Nonlinear Anisotropic Diffusion Filters for Wide Range Edge Sharpening

Steve Keeling and Rudolf Stollberger

- Motivation
- Perona-Malik Filters
- Proposed Widely Sharpening Filters
- Numerical Methods
- Computational Results

<u>Basic Problem</u>: Vascular segmentation/visualization.

First explain what you see here:

- Inject blood pooling contrast agent into patient.
 - Remains and distributes.
 - Unlike other more dissipative agents.
- Take 3D MR data set.
- How to visualize?
 - Serial viewing inconvenient.
 - Threshold rendering inadequate.
- Here is maximum intensity projection.
 - Each point is maximum intensity along line.
 - Separate images are different projections.
- MIP is stunning but complicated.
- Arteries or veins?
- Need tool for virtual investigations.
- Virtual angiography.

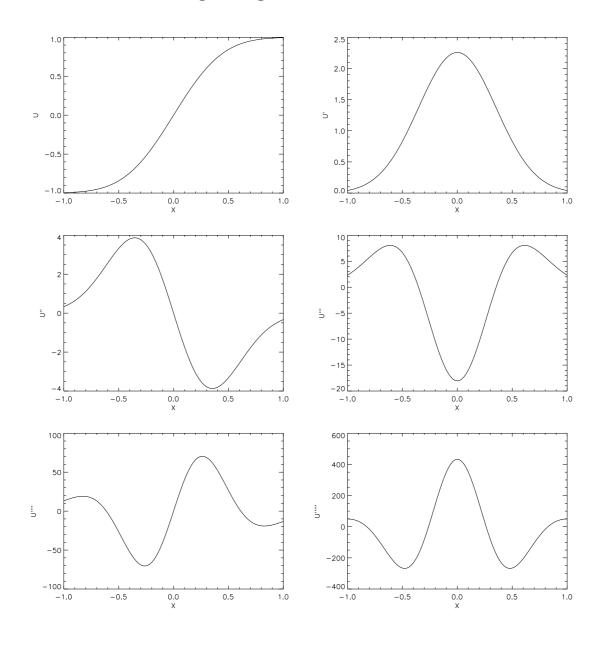
Motivation

- New blood pooling contrast agents.
- Serial viewing inconvenient.
- Maximum intensity projections.
- Distinguish arteries and veins.
- Ultimate Goal: Virtual Angiography.
- Problems necessitating preprocessing:
 - Rapid access, low signal/noise: noise filtering.
 - High RF inhomogeneity: trend filtering.
- Denoising, deblurring, segmentation:

edge sharpening.

What is an edge?

• In 1D: u_{xx} changes sign.

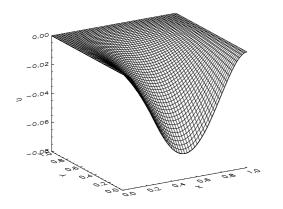


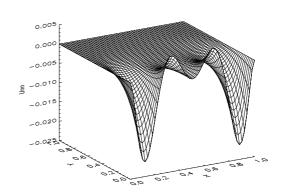
• In 2D: u_{nn} (or $\nabla u \cdot H_u \cdot \nabla u$) changes sign.

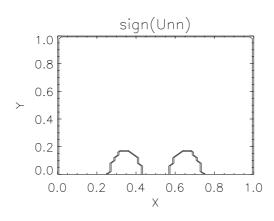
• In 2D:

 $\circ u_{nn}$ (or $\nabla u \cdot H_u \cdot \nabla u$) changes sign.

• Consider: $u(x,y) = -x^2(1-x)^2(1-y)^2$







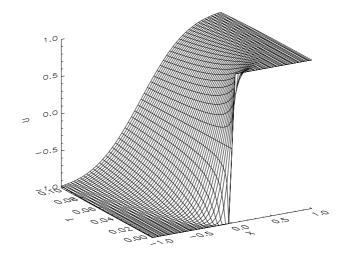
- \circ Best: eigenvalues of H_u change sign.
- o Edge detector study [Rudin, 1987].
- $\circ u_{nn}$ used [Osher & Rudin, 1990].
- \circ Steeper slopes bring u_{nn} edges closer to level sets.

Models for Blurring and Sharpening

• Blurring: forward diffusion

$$\begin{cases} \partial_t u = +\nabla^2 u \\ u(0) = u_0 \end{cases}$$

Consider: $u(x,t) = \operatorname{Erf}\left(\frac{x}{2\sqrt{t}}\right)$



• Sharpening: backward diffusion

$$\begin{cases} \partial_t u = -\nabla^2 u \\ u(0) = u_0 \end{cases}$$

Backward diffusion unstable.

Approaches to Edge Enhancement

• Shock filtering [Osher & Rudin, 1990].

$$\begin{cases} \partial_t u = -|\nabla u| F(\mathcal{L}(u)) & F \to u_{nn} \\ u(0) = u_0 \end{cases}$$

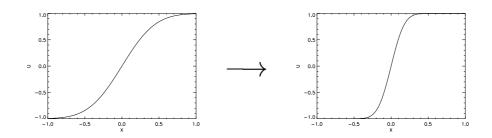
o Based on level set methods:

$$u(\boldsymbol{x}(t),t) = \text{constant}$$

$$\partial_t u + \nabla u \cdot \dot{\boldsymbol{x}} = 0$$

$$\frac{\nabla u \cdot \dot{\boldsymbol{x}}}{|\nabla u|} = F \quad \Rightarrow \quad \partial_t u = -|\nabla u|F$$

In 1D:
$$\partial_t u = -|u_x|u_{xx}$$



- No tangential diffusion.
- Only normal backward diffusion.
- Consider radial function.
- o Shown to be well-posed! [Osher & Rudin, 1990]

Approaches to Edge Enhancement

• Shock filtering [Osher & Rudin, 1990].

$$\begin{cases} \partial_t u = -|\nabla u| F(\mathcal{L}(u)) & F \to u_{nn} \\ u(0) = u_0 \end{cases}$$

Based on level set methods. Well-posed!

• Variational Filtering.

$$\min_{u} J(u) = \int_{P} \phi(|\nabla u|) dx + \nu \int_{P} |u_0 - u|^2$$

Optimality condition in steady state:

$$\begin{cases} \partial_t u = \nabla \cdot \left(\phi'(|\nabla u|) \frac{\nabla u}{|\nabla u|} \right) + \nu(u_0 - u) \\ u(0) = u_0 \end{cases}$$

- Iterative methods approximate such evolution.
- \circ Shape of $\phi(s)$?
 - ⊳ Gaussian [Tikhonov & Arsenin, 1977]

$$\phi(s) = \frac{1}{2}s^2$$

▶ Total Variation (TV) [Rudin et al., 1992]

$$\phi(s) = s$$

⊳ Edge-Flat-Grey (EFG) [Ito & Kunisch, 1999]

$$\phi(s) = s^{p(s)} \qquad p(s) : 1 \to 2 \to 1$$

 $\circ \phi(s)$ convex for image reconstruction.

 $\circ \phi(s)$ concave for edge sharpening [Nördstrom, 1990]

▶ Normal and tangential diffusion decomposition:

$$\partial_t u = \nabla \cdot \left(\phi'(|\nabla u|) \frac{\nabla u}{|\nabla u|} \right) + \nu(u_0 - u)$$

$$= \phi'' u_{nn} + \frac{\phi'}{|\nabla u|} (\nabla^2 u - u_{nn}) + \nu(u_0 - u)$$

 \triangleright Need $\phi''(s) < 0$ for backward diffusion.

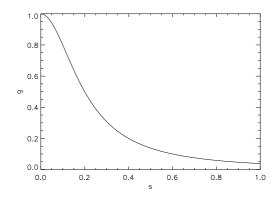
- Reaction term:
 - \triangleright Holds u near u_0 .
 - ▷ Contributes to staircasing [Benhamouda, 1994].
 - \triangleright Choose ν or t_{\max} .

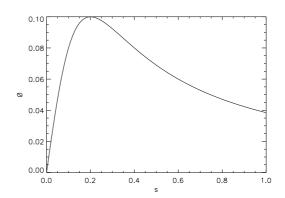
Perona-Malik Filters

• Nonlinear diffusion:

$$\begin{cases} \partial_t u = \nabla \cdot (g(|\nabla u|)\nabla u) & g(s) = \phi'(s)/s \\ u(0) = u_0 \end{cases}$$

Flux: $\Phi = |g(|\nabla u|)\nabla u|$, i.e., $\Phi(s) = sg(s)$.





 \bullet g decreasing:

 \triangleright More diffusion for smaller $|\nabla u|$.

 \triangleright Less diffusion for larger $|\nabla u|$.

• g bell-shaped, Φ increasing then decreasing:

$$\partial_t u = \Phi' u_{nn} + g(\nabla^2 u - u_{nn})$$

▶ Tangential diffusion always <u>forward</u>.

 \triangleright Normal diffusion <u>forward</u> where Φ increasing.

 \triangleright Normal diffusion <u>backward</u> where Φ decreasing.

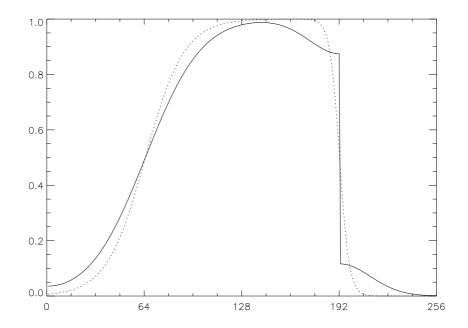
• Diffusion is anisotropic.

How Can This Work?

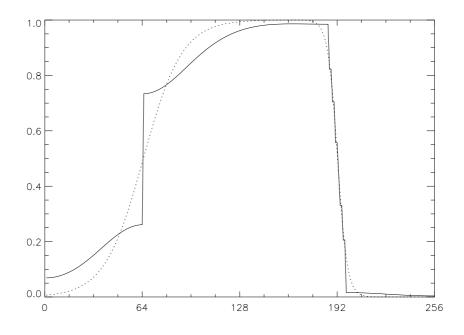
- Backward diffusion and well-posedness?
- Amplification of noise [Perona & Malik, 1987].
- Divergent solutions [You et al., 1996].
- Non-existence of weak solutions [Kichenassamy, 1997].
- Perona-Malik Paradox [Weickert, 1998]:
 - Poor continuum properties.
 - Numerical implementations appear stable!
- Perona-Malik Problems:
 - Only numerical instability: staircasing.
 - Sensitivity to parameters:
 - ▶ Narrow range of edge slopes sharpened.
 - \triangleright Other edges staircased or smoothed.

Demonstration of Perona-Malik Edge Sharpening

• Weaker edge smoothed:



• Stronger edge staircased:



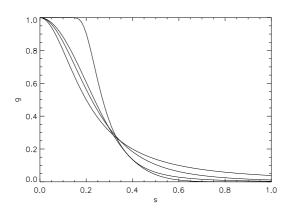
Perona-Malik Regularizations

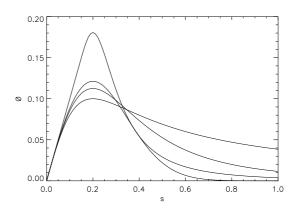
- Discretization implicitly regularizes [Weickert, 1998].
- Spatial regularization [Catté et al., 1992]:

$$\partial_t u = \nabla \cdot (g(|\nabla u_{\sigma}|) \nabla u), \qquad u_{\sigma} = K_{\sigma} * u$$

- \circ Additional parameter: σ is noise scale.
- Shown to be well-posed.
- Temporal regularization [Lions].
- Spatio-temporal regularization [Nitzberg & Shiota, 1992].
- Additional differential terms [Barenblatt et al., 1993].

Established Perona-Malik Diffusivities





PM1: $\left[1 + \left(\frac{s}{\lambda}\right)^2\right]^{-1}$

[Perona & Malik, 1987]

GR: $\left[1 + \frac{1}{3} \left(\frac{s}{\lambda}\right)^2\right]^{-2}$

[Geman & Reynolds, 1992]

PM2: $\exp\left[-\frac{1}{2}\left(\frac{s}{\lambda}\right)^2\right]$

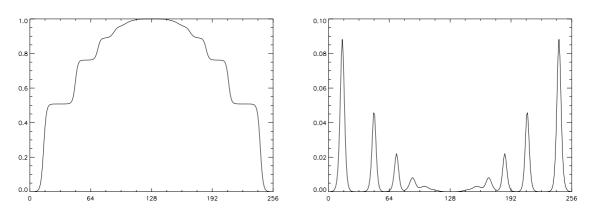
[Perona & Malik, 1987]

W: $1 - \exp\left[-\gamma \left(\frac{s}{\lambda}\right)^{-4}\right]$ [Weickert, 1998]

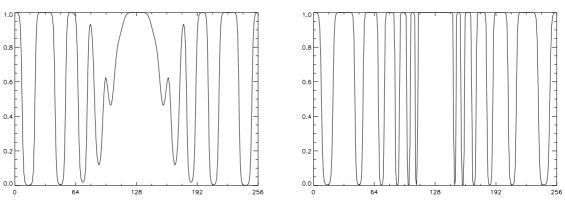
- Φ increasing then decreasing: $\Phi'(\lambda) = 0$.
- ϕ convex then concave: $\phi''(\lambda) = 0$.
- Computational Preview:
 - More rapid decay:
 more durable sharpening over narrower range.
 - Less rapid decay: less durable sharpening over wider range.
- Analysis preview: sharpening for $\lambda \leq |\nabla u| \leq \chi$, where $\Phi''(\chi) = 0$.

Proposed Widely Sharpening Filters

Test problem:



LEFT: u_0 with varying edge types, RIGHT: $|u_0'|$.



LEFT: PM1 $g(|u'_0|)$, RIGHT: idealized diffusivity.

- u_0 is sum of 6 functions: $a(1+bx^2)^{-c}$.
- Cannot use PM diffusivities to sharpen all edges.
- \bullet g reduces at edges but not uniformly.
- Two methods to fix:
 - \circ Adjust λ locally,
 - \circ Scale $|u_x|$ locally.
- Okay in 1D, but not robust in 2D.

Continuum Level Analysis

- 1D edge assumptions:
 - Even derivatives vanish: $u_{xx} = 0$, $u_{xxxx} = 0$.
 - Odd derivatives alternate in sign:

$$u_x > 0$$
, $u_{xxx} < 0$, $u_{xxxxx} > 0$.

• Then for:

$$\partial_t u = 0
\partial_t u_x = \Phi' u_{xxx} > 0 \qquad \text{need } \Phi' < 0
\partial_t u_{xx} = 0
\partial_t u_{xxx} = 3\Phi'' u_{xxx}^2 + \Phi' u_{xxxxx} < 0 \quad \text{need } \Phi'' < 0.$$

- Three edge classes:
 - \circ Edges blurred: $|u_x| < \lambda \Rightarrow \Phi' > 0$.
 - Edges sharpened, turning rate locally max:

$$\lambda < |u_x| < \chi \implies \Phi' < 0, \Phi'' < 0.$$

• Edges staircased, turning rate locally min:

$$|u_x| > \chi^+ \Rightarrow \Phi' < 0, \overline{\Phi'' > 0}.$$

- In practice:
 - \circ Different PM diffusivities can have same λ and χ but very different performance.
 - Best sharpening diffusivity depends on edge gradient profile.
 - Discretization alone gives edges of different slopes to edges with different heights.

Guided by Computational Experiments

• Need Φ' as uniformly negative as possible? Take:

$$\Phi'(s) = -1, \quad \Phi(s) = M - s, \quad g(s) = \frac{M - s}{s}.$$

- Okay in 1D, too much smoothing in 2D.
- Only dissipative mechanism is tangential:

$$\Phi'(s) = -1, \quad g(s) = \mathcal{O}\left(\frac{1}{s}\right).$$

- Tried $g(s) = \frac{1}{s^p}$:
 - $\circ p > 2$ was unstable.
 - $p \approx 2 \text{ looked good!}$
- Realized:

$$-1 = \frac{\Phi'(s)}{g(s)} = \frac{sg'(s) + g(s)}{g(s)} \implies g(s) = \frac{1}{s^2}.$$

Balanced Forward-Backward (BFB) diffusivity.

• Balanced Forward-Backward (BFB) diffusivity:

$$-1 = \frac{\Phi'(s)}{g(s)} = \frac{sg'(s) + g(s)}{g(s)} \quad \Rightarrow \quad g(s) = \frac{1}{s^2}.$$

- Simultaneous increase in both $|\Phi'|$ and g as $s \to 0$.
 - o Possibly too much smoothing.
 - o Possible enhancement of noise.
- Bring $|\Phi'|$ and g into balance gradually:

$$-\frac{s}{\kappa+s} = \frac{\Phi'(s)}{g(s)} = \frac{sg'(s)+g(s)}{g(s)} \quad \Rightarrow \quad g(s) = \frac{1}{s(\kappa+s)}.$$

Gradually Balanced Forward-Backward (GBFB) diffusivity.

- GBFB follows:
 - \circ TV model for small s,
 - \circ BFB model for large s.

Summary of Diffusivities

	g(s)	$\Phi'(s)$	$\Phi'(s)/g(s)$
G:	1	1	1
TV:	s^{-1}	0	0
BFB:	s^{-2}	$-s^{-2}$	-1
GBFB:	$[s(\kappa+s)]^{-1}$	$-(s+\kappa)^{-2}$	$-s/(\kappa+s)$
PM1:	$\left[1 + \left(\frac{s}{\lambda}\right)^2\right]^{-1}$	$\frac{1 - \left(\frac{s}{\lambda}\right)^2}{\left[1 + \left(\frac{s}{\lambda}\right)^2\right]^2}$	$\frac{1 - \left(\frac{s}{\lambda}\right)^2}{\left[1 + \left(\frac{s}{\lambda}\right)^2\right]}$
PM2:	$\exp\left[-\frac{1}{2}\left(\frac{s}{\lambda}\right)^2\right]$	$\frac{1 - \left(\frac{s}{\lambda}\right)^2}{\exp\left[\frac{1}{2}\left(\frac{s}{\lambda}\right)^2\right]}$	$1 - \left(\frac{s}{\lambda}\right)^2$

- First three provide the basic models.
- PM's follow G for small s: $\Phi' > 0$, $\Phi''(0) = 0$.
- PM1 follows BFB for large s: $\Phi'/g \to -1$.
- PM's go convex to concave: $\phi'' = \Phi' > 0$ then < 0.
- BFB and GBFB globally concave: $\phi'' = \Phi' < 0$.
- Concave filters never follow G: no normal smoothing.

<u>Concave Filter Paradox</u>: remarkably stable and effective even with such limited dissipation.

Numerical Methods

First, spatial approximation for:

$$\partial_t u = \nabla \cdot (g(|\nabla u|)\nabla u)$$

Diagonal discretization:

$$2h^{2}[\nabla \cdot (g(|\nabla V|)\nabla U)]_{i,j} =$$

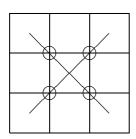
$$g_{i+\frac{1}{2},j+\frac{1}{2}}[U_{i+1,j+1}-U_{i,j}]-g_{i-\frac{1}{2},j-\frac{1}{2}}[U_{i,j}-U_{i-1,j-1}]+$$

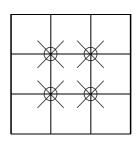
$$g_{i-\frac{1}{2},j+\frac{1}{2}}[U_{i-1,j+1}-U_{i,j}]-g_{i+\frac{1}{2},j-\frac{1}{2}}[U_{i,j}-U_{i+1,j-1}]$$

where $g_{i+\frac{k}{2},j+\frac{l}{2}} = g(|\nabla V_{i+\frac{k}{2},j+\frac{l}{2}}|)$ and for $k,l=\pm 1$:

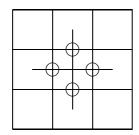
$$2[h|\nabla V|_{i+\frac{k}{2},j+\frac{l}{2}}]^2 = |V_{i+k,j+l} - V_{i,j}|^2 + |V_{i+k,j} - V_{i,j+l}|^2.$$

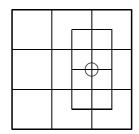
Graphically:





Horizontal-vertical too dissipative:





No-Flux Boundary Conditions

Instead of:

$$\begin{bmatrix} b & -b \\ -b & 1+b+c & -c \\ & \ddots & & \ddots & & \\ \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \end{bmatrix}$$

Take:

or with $u_0 = u_1$:

$$\begin{bmatrix} 1+b & -b \\ -b & 1+b+c & -c \\ & \ddots & & \ddots & & \vdots \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \end{bmatrix}$$

so PDE discretized at the boundary.

Otherwise, break in structure at boundary is dissipative and can create errors.

Semi-discrete Formulation

• Discrete diffusion operator:

$$h^{-2}G(\bar{U}_{\sigma})\bar{U}$$

 \bar{U}_{σ} from \bar{U} with $g=1$ to time $\frac{1}{2}\sigma^2$, $\sigma \geq 0$.

• Initial value problem:

$$\begin{cases} \bar{U}' = h^{-2}G(\bar{U}_{\sigma})\bar{U} \\ \bar{U}(0) = \bar{U}_0 \end{cases}$$

- Provided g regularized to be C^1 [Weickert, 1998]:
 - Semi-discrete problem is well-posed!
 - Average grey level invariance:

$$ave{\bar{U}(t)} = ave{\bar{U}(0)}.$$

• Extremem principle:

$$\min\{\bar{U}(0)\} \le \bar{U}(t) \le \max\{\bar{U}(t)\}$$

• Smoothing Lyapunov Functionals:

 ℓ_p norms, even moments, entropy.

o Convergence to constant steady state:

ave
$$\{\bar{U}(0)\}$$
.

• Forthcoming work for g unbounded.

Fully Discrete Formulation

• Iterations: With $\mu = \tau/h^2$,

Explicit:
$$\bar{U}^{n+1} = [I + \mu G(\bar{U}_{\sigma}^n)]\bar{U}^n$$

Semi-implicit:
$$[I - \mu G(\bar{U}_{\sigma}^n)]\bar{U}^{n+1} = \bar{U}^n$$

- To satisfy extremum principle:
 - For Perona-Malik:

$$\triangleright g \leq 1.$$

- \triangleright Explicit with $\mu \leq \frac{1}{2}$.
- \circ For g unbounded:

$$\triangleright$$
 Use $g(\max\{\varepsilon, s\})$ or $g(\sqrt{\varepsilon^2 + s^2})$.

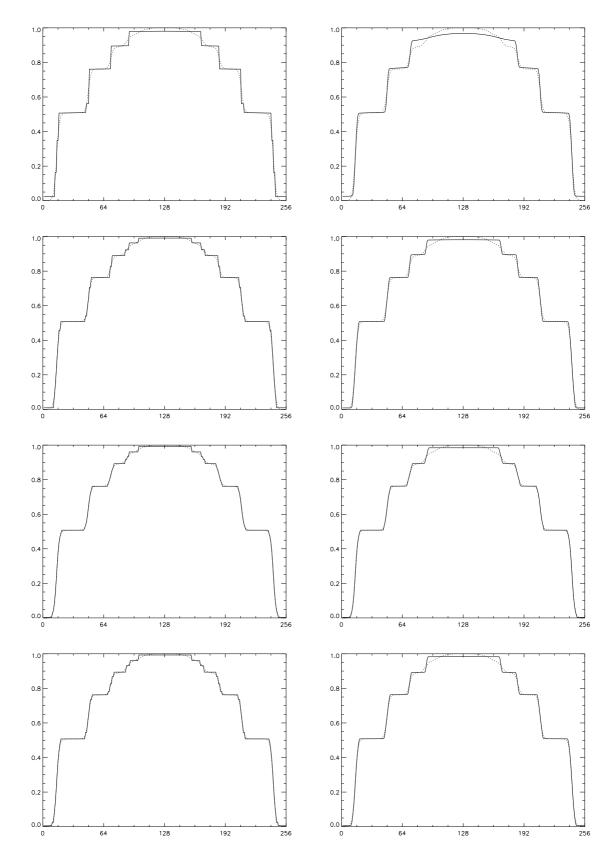
- \triangleright Explicit with $\mu \leq \frac{1}{2}\varepsilon^p$ too restrictive.
- \triangleright Semi-implicit with any $\mu > 0$.
- For semi-implicit scheme:
 - Use Jacobi preconditioned conjugate gradient.
 - ▶ Only a few iterations.
 - ▶ Very little extra computational expense.
 - o Better than incomplete Cholesky, etc.
 - \circ Actually need $\tilde{D} \approx D$ of $[I \mu G(\bar{U}_{\sigma}^n)]$:

$$\tilde{D}_{i,j} = 1 + \frac{\mu}{2} \left(g_{i + \frac{1}{2}, j + \frac{1}{2}} + g_{i - \frac{1}{2}, j - \frac{1}{2}} + g_{i - \frac{1}{2}, j + \frac{1}{2}} + g_{i + \frac{1}{2}, j - \frac{1}{2}} \right)$$

Computational Results

1D results for Perona-Malik filters:

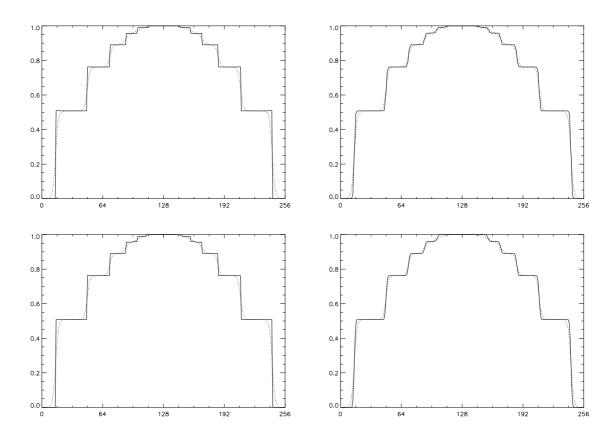
- Not all edges sharpened.
- First one best!
- \bullet λ small enough not to lose small slope edges.
- Larger λ sharpens steeper slopes.
- Staircasing for slopes larger than λ .
- Greater staircasing with smaller time steps.
- Course of image evolution:
 - Weaker edges sharpened earlier than stronger ones.
 - Sharpened edge disintegrates and blurs in relation to stronger neighbor.
 - Finally converges to constant steady state.
 - EXCEPT for finite precision fixed points.
- At t_{max} everything fairly stable.
- Only one accurate edge pair in each.
- Spatial regularization:
 - o Rounds and reduces staircase steps.
 - Sufficient amount prevents staircasing.
 - Flattens small slope regions.
 - Retards edge sharpening.



LEFT COLUMN: PM1, GR, PM2, and W. RIGHT COLUMN: With spatial regularization.

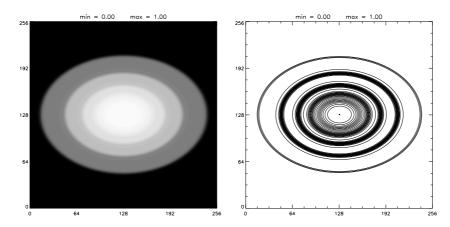
1D results for BFB and GBFB filters:

- All edges sharpened well.
- BFB captures all inflection points correctly.
- GBFB misses only innermost pair by one cell.
- Course of evolution: very rapid and simultaneous sharpening.
- $\kappa = \lambda$ for GBFB.
- Larger κ gives:
 - slower sharpening,
 - o progressively less accurate edges, and
 - eventually more staircasing.
- Greater staircasing with very small time steps.
- t_{max} same as for PM filters.
- More CG iterations reduce steps.
- Larger time steps and enough CG iterations sharpens any edge.
- Spatial regularization:
 - Same trends as with PM, but
 - One-step regularization only mildly rounds edges here for BFB.



LEFT COLUMN: BFB and GBFB.

RIGHT COLUMN: With spatial regularization.

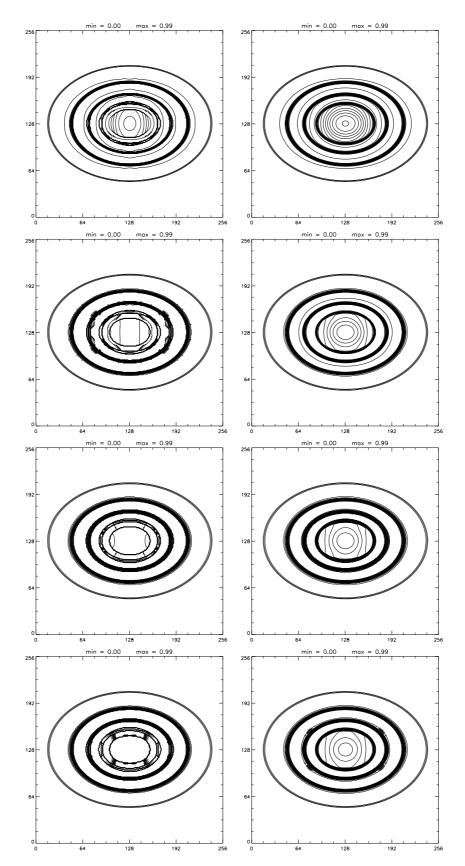


LEFT: region-filled contour of u_0 .

RIGHT: lined contour plot of u_0 with levels $\{(i/i_{\text{max}})^{1/4}\}$.

2D results for Perona-Malik filters:

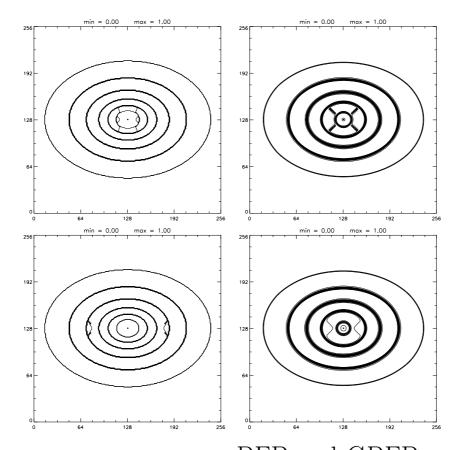
- Not all edges sharpened.
- First one best!
- λ same as 1D not to lose small slope edges.
- Larger λ sharpens steeper slopes.
- Staircasing in spurious plateaus.
- Greater staircasing with smaller time steps.
- Course of image evolution: same as 1D but faster, tangential smoothing accelerates.
- \bullet At t_{\max} slices look like 1D.
- Spatial regularization:
 - Sufficient amount prevents staircasing.
 - Flattens small slope regions.
 - Retards edge sharpening.
 - Rounds level curves.



LEFT COLUMN: PM1, GR, PM2, and W. RIGHT COLUMN: With spatial regularization.

2D results for BFB and GBFB filters:

- Aside from negligible contour variations, all edges sharpened well.
- BFB captures all inflection points:
 - o correctly along diagonal lines,
 - within half a cell along horizontal and vertical lines.
- GBFB captures all inflection points within one cell along diagonal, horizontal, and vertical lines.
- Course of evolution: very rapid and simultaneous sharpening.
- $\kappa = \lambda$ for GBFB. Same κ trends.
- Greater staircasing with very small time steps.
- t_{max} same as for PM filters.
- Spatial regularization: same trends as earlier.

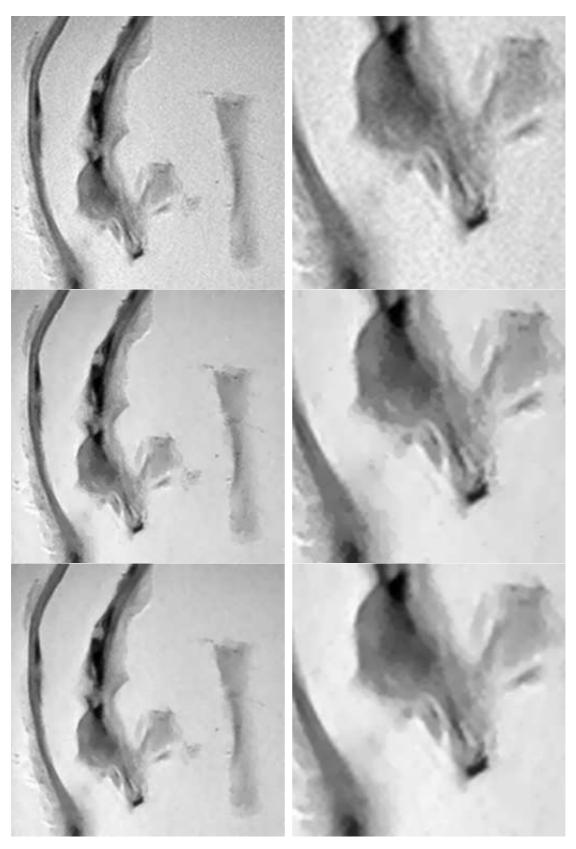


LEFT COLUMN: BFB and GBFB.

RIGHT COLUMN: With spatial regularization.

Comparison of PM2 and GBFB on MR image.

- Parameters just large enough to remove background noise.
- Staircasing in PM from normal smoothing.
- Decreasing λ enhances noise.
- GBFB reduces noise and preserves edges.
- Pure tangential smoothing very effective.
- As κ decreases:
 - Both tangential smoothing and normal sharpening increase.
 - Leads to segmentation-like results.
 - Eventually rounds level curves and enhances noise.
- Spatial regularization can treat noise enhancement but at aforementioned costs.



LEFT COLUMN: AS vessel MRI, PM2, and GBFB.
RIGHT COLUMN: Magnifications.