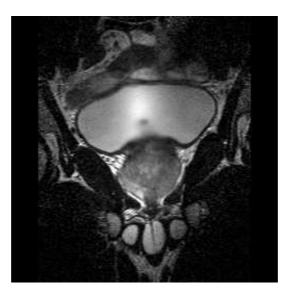
$$\mathbf{u}_{i}(x,y) = \sum_{k=1}^{4} \mathbf{c}_{i}(x,y+k\Delta y)\mathbf{u}(x,y+k\Delta y)$$

• Reconstructed u from bad and good sensitivity estimates c_i :



The Next Step

• Inhomogeneity correction from single image:



• Variational formulation:

$$J(\boldsymbol{c}, \boldsymbol{u}) = \int_{\Omega} |\boldsymbol{c}\boldsymbol{u} - \tilde{\boldsymbol{u}}|^{2} d\boldsymbol{x} + \nu \int_{\Omega} \sum_{i} |\partial^{m} \boldsymbol{c}/\partial x_{i}^{m}|^{2} d\boldsymbol{x} + \int_{\Omega} \phi(|\nabla \boldsymbol{u}|^{2}) d\boldsymbol{x}$$

$$\begin{cases} (\boldsymbol{c}\boldsymbol{u} - \tilde{\boldsymbol{u}})\boldsymbol{c} - \nabla \cdot (\phi'(|\nabla \boldsymbol{u}|^{2})\nabla \boldsymbol{u}) &= 0, \ \Omega \\ (\boldsymbol{c}\boldsymbol{u} - \tilde{\boldsymbol{u}})\boldsymbol{u} + \nu \sum_{i} \partial^{2m} \boldsymbol{c}/\partial x_{i}^{2m} &= 0, \ \Omega \end{cases}$$

$$\frac{\partial \boldsymbol{u}}{\partial n} = \frac{\partial^{p} \boldsymbol{c}}{\partial n^{p}} \Big|_{m \leq p \leq 2m-1} = 0, \ \partial \Omega.$$