HILBERT SPACE METHODS FOR PDES - EXERCISES

JERICO B. BACANI

1. Prove that the mapping $C(G) \ni f \mapsto \in C_0(G)^*$ defined through

$$T_f(\varphi) = \int_G f\bar{\varphi}, \ \varphi \in C_0(G)$$

is a linear injection but not surjective.

Proof. Linearity:

Let $f, g \in C(G)$, $\alpha, \beta \in \mathbb{K}$, $\varphi \in C_0(G)$

$$T_{\alpha f + \beta g} = \int_{G} (\alpha f + \beta g) \bar{\varphi}$$

$$= \int_{G} (\alpha f \bar{\varphi} + \beta g \bar{\varphi})$$

$$= \int_{G} \alpha f \bar{\varphi} + \int_{G} \beta g \bar{\varphi}$$

$$= \alpha \int_{G} f \bar{\varphi} + \beta \int_{G} g \bar{\varphi}$$

$$= \alpha T_{f}(\varphi) + \beta T_{g}(\varphi), \qquad \varphi \in C_{0}(G).$$

Injectivity:

Assume $T_f = \theta$ (where θ is the zero functional in $C_0(G)^*$); that is,

$$T_f(\varphi) = 0 \ \forall \varphi \in C_0(G)$$

Need to show: $f = \theta$ (the zero function in C(G)) Using the assumption above, and noting that $C_0^{\infty}(G) \subset C_0(G)$, we have

$$T_f(\varphi) = 0 \ \forall \varphi \in C_0^{\infty}(G).$$

Using the fundamental lemma of variation,

$$f(x) = 0$$
 for almost all $x \in G$

But f is continuous in G so

$$f(x) = 0 \ \forall x \in G$$

Therefore, $f = \theta$ in C(G).

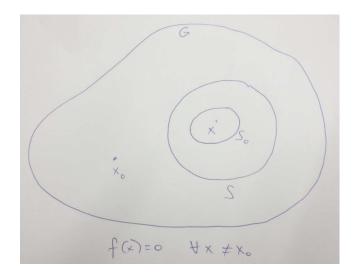


Figure 1

Non-surjectivity:

Claim: The mapping $f \mapsto T_f$ is not surjective.

Proof of claim:

Assume that the mapping is surjective. So $\forall R \in C_0(G)^* \exists f \in C(G)$ such that $R = T_f$. Candidate: $R = \delta_{x_0}$. For $x_0 \in G$, define

$$\delta_{x_0}(\varphi) = \overline{\varphi(x_0)}, \ \forall \varphi \in C_0(G)$$
$$= \int_G f\overline{\varphi}$$

Assume there exists an f such that

$$T_f = \delta_{x_0}$$

$$\Rightarrow T_f(\varphi) = \delta_{x_0}(\varphi), \ \forall \varphi \in C_0(G)$$

$$\Rightarrow T_f(\varphi) = \overline{\varphi(x_0)}$$

Let $\varphi = f\psi \in C_0(G)$. $f \in C(G)$, so ψ must be in $C_0(G)$. Pick $\psi \in C_0(G)$ (refer to Figure 1 for relationships of S_0, S , and G) such that

$$\begin{cases} \psi(x) = 1 & \forall x \in S_0 \\ 0 \le \psi(x) \le 1 & \forall x \in S \\ \psi(x) = 0 & \forall x \in G \backslash S \end{cases}$$

We choose an S such that S does not contain $x_0 \neq x$. $\varphi(x_0) = f(x_0)\psi(x_0) = f(x_0)(0) = 0$. Hence $\overline{\varphi(x_0)} = 0$. Furthermore, since $\overline{\psi} = 1$ in S_0 , we get

$$0 = \overline{\varphi(x_0)} = \delta_{x_0}(\varphi) = \int_G f \bar{\varphi} = \int_G f \overline{f\psi} = \int_G |f|^2 \bar{\psi} \ge \int_{S_0} |f|^2 \bar{\psi} = \int_{S_0} |f|^2$$

We have shown that $0 \ge \int_{S_0} |f|^2$. But $0 \le \int_{S_0} |f|^2$. Therefore $\int_{S_0} |f|^2 = 0$. This implies f(x) = 0 for all $x \in S_0, x \ne x_0$. Since f is continuous in G, f = 0 in G. Hence there exists a $T_f = 0$, which means that $\delta_{x_0} = 0$, and this is a contradiction (because $\delta_{x_0} \ne 0$).

2. Let G = (0,1), fix $K \subset\subset G$, and define $P_K(x) = \sup_{t \in K} |x(t)|$. Show that $(C(\bar{G}), P_K)$ is a seminormed linear space which is complete.

Proof. Let $x, y \in C(\bar{G})$ and $\alpha \in \mathbb{K}$; $\bar{G} = [0, 1]$. P_K is a seminorm for $C(\bar{G})$: Verification:

(i)
$$\begin{split} P_K(x+y) &= \sup_{t \in K} |(x+y)(t)| \\ &= \sup_{t \in K} |x(t) + y(t)| \\ &\leq \sup_{t \in K} |x(t)| + |y(t)|) \\ &\leq \sup_{t \in K} |x(t)| + \sup_{t \in K} |y(t)| \\ &= P_K(x) + P_K(y) \end{split}$$

(ii) $P_K(\alpha x) = \sup_{t \in K} |(\alpha x)(t)|$ $= \sup_{t \in K} |\alpha x(t)|$ $= \sup_{t \in K} |\alpha||x(t)|$ $= |\alpha| \sup_{t \in K} |x(t)|$ $= |\alpha|P_K(x)$

We already know that C(G) is a linear space for

(i) $x, y \in C(\bar{G}) \Rightarrow x + y \in C(\bar{G})$ (because $(x + y)(t) = x(t) + y(t), t \in \bar{G}$) (ii) $x \in C(\bar{G}), \alpha \in \mathbb{K} \Rightarrow \alpha x \in C(\bar{G})$ (because $(\alpha x)(t) = \alpha x(t)$)

and satisfies all other properties of being a linear space So $(C(\bar{G}), P_K)$ is a seminormed linear space. Claim: The space is complete. Let $\{x_n\}$ be a Cauchy sequence in $C(\bar{G})$. Fix $\epsilon > 0$. Let $N = N(\epsilon) > 0$ such that

$$P_K(x_n - x_m) < \epsilon, \quad \text{if } m, n \ge N$$

For any $t \in K \subset G$, we have

$$|x_n(t) - x_m(t)| \le P_K(x_n - x_m) < \epsilon$$

This shows that $\{x_n(t)\}$ is a Cauchy sequence in \mathbb{R} and hence converges (since \mathbb{R} is complete). For each $t \in K \subset G$, define

$$x(t) = \lim_{n \to \infty} x_n(t)$$

Moreover, for the same ϵ as above and $n \geq N$ we have

$$|x(t) - x_n(t)| = \left| \lim_{m \to \infty} x_m(t) - x_n(t) \right| < \epsilon.$$

This implies that $|x(t) - x_N(t)| < \epsilon$. Using the same ϵ as above, we let $\delta = \delta(t, \epsilon) > 0$ such that

$$|x_N(t) - x_N(s)| < \epsilon$$
 whenever $|t - s| < \delta$.

This implies that if $|t - s| < \delta$ then

$$|x(t) - x(s)| = |x(t) - x_N(t) + x_N(t) - x_N(s) + x_N(s) - x(s)|$$

$$\leq |x(t) - x_N(t)| + |x_N(t) - x_N(s)| + |x_N(s) - x(s)|$$

$$\leq \epsilon + \epsilon + \epsilon$$

$$= 3\epsilon$$

This shows that x is continuous at $t \in K$, and since it is arbitrary, x is continuous on K. Now assume that x is continuous on a compact set K, say K = [a, b], and define x on $C(\bar{G})$ as

$$x(t) = \begin{cases} x(a) & if \quad 0 \le t < a \\ x(t) & if \quad a \le t \le b \\ x(b) & if \quad b < t \le 1 \end{cases}$$

and we argue that $\lim_{n\to\infty} x_n = x$, $x \in C(\bar{G})$ because

$$\lim_{n \to \infty} P_K(x_n - x) = 0$$

(for we only get the supremum for all t in K, and we don't care outside of K.)

3. Let G=(0,1), define $p(x)=\int_G |x|$ for $x\in C(\bar{G})$ and prove that $(C(\bar{G}),p)$ is a normed space which is not complete.

Proof. Let $x, y \in C(\bar{G})$; $\alpha \in \mathbb{K}$; $\bar{G} = [0, 1]$. p is a norm for $C(\bar{G})$:

- (i) $p(x+y) = \int_G |x+y| \le \int_G (|x|+|y|) = \int_G |x| + \int_G |y| = p(x) + p(y)$. Therefore, $p(x+y) \le p(x) + p(y)$
- $\begin{array}{ll} \text{(ii)} \;\; p(\alpha x) = \int_G |\alpha x| = \int_G |\alpha| |x| = |\alpha| \int_G |x| = |\alpha| p(x). \\ \text{(iii)} \;\; p(x) = 0 \Rightarrow \int_G |x| = 0 \Rightarrow |x| = 0 \Rightarrow x = 0. \end{array}$
 - Also note that for every $x \in C(\bar{G}), |x| \ge 0 \Rightarrow \int_G |x| \ge 0$; that is, $p(x) \ge 0$.

Therefore, $(C(\bar{G}), p)$ is a normed space.

Claim: $(C(\bar{G}), p)$ is not complete.

Consider a sequence in $C(\bar{G})$ which is defined as follows (refer to Figure 2):

$$x_n(t) = \begin{cases} 0 & if \quad 0 \le t \le \frac{1}{2} - \frac{1}{2n} \\ nt - \frac{1}{2}(n-1) & if \quad \frac{1}{2} - \frac{1}{2n} \le t \le \frac{1}{2} + \frac{1}{2n} \\ 1 & if \quad \frac{1}{2} + \frac{1}{2n} \le t \le 1 \end{cases}$$

Let

$$x(t) = \begin{cases} 0 & if & 0 \le t < \frac{1}{2} \\ 1 & if & \frac{1}{2} < t \le 1 \end{cases}$$

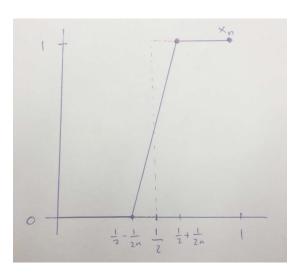


Figure 2

$$p(x_n - x) = \int_0^1 |x_n - x|$$

$$= \int_0^1 |x_n(t) - x(t)| dt$$

$$= \int_0^{\frac{1}{2} - \frac{1}{2n}} (0 - 0) dt + \int_{\frac{1}{2} - \frac{1}{2n}}^{\frac{1}{2} + \frac{1}{2n}} (1 - x_n) dt + \int_{\frac{1}{2} + \frac{1}{2n}}^1 (1 - 1) dt$$

$$= \int_{\frac{1}{2} - \frac{1}{2n}}^{\frac{1}{2}} (nt - \frac{1}{2}n + \frac{1}{2}) dt + \int_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{2n}} (1 - (nt - \frac{1}{2}n + \frac{1}{2}) dt)$$

$$= \left[\frac{nt^2}{2} - \frac{1}{2}nt + \frac{1}{2}t \right]_{\frac{1}{2} - \frac{1}{2n}}^{\frac{1}{2}} + \left[\frac{1}{2}t - \frac{nt^2}{2} + \frac{1}{2}nt \right]_{\frac{1}{2}}^{\frac{1}{2} + \frac{1}{2n}}$$

$$= \frac{n}{8} - \frac{n}{4} + \frac{1}{4} - \left[\frac{n}{2} \left(\frac{1}{2} - \frac{1}{2n} \right)^2 - \frac{1}{2}n \left(\frac{1}{2} - \frac{1}{2n} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2n} \right) \right]$$

$$+ \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2n} \right) - \frac{n}{2} \left(\frac{1}{2} + \frac{1}{2n} \right)^2 + \frac{1}{2}n \left(\frac{1}{2} + \frac{1}{2n} \right) - \left[\frac{1}{4} - \frac{n}{2} \left(\frac{1}{4} \right) + \frac{1}{4}n \right) \right]$$

$$= \frac{1}{4n}$$

We observe that as $n \to \infty$, $p(x_n - x) \to 0$; that is, the sequence $\{x_n\}$ converges to x in the norm p. However, it is obvious that no matter how we define $x(\frac{1}{2})$, the limit function x is not continuous $(x \notin C(\bar{G}))$. Therefore, there exists a sequence in $C(\bar{G})$ whose limit is not in this space (using the norm p). Thus, $(C(\bar{G}), p)$ is not complete.

4. Prove Theorem 4.B using the parallelogram law,

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

Specifically, if $(H, \|\cdot\|)$ is a normed space for which $\mathbb{K} = \mathbb{C}$ and $\|\cdot\|$ satisfies the parallelogram law, then a scalar product for H may be defined by the *polarization identity*,

$$4(x,y) = ||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2$$

which satisfies $(\cdot,\cdot) = \|\cdot\|^2$. (The complex terms are dropped for the case that $\mathbb{K} = \mathbb{R}$.)

Proof. First let us prove the following lemma:

Lemma 1. If $(H, \|\cdot\|)$ is a normed space for which $\mathbb{K} = \mathbb{C}$ and $\|\cdot\|$ satisfies the parallelogram law, then a scalar product for H may be defined by the polarization identity,

$$4(x,y) = ||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2$$

which satisfies $(\cdot, \cdot) = \|\cdot\|^2$.

Proof. Assume that the norm $\|\cdot\|$ satisfies the parallelogram law

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$
(1)

Define an inner product

$$4(x,y) = ||x+y||^2 - ||x-y||^2 + i||x+iy||^2 - i||x-iy||^2$$

This is indeed an inner product.

Verification:

(i)

$$\begin{array}{rcl} (x,x) & = & \|x+x\|^2 - \|x-x\|^2 + i\|x+ix\|^2 - i\|x-ix\|^2 \\ & = & 4\|x\|^2 + i|1+i|^2\|x\|^2 - i|1-i|^2\|x\|^2 \\ & = & 4\|x\|^2 + i(\sqrt{2})^2\|x\|^2 - i(\sqrt{2})^2\|x\|^2 \\ & = & 4\|x\|^2 \end{array}$$

Therefore $(x, x) = ||x||^2 \ge 0$ and (x, x) = 0 iff x = 0.

(ii)

$$(x,y) = \frac{1}{4} \left[\|x+y\|^2 - \|x-y\|^2 + i \left(\|x+iy\|^2 - \|x-iy\|^2 \right) \right]$$

$$= \frac{1}{4} \left[\|y+x\|^2 - \|y-x\|^2 + i \left(\|ix-y\|^2 - \|ix+y\|^2 \right) \right]$$

$$= \frac{1}{4} \left[\|y+x\|^2 - \|y-x\|^2 + i \left(\|y-ix\|^2 - \|y+ix\|^2 \right) \right]$$

$$= \frac{1}{4} \left[\|y+x\|^2 - \|y-x\|^2 - i \left(\|y+ix\|^2 - \|y-ix\|^2 \right) \right]$$

$$= \frac{1}{4} \left[\|y+x\|^2 - \|y-x\|^2 - i \left(\|y+ix\|^2 - \|y-ix\|^2 \right) \right]$$

$$= \frac{1}{4} \left[\|y+x\|^2 - \|y-x\|^2 - i \left(\|y+ix\|^2 - \|y-ix\|^2 \right) \right]$$

Conjugate symmetry is satisfied and note that in \mathbb{R} , (x, y) = (y, x).

(iii) Is $(\alpha x, y) = \alpha(x, y)$? Consider $x, y \in H$ to be fixed. Let

$$f(\alpha) = \|\alpha x + y\|^2 - \|\alpha x - y\|^2 + i(\|\alpha x + iy\|^2 - \|\alpha x - iy\|^2)$$

This means that

$$f(\alpha) - f(\beta) = \|\alpha x + y\|^2 + \|\beta x - y\|^2 - (\|\alpha x - y\|^2 + \|\beta x + y\|^2) + i(\|\alpha x + iy\|^2 + \|\beta x - iy\|^2 - (\|\alpha x - iy\|^2 + \|\beta x + iy\|^2))$$

Applying (1) we get

$$\begin{split} f(\alpha) - f(\beta) &= \frac{1}{2} \left(\|\alpha x + y + \beta x - y\|^2 + \|\alpha x + y - \beta x + y\|^2 - \|\alpha x - y + \beta x + y\|^2 - \|\alpha x - y - \beta x - y\|^2 \right) \\ &+ \frac{1}{2} i \left(\|\alpha x + \beta x\|^2 + \|(\alpha - \beta)x + 2iy\|^2 - (\|\alpha x + \beta x\|^2 + \|(\alpha - \beta)x - 2iy\|^2) \right) \\ &= \frac{1}{2} \left(\|(\alpha - \beta)x + 2y\|^2 - \|(\alpha - \beta)x - 2y\|^2 \right) + \frac{1}{2} i \left(\|(\alpha - \beta)x + 2iy\|^2 - \|(\alpha - \beta)x - 2iy\|^2 \right) \\ &= 2 \left(\|\frac{\alpha - \beta}{2}x + y\|^2 - \|\frac{\alpha - \beta}{2}x - y\|^2 + i \left(\|\frac{\alpha - \beta}{2}x + iy\|^2 - \|\frac{\alpha - \beta}{2}x - iy\|^2 \right) \right) \\ &= 2 f \left(\frac{\alpha - \beta}{2} \right) \end{split}$$

If $\beta = 0$ and observe that f(0) = 0, we find that $f(\alpha) = 2f(\frac{\alpha}{2})$. This implies that

$$f(\alpha - \beta) = 2f\left(\frac{\alpha - \beta}{2}\right) = f(\alpha) - f(\beta)$$

Using the relation $f(\alpha - \beta) = f(\alpha) - f(\beta)$, the continuity of f, and the value f(0) = 0, we shall show that $f(\alpha) = \alpha f(1)$ for any real α .

• First we show that $f(n\alpha) = nf(\alpha)$ for any integer n. First, if n = 0, f(0) = 0. If n = 1, $f(\alpha) = f(\alpha)$. Now assume that it is true for n = k, for any nonnegative integer k. We need to show that the equality is true also for n = k + 1.

$$f((k+1)\alpha) = f((k+1)\alpha - \alpha) + f(\alpha)$$

$$= f(k\alpha) + f(\alpha)$$

$$= kf(\alpha) + f(\alpha)$$

$$= (k+1)f(\alpha)$$

Then from $f(\alpha) = 2f(\alpha/2)$ ($\beta = \alpha/2$), we have $f(1/2^n) = (1/2^n)f(1)$ for any integer $n \geq 0$. Finally, for any integer m, any nonnegative integer n, $f(m2^{-n}) = mf(2^{-n}) = (m2^{-n})f(1)$. Now any rational can be represented as a finite sum $q = \sum_i m_i 2^{-i}$. Hence, $f(q) = \sum_i f(m_i 2^{-i}) = \sum_i m_i 2^{-i} f(1) = qf(1)$. Since the set of the rational numbers is dense in \mathbb{R} and f is a continuous function, we see that for any real α , $f(\alpha) = \alpha f(1)$

• Now we show that (ix, y) = i(x, y).

$$\begin{array}{ll} (ix,y) & = & \frac{1}{4} \left[\| ix + y \|^2 - \| ix - y \|^2 + i \left(\| ix + iy \|^2 - \| ix - iy \|^2 \right) \right] \\ & = & \frac{1}{4} \left[\| - i (ix + y \|^2 - \| - i (ix - y) \|^2 + i \left(\| x + y \|^2 - \| x - y \|^2 \right) \right] \\ & = & \frac{1}{4} \left[-1 \left(\left(\| x + iy \|^2 - \| x - iy \|^2 \right) + i \left(\| ix - y \|^2 - \| ix + y \|^2 \right) \right] \\ & = & \frac{1}{4} i \left[\| x + y \|^2 - \| x - y \|^2 + i \left(\| x + iy \|^2 - \| x - iy \|^2 \right) \right] \\ & = & i(x,y) \end{array}$$

• Now we show that $(\alpha x, y) = \alpha(x, y)$ is true for any $\alpha \in \mathbb{C}$. First, write $\alpha = Re(\alpha) + iIm(\alpha)$. Since \mathbb{Q} is dense in \mathbb{R} , there exists $\{r_n\}, \{s_n\}$ of rational

numbers such that $r_n \to Re(\alpha)$ and $s_n \to Im(\alpha)$.

$$\begin{array}{rcl} ((Re(\alpha)+iIm(\alpha))x,y) & = & (Re(\alpha)x,y)+(iIm(\alpha)x,y) \\ & = & Re(\alpha)(x,y)+Im(\alpha)(ix,y) \\ & = & Re(\alpha)(x,y)+iIm(\alpha)(x,y) \\ & = & (Re(\alpha)+iIm(\alpha))(x,y) \\ & = & \alpha(x,y) \end{array}$$

Therefore $(\alpha x, y) = \alpha(x, y)$ for all $x, y \in H$ and $\alpha \in \mathbb{C}$. Next we show that

$$(x+y,z) = (x,z) + (y,z) \qquad \forall x,y,z \in H$$

$$\begin{aligned} (x,z) + (y,z) &= & \frac{1}{4} \left[\|x + z\|^2 - \|x - z\|^2 + i \left(\|x + iz\|^2 - \|x - iz\|^2 \right) \right] \\ &+ \frac{1}{4} \left[\|y + z\|^2 - \|y - z\|^2 + i \left(\|y + iz\|^2 - \|y - iz\|^2 \right) \right] \\ &= & \frac{1}{4} \left[\|x + z\|^2 + \|y + z\|^2 - \left(\|x - z\|^2 + \|y - z\|^2 \right) \right] \\ &+ \frac{1}{4} i \left[\|x + iz\|^2 + \|y + iz\|^2 - \left(\|x - iz\|^2 + \|y - iz\|^2 \right) \right] \end{aligned}$$

Applying (1) we get

$$\begin{array}{lll} (x,z)+(y,z) & = & \frac{1}{4}\left[\frac{1}{2}\left(\|x+y+2z\|^2+\|x-y\|^2\right)-\frac{1}{2}\left(\|x+y-2z\|^2+\|x-y\|^2\right)\right]\\ & & \frac{1}{4}i\left[\frac{1}{2}\left(\|x+y+2iz\|^2+\|x-y\|^2\right)-\frac{1}{2}\left(\|x+y-2iz\|^2+\|x-y\|^2\right)\right]\\ & = & \frac{1}{8}\left[\|x+y+2z\|^2-\|x+y-2z\|^2\right]+\frac{1}{8}i\left[\|x+y+2iz\|^2-\|x+y-2iz\|^2\right]\\ & = & \frac{1}{8}\left[2(\|x+y+z\|^2+\|z\|^2)-\|x+y\|^2-2(\|x+y-z\|^2+\|z\|^2)+\|x+y\|^2\right]\\ & & + \frac{1}{8}i\left[2(\|x+y+iz\|^2+\|iz\|^2)-\|x+y\|^2-2(\|x+y-iz\|^2+\|iz\|^2)+\|x+y\|^2\right]\\ & = & \frac{1}{4}\left[\|x+y+z\|^2-\|x+y-z\|^2+i(\|x+y+iz\|^2-\|x+y-iz\|^2)\right]\\ & = & (x+y,z) \end{array}$$

Hence we have shown linearity.

Now we are going to prove the following theorem (Theorem 4.B, Schowalter): **Theorem 4.B**.

Every scalar product space has a completion which is a Hilbert space.

Proof. Let V be a scalar product space. Then, by Theorem 4.A (Schowalter), the inner product in H induces a norm which satisfies the parallelogram law. This makes V a normed space and so it has a completion, say $(H, \|\cdot\|_H)$, where

$$\|\hat{x}\|_H = \|x\|_W \qquad \text{(see notes)},$$

H = W/K, K is the kernel of the norm $\|\cdot\|_W$, $W = \{\{x_n\} \subset V : \{x_n\} \text{Cauchy}\}$ and for $x = \{x_n\} \in W, \|x\|_W = \lim \|x_n\|_V$. Furthermore, it satisfies the parallelogram law:

$$\|\hat{x} + \hat{y}\|_{H}^{2} + \|\hat{x} - \hat{y}\|_{H}^{2} = 2\|\hat{x}\|_{H}^{2} + 2\|\hat{y}\|_{H}^{2}$$

Verification:

Note that the sequences $\{x_n\}$ and $\{y_n\}$ are elements of the inner product space V. For the third equality we used the above lemma.

$$\begin{aligned} \|\hat{x} + \hat{y}\|_{H}^{2} + \|\hat{x} - \hat{y}\|_{H}^{2} &= \lim \|x_{n} + y_{n}\|_{V}^{2} + \lim \|x_{n} - y_{n}\|_{V}^{2} \\ &= \lim (\|x_{n} + y_{n}\|_{V}^{2} - \|x_{n} - y_{n}\|_{V}^{2}) \\ &= \lim (2\|x_{n}\|_{V}^{2} + 2\|y_{n}\|_{V}^{2}) \\ &= \lim 2\|x_{n}\|_{V}^{2} + \lim 2\|y_{n}\|_{V}^{2} \\ &= 2\|\widehat{x_{n}}\|_{H}^{2} + 2\|\widehat{y_{n}}\|_{H}^{2} \end{aligned}$$

Using the lemma above, $(H, (\cdot, \cdot)_H)$ is an inner product space with $(\cdot, \cdot)_H = \|\cdot\|_H$. But $(H, \|\cdot\|_H)$ is a Banach space. Therefore, $(H, (\cdot, \cdot)_H)$ is a Hilbert space.

5. With $l_1 = \{x = \{x_n\} : ||x||_1 = \sum |x_n| < \infty\}$ define $M = \{x \in l_1 : \sum \frac{n}{n+1} x_n = 0\}$. With $e^m = \{\delta_{nm}\}$, show:

- (a) $e^1 \frac{1}{2} \frac{n+1}{n} e^n \in M$, (b) $dist(e^1, M) \le \frac{1}{2}$ and (c) $y \in M \Rightarrow ||e^1 y||_1 > \frac{1}{2}$.

Hence $\frac{1}{2} = dist(e^1, M) < ||e^1 - y||_1, \forall y \in M.$

Proof. First note that l_1 is a linear space under the usual multiplication and addition of real numbers. Next we show that it is a normed space under the norm defined above.

(i) $x, y \in l_1, \alpha \in \mathbb{K}$

$$\begin{split} \|\alpha x + y\|_1 &= \sum_{} |(\alpha x + y)_n| \\ &= \sum_{} |\alpha x_n + y_n| \\ &\leq \sum_{} (|\alpha x_n| + |y_n|) \\ &= \sum_{} (|\alpha||x_n| + |y_n|) \\ &= \sum_{} |\alpha||x_n| + \sum_{} |y_n| \\ &= |\alpha| \sum_{} |x_n| + \sum_{} |y_n| \\ &< \infty \end{split}$$

So $\alpha x + y \in l_1$.

- (ii) If $x \neq 0$, then $||x||_1 = \sum |x_n| \geq 0$. Also $\sum |x_n| = 0$ iff $x_n = 0$ for all n. Hence $||x||_1 = 0$ iff x = 0.
- (a) Note that $e^m \in l_1$ for fixed $m \in \mathbb{N}$:

$$||e^m||_1 = \sum |\delta_{nm}| = 1 < \infty$$

Let $x = e^1 - \frac{1}{2} \frac{m+1}{m} e^m$. l_1 is a linear space so $e^1, e^m \in l_1 \Rightarrow x \in l_1$ (x is just a linear combination of e^1 and e^m). Our goal is to show that $x \in M$.

Need to show: $\sum \frac{n}{n+1} x_n = 0$, where $x_n = \delta_{n1} - \frac{1}{2} \frac{m+1}{m} \delta_{nm}$.

$$\sum \frac{n}{n+1} x_n = \sum \frac{n}{n+1} \left(\delta_{n1} - \frac{1}{2} \frac{m+1}{m} \delta_{nm} \right)$$

$$= \frac{1}{2} \left(\delta_{11} - \frac{1}{2} \frac{m+1}{m} \delta_{1m} \right) + \frac{2}{3} \left(\delta_{21} - \frac{1}{2} \frac{m+1}{m} \delta_{2m} \right) + \dots + \frac{m}{m+1} \left(\delta_{m1} - \frac{1}{2} \frac{m+1}{m} \delta_{mm} \right) + \dots$$

$$= \frac{1}{2} (\delta_{11} - 0) + 0 + 0 + \dots + \frac{m}{m+1} \left(0 - \frac{1}{2} \frac{m+1}{m} \delta_{mm} \right) + 0 + 0 + \dots$$

$$= \frac{1}{2} \delta_{11} - \frac{1}{2} \delta_{mm}$$

$$= \frac{1}{2} - \frac{1}{2}$$

$$= 0.$$

Therefore $x = e^1 - \frac{1}{2} \frac{m+1}{m} e^m \in M$, $m \in \mathbb{N}$. If we replace m by $n \in \mathbb{N}$, then we get

$$e^1 - \frac{1}{2} \frac{n+1}{n} e^n \in M$$
 for all $n \in \mathbb{N}$

(b) Let
$$x = e^1 - \frac{1}{2} \frac{n+1}{n} e^n$$
.

$$||e^{1} - x||_{1} = ||\frac{1}{2}\frac{n+1}{n}e^{n}||_{1} = |\frac{1}{2}\frac{n+1}{n}|||e^{n}||_{1} = \frac{1}{2}\frac{n+1}{n}$$

$$dist(e^{1}, M) = \inf_{x \in M} \|e^{1} - x\|_{1}$$

$$\leq \inf_{x \in \mathbb{N}} \|\frac{1}{2} \frac{n+1}{n} e^{n}\|_{1}$$

$$= \inf_{x \in \mathbb{N}} \left(\frac{1}{2} \frac{n+1}{n}\right)$$

$$= \frac{1}{2}$$

Therefore $dist(e^1, M) \leq \frac{1}{2}$. (c) Let $y \in M(y = \{y_n\}, \sum |y_n| < \infty; \sum \frac{n}{n+1}y_n = 0)$.

Suppose $y_n = 0 \forall n \geq 2$. Then $\frac{1}{2}y_1$ should be equal to 0, so that $\sum \frac{n}{n+1}y_n = 0$. This implies $y_1 = 0$. Consequently $y = 0 = \{0, 0, 0, \ldots\}$. Therefore, $||e^1 - y||_1 = ||e^1||_1 = 1 > \frac{1}{2}$.

Suppose there exists an $N \geq 2$ such that $y_N \neq 0$. We know that

$$\begin{array}{rcl} -x & \leq & |x| & \forall x \in \mathbb{R} \\ \Rightarrow -nx & \leq & n|x| & \text{for } n \in \mathbb{N} \\ \Rightarrow -nx & \leq & n|x| + |x| \\ \Rightarrow -\frac{n}{n+1}x & \leq & |x| \end{array}$$

So $-\frac{n}{n+1}x \le |x|$ for $x \in \mathbb{R}$, and $-\frac{n}{n+1}x < |x|$ if $x \ne 0$.

$$\begin{split} \|e^1-y\|_1 &= \|(1,0,0,\ldots)-(y_1,y_2,y_3,\ldots)\|_1 \\ &= \|(1-y_1,-y_2,-y_3,\ldots)\|_1 \\ &= |1-y_1|+|-y_2|+|-y_3|+\ldots \\ &= |1-y_1|+\sum_{2\leq n\leq N-1}|y_n|+|y_N|+\sum_{N+1\leq n}|y_n| \\ &\geq |1-y_1|-\sum_{2\leq n\leq N-1}\frac{n}{n+1}y_n+|y_N|-\sum_{N+1\leq n}\frac{n}{n+1}y_n \\ &> |1-y_1|-\sum_{2\leq n\leq N-1}\frac{n}{n+1}y_n-\frac{N}{N+1}y_N-\sum_{N+1\leq n}\frac{n}{n+1}y_ny_N\neq 0 \\ &= |1-y_1|-\sum_{n\geq 2}\frac{n}{n+1}y_n \\ &= |1-y_1|+\frac{1}{1+1}y_1 \\ &\geq \min_{y_1\in \mathbb{R}}\left(|1-y_1|+\frac{1}{2}y_1\right) \\ &= \frac{1}{2} \quad \text{(attained when } y_1=1\text{)} \end{split}$$

Therefore, $||e^1 - y||_1 > \frac{1}{2}$ in both cases. Hence $dist(e^1, M) = \inf_{y \in M} ||e^1 - y||_1 \ge \frac{1}{2}$. This, together with (b) would imply that $dist(e^1, M) = \frac{1}{2}$. Thus

$$||e^{1} - y||_{1} > dist(e^{1}, M) = \frac{1}{2}$$
 $\forall y \in M$

6. Prove Corollary 5.C: If V and W are Hilbert spaces and $T \in \mathcal{L}(V, W)$, then Rg(T) is dense in W if and only if T' is injective, and T is injective if and only if Rg(T') is dense in V'. If T is an isomorphism with $T^{-1} \in \mathcal{L}(W, V)$, then $T' \in \mathcal{L}(W', V')$ is an isomorphism with $(T')^{-1} \in \mathcal{L}(V', W')$.

Proof. First we quote Theorem 5.2 from [Schowalter, page 20] for it will be used in the proof of this theorem.

Theorem 5.2

If V and W are Hilbert spaces and $T \in \mathcal{L}(V, W)$, then $T^* \in \mathcal{W}, \mathcal{V}, Rg(T)^{\perp} = K(T^*)$, and $Rg(T^*)^{\perp} = K(T)$. If T is an isomorphism with $T^{-1} \in \mathcal{L}(W, V)$, then T^* is an isomorphism and $(T^*)^{-1} = (T^{-1})^*$.

Consider the following diagrams:

Diagram 1

$$\begin{array}{ccc}
V & \xrightarrow{T} & W \\
R_V \downarrow & & R_W \downarrow \\
V' & \stackrel{(T')^{-1}}{\longrightarrow} & W'
\end{array}$$

12

Diagram 2:

$$\begin{array}{ccc} W & \xrightarrow{T^*} & V \\ R_W \downarrow & & R_V \downarrow \\ W' & \xrightarrow{T'} & V' \end{array}$$

Let R_V and R_W be the Riesz maps from the Hilbert space V onto its dual V', and from the Hilbert space W onto its dual W', respectively. Consider $T \in \mathcal{L}(V, W)$. Now using Theorem 5.2, we have $T^* \in \mathcal{L}(W, V)$, which is equivalent to $K(T^*) = \{\theta\}$ since T^* is linear. Also, this is equivalent to the statement that T^* is injection using the lemma [Schowalter, page 4]. The claim now is that

 T^* is injective if and only if T' is injective.

To prove this we note that a Riesz map is an isometry from a Hilbert space H onto its dual H'. Hence the Riesz maps R_V and R_W are bijections, hence injections. Furthermore, R_V^{-1} and R_W^{-1} are also injections. From the diagram above, we can write $T' = R_V \circ T^* \circ R_W^{-1}$. We know that the composition of injections is also an injection. Therefore T' is injection.

$$T \text{ injection} \iff K(T) = \{\theta\} \qquad \text{(Lemma, page 4)}$$

$$\iff Rg(T^*)^{\perp} = \{\theta\} \qquad \text{(Theorem 5.2, page 20)}$$

$$\iff Rg(T^*) = V$$

$$\iff Rg(T^*) \text{ is dense in } V$$

For $w \in W$ and $v \in V$ we have

$$R_V \circ T^*(w)(v) = (T^*w, v)_V$$

= $(w, Tv)_W$
= $R_W(w)(Tv)$
= $(T' \circ R_W(w))(v)$

This shows that

$$R_V \circ T^* = T' \circ R_W \tag{2}$$

This means that the Riesz maps permit us to study either the dual or the adjoint and deduce information on both.

 $Rg(T^*)$ is dense in V means there exists a sequence $\{v_n\} \subset Rg(T^*)$ such that $||v_n-v||_V \to 0$ as $n \to \infty$. Actually $v_n = T^*w_n$ ($w_n \in W$). So $||T^*w_n - v||_V \to 0$ as $n \to \infty$. Using (2), the preceding statement is equivalent to

$$||T'w_n'-v'||_{V'}\to 0$$
 as $n\to\infty, w_n'\in W, v'\in V'$

 w'_n can be defined as $w'_n = R_W w_n, w_n \in W$. So there exists $\{v'_n\} = \{T'w'_n\} \subset Rg(T')$ such that $\|v'_n - v'\|_{V'} \to 0$ as $n \to \infty$. Therefore $\overline{Rg(T')} = V'$; that is Rg(T') is dense in V'.

Now we're going to prove that "if T is an isomorphism with $T^{-1} \in \mathcal{L}(W, V)$ then $T' \in \mathcal{L}(W', V')$ is an isomorphism with $(T')^{-1} \in \mathcal{L}(V', W')$."

If $T: V \to W$ is an isomorphism then it is a linear bijection. Furthermore it is invertible $(T^{-1} \in \mathcal{L}(W, V))$.

Knowing that
$$(T \circ T^{-1})(v) = v(v \in V)$$
 and $(T^{-1} \circ T)(w) = w(w \in W)$; and $T^{-1} \in \mathcal{L}(W, V) \Rightarrow (T^{-1})' \in \mathcal{L}(V', W')$, we get

$$(T' \circ (T^{-1})')(v') = T'((T^{-1})'(v')), \qquad v' \in V'$$

$$= T'(v' \circ T^{-1})$$

$$= (v' \circ T^{-1}) \circ T$$

$$= v' \circ (T^{-1} \circ T)$$

$$= v' \circ I$$

$$= v'$$

$$((T^{-1})' \circ T')(w') = (T^{-1})'(T'(w')), \qquad w' \in W'$$

$$= (T^{-1})'(w' \circ T)$$

$$= (w' \circ T) \circ T^{-1}$$

$$= w' \circ (T \circ T^{-1})$$

$$= w' \circ I$$

$$= w'$$

So the inverse of T' is $(T^{-1})'$. Therefore, $(T^{-1})' \in \mathcal{L}(V', W')$

- 7. Verify $T = i' \circ R \circ i$ in the example of identifications (following Theorem 5.B).
 - Consider a linear space $C_0(G)$ and the Hilbert space $L^2(G)$. Elements of $C_0(G)$ are functions while the elements of $L^2(G)$ are equivalence classes of functions equipped with $(f,g) = \int_G f\bar{g}$.
 - For $\varphi \in C_0(G)$, let $i(\varphi)$ denote the $L^2(G)$ equivalence class containing φ . Since each $\varphi \in C_0(G)$ is square summable on G, it belongs to exactly one such equivalence class, say $i(\varphi) \in L^2(G)$. This defines a linear injection

$$i:C_0(G)\to L^2(G)$$

whose range is dense in $L^2(G)$. Identify domain with range, $C_0(G) < L^2(G)$.

- The dual $i': L^2(G)' \to C_0(G)^*$; $i'(f') = f' \circ i$ $(f' \in L^2(G)')$ is then a linear injection which is just a restriction to $C_0(G) \subset L^2(G)$. Identify domain and range of i', write $L^2(G)' \leq C_0(G)^*$.
- Let $R = R_{L^2(G)}$ be the Riesz map $R : L^2(G) \to L^2(G)'$; $f \mapsto f' = R(f)$, where $f'(g) = (f, g)_{L^2(G)} \forall g \in L^2(G)$.
- Using exercise 1, we have a linear injection $T: C_0(G) \to C_0(G)^*$ defined by $T_f(\varphi) = \int_G f\bar{\varphi}, \ f, \varphi \in C_0(G)$. Identify domain with range, write $C_0(G) \leq C_0(G)^*$.

Both R and T are possible identifications of (equivalence classes of) functions with conjugate linear functionals.

Now we verify $T = i' \circ R \circ i$: (see Figure 3)

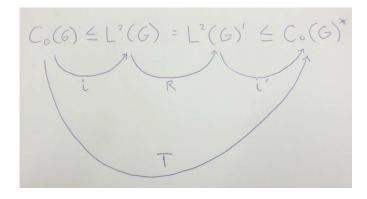


FIGURE 3

Let $f, \varphi \in C_0(G)$. $(Tf)\varphi = ((i' \circ R \circ i)f)\varphi$ $= i'(R(i(f)))\varphi$ $= (R(i(f)) \circ i)\varphi$ $= R(i(f))(i(\varphi))$ $= (i(f), i(\varphi)) \quad \text{(by definition of Riesz map)}$ $= \int_G i(f)\overline{i(\varphi)} \quad \text{(definition of inner product)}$ or $\int_G f\overline{\varphi}$, because the inner product is independent of the representatives of the equivalence classes.

- 8. Show that a closed subspace of a seminormed space is complete. (Exercise in the textbook, but is it true?) Show that a closed subspace of a Banach (Hilbert) space is also a Banach (Hilbert) space. Show that a complete subspace of a normed space is closed.
- *Proof.* (i) A closed subspace of a seminormed space is not necessarily complete. We know that the set of rational numbers is not complete. But this set under the Euclidean norm forms a normed space. Hence it is a seminormed space. Moreover, this space is a closed subspace of itself.
- (ii)A closed subspace of a Banach (Hilbert) space is also a Banach (Hilbert) space. Let V be a Banach space equipped with norm p. Let X be a closed subspace of V. Consider a Cauchy sequence $\{x_n\} \subset X$. This implies that $\{x_n\}$ is a Cauchy sequence in V because $X \subset V$. But V is a Banach space, so $\{x_n\} \to x \in V$. X is closed so it consists of all limit points. Hence $x \in X$. Therefore $x_n \to x, x \in X$. Therefore X is a Banach space.

Now suppose that V is a Hilbert space defined with an inner product $(\cdot, \cdot)_V$. Let X be a closed subspace of V. Being a subspace, it inherits the inner product $(\cdot, \cdot)_V$. The norm in X is induced by the inner product $(\cdot, \cdot)_V$. We shall call the norm to be p. So X is closed under the norm p. This is complete using the recently proven statement above. Hence X is a Hilbert space.

(iii) Now we show that a complete subspace of a normed space is closed. Let (V, p) be a normed space with norm p. Let (X, p) be a complete subspace of (V, p).

 $\{x_n\}$ is Cauchy in X:

$$p(x_m - x_n) = p(x_m - x + x - x_n) \le p(x_m - x) + p(x_n - x) \to 0$$

as $m, n \to \infty$.

There is also an $\hat{x} \in X$ such that $x_n \to \hat{x}$ because X is complete.

$$p(x - \hat{x}) = p(x - x_n + x_n - \hat{x})$$

$$\leq p(x - x_n) + p(x_n - \hat{x})$$

$$= p(x_n - x) + p(x_n - \hat{x})$$

$$\to 0 \quad (as n \to \infty)$$

But p is a norm, so $p(x - \hat{x}) = 0$. Hence $x = \hat{x}$. Therefore $x \in X$. We have shown that $\bar{X} \subset X$. But $X \subset \bar{X}$. Therefore $X = \bar{X}$. Thus X is closed.

9. Show that if two Banach spaces are completions of a given normed space, then a linear norm-preserving bijection can be constructed between them, so thus the completion of a normed space is unique in this sense.

Proof. Suppose (W_1, q_1) and (W_2, q_2) are completions of a normed space (V, p). We use Theorem 3.1 (page 11) to construct a linear norm-preserving bijection between them:

Theorem 3.1.

Let $T \in \mathcal{L}(D, W)$, where D is a subspace of the seminormed space (V, p) and (W, q) is a Banach space. Then there exists a unique extension $T_e \in \mathcal{L}(\bar{D}, W)$ such that $T_e|_{D} = T$, and $|T_e|_{p,q} = |T|_{p,q}$ where

$$|T|_{p,q} = \sup\{q(T(x)) : x \in V, p(x) \le 1\}.$$

We also use the definition of completion of a seminormed space to have the following information:

- i) linear injections $T: V \to W_1$ and $S: V \to W_2$
- ii) range of T is dense in W_1 and the range of S is dense in W_2
- iii) $q_1(T(x)) = p(x)$ and $q_2(S(x)) = p(x)$ for all $x \in V$

To use theorem 3.1, we shall use the following diagram (Figure 4).

$$S \circ T_1^{-1} = Y : Rg(T) \to W_2$$

Let $w \in Rg(T)$. Then $Y(w) \in W_2$. Also $w \in W_1$ (because $Rg(T) \subset W_1$).

$$\begin{array}{lll} q_2(Y(w)) & = & q_2(S \circ T_1^{-1}(w)) \\ & = & q_2(S(T_1^{-1}(w))), & (T_1^{-1}(w) = x \in V) \\ & = & p(T_1^{-1}(w)) \\ & = & q_1(T(T_1^{-1}(w))) \\ & = & q_1(T) \end{array}$$

$$= & q_1(w)$$

Therefore $||Y||_{q_2,q_1} = 1$.

By Theorem 3.1, there exists a unique $Y_e: \overline{Rg(T)} \to W_2$ which is linear and continuous, such that $Y_e|_{Rg(T)} = Y$ and $|Y_e|_{q_1,q_2} = |Y|_{q_1,q_2}$. Clearly, Y_e is linear. Now we show that $Y_e: \overline{Rg(T)} \to W_2$ is a bijection.

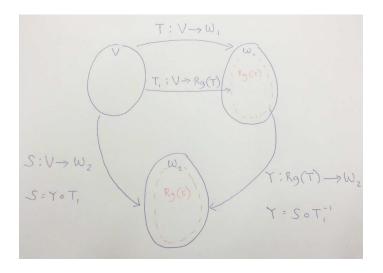


Figure 4

We first show that Y_e preserves the norm

$$q_2(Y_e(w)) = \lim_{n \to \infty} q_2(Y_e(w_n)), \qquad w, w_n \in \overline{Rg(T)}, \text{ (continuity of } q_2)$$

$$= \lim_{n \to \infty} q_2(Y(w_n))$$

$$= \lim_{n \to \infty} q_1(w_n)$$

$$= q_1(\lim_{n \to \infty} w_n) \quad \text{ (continuity of } q_1)$$

$$= q_1(w) \quad (\overline{Rg(T)} = W_1, \text{ a Banach space})$$

We have shown that Y preserves the norm, as well as Y_e .

Injectivity: NTS: $Y_e(w) = 0 \Rightarrow w = 0$ Let $w \in \overline{Rg(T)}$.

$$q_2(Y_e(w)) = q_1(w)$$

 $q_2(0) = q_1(w)$ (by assumption)
 $0 = q_1(w)$ (q_2 is a norm)
 $0 = w$ (q_1 is a norm)

Surjectivity: NTS: $Rg(Y_e) = W_2$; that is, for all $w \in W_2$ there exists \tilde{w} such that $Y_e(\tilde{w}) = w$.

Let $w \in W_2$. Then there exists $\{v_n\} \subset V$ such that $q_2(Sv_n - w)$ to 0. But the range of S is dense in W_2 . This would mean that $\{Sv_n\}$ is a Cauchy sequence in W_2 . Thus $q_2(Sv_n - Sv_m) \to 0$. Consequently, $q_1(Tv_n - Tv_m) \to 0$, which means $\{Tv_n\}$ is a Cauchy sequence in W_1 . Again, since range of T is dense in W_1 , $\{Tv_n\}$ has a limit point in W_1 , and we call it \tilde{w} , and

$$Y_e(\tilde{w}) = Y_e(\lim Tv_n) = \lim((Y_e \circ T)v_n) = \lim Sv_n = w.$$

10. Show that in a scalar product space, $\lim x_n = x \iff \lim \|x_n\| = \|x\|$ and $x \to x$.

Proof. Let X be the scalar product space. $(\Rightarrow:)$

 $\lim x_n = x \Rightarrow \lim ||x_n - x|| = 0$. Note that

i) $||x_n|| = ||x_n - x + x|| \le ||x_n - x|| + ||x||$ $\Rightarrow ||x_n|| - ||x|| \le ||x_n - x||$

ii)
$$||x|| - ||x_n|| \le ||x_n - x|| = ||x_n - x|| \Rightarrow -(||x_n|| - ||x||) \le ||x_n - x|| \Rightarrow -||x_n - x|| \le ||x_n|| - ||x||$$

(i) and (ii) $\Rightarrow |||x_n|| - ||x||| \to 0$. Also, $0 \le |||x_n|| - ||x|||$. By squeeze theorem, $\lim |||x_n|| - ||x||| = 0$, which implies $\lim (||x_n|| - ||x||) = 0$, or equivalently $\lim ||x_n|| = ||x||$.

Next we show $x_n \rightharpoonup x$.

NTS: $\forall x' \in X'$ (the dual space), $x'(x_n) \to x'(x)$. For $\epsilon > 0$,

$$|x'(x_n) - x'(x)| = |x'(x_n - x)|, \quad x' \neq 0$$

$$\leq ||x'|| ||x_n - x||$$

$$\leq \epsilon$$

if $||x_n - x|| < \frac{\epsilon}{||x'||}$ (since $\lim x_n = x$). Therefore, $x_n \rightharpoonup x$. $(\Leftarrow:)$

$$||x - x_n||^2 = (x - x_n, x - x_n)$$

= $||x||^2 - 2Re(x, x_n) + ||x_n||^2$

We assume that $x_n \rightharpoonup x$. This implies that $(x_n, y) \to (x, y)$. By picking y = x, we get $\lim_{n\to\infty}(x, x_n) = (x, x)$. So the real part and imaginary part converges. So we have

$$\lim Re(x, x_n) = Re \lim(x, x_n) = Re(x, x)$$

So as $n \to \infty$ and by assumption

$$||x - x_n||^2 \to ||x||^2 - 2||x||^2 + ||x||^2 = 0$$

Therefore

$$\lim ||x_n - x||^2 = 0$$

$$\iff \lim ||x_n - x|| = 0$$

$$\iff \lim x_n = x$$

11. Show that the eigenvalues of a self-adjoint operator are all real. Show that the eigenvalues of a non-negative self-adjoint operator are all non-negative.

Recall: Definition of self-adjoint operator:

It is an operator $T \in \mathcal{L}(H)$ where $(Tu, v)_H = (u, Tv)_H$ for all $u, v \in H$. It is nonnegative if $(Tu, u)_H \geq 0 \ \forall u \in H$.

i) Let λ be an eigenvalue of a self-adjoint operator T. So there exists $v \in H$, v nonzero, such that $Tv = \lambda v$. Then

$$\lambda(v, v)_H = (\lambda v, v)_H = (Tv, v)_H = (v, Tv) = (v, \lambda v) = \bar{\lambda}(v, v)_H.$$

This implies that $\lambda = \bar{\lambda}$, which means that λ is a real number. So we have shown that the eigenvalues of a self-adjoint operator are all real.

- ii) $\lambda(v,v)_H = (\lambda v,v)_H = (Tv,v)_H \ge 0$. This implies that $\lambda(v,v)_H \ge 0$. But we know that $(v,v)_H = ||v||^2 \ge 0$. Therefore $\lambda \ge 0$.
- 12. If V is a scalar product space, show that V' is a Hilbert space. Show that the Riesz map of V into V' is surjective only if V is complete.
 - (i) If V is a scalar product space, then V' is a Hilbert space.

Proof. Let V be a scalar product space. By Theorem 4.2 (Schowalter, page 16), this has a unique completion which is a Hilbert space. We call the completion to be W.

Claim: The dual W' is also a Hilbert.

Proof of claim:

Let R_W be the map from W to W' defined as

$$R_V(x) = x'$$
, where $x'(z) = (z, x)$.

Define an inner product $(\cdot, \cdot)_{W'}$ on W' by

$$(x', y')_{W'} = (R_W^{-1}y', R_W^{-1}x')$$

where (\cdot, \cdot) is the inner product on W. $(\cdot, \cdot)_{W'}$ is indeed an inner product. Since R_W^{-1} is an isometry,

$$(x', x')_{W'} = (R^{-1}x', R^{-1}x') = ||R_V^{-1}x'||^2 = ||x'||^2$$

Thus W' is a Hilbert space.

So to show that V' is a Hilbert space we need to find a continuous isomorphism between W' and V' (which I could not establish for now.)

(ii) The Riesz map of V into V' is surjective only if V is complete.

Proof. Let $R_V: V \to V'$ be the Riesz map.

NTS: R_V is surjective $\Rightarrow V$ complete.

Let R_V be surjective; that is, $\forall v' \in V'$ there exists $v \in V$ such that $R_V(v) = v'$.

Also we note that a Riesz map is linear, injective and norm preserving. Hence R_V becomes a linear bijection from V to V'. Now, we assume that $\{v_n\}$ is a Cauchy sequence in V. Since R_V is continuous (because it is isometry), $R_V(v_n)$ is a Cauchy sequence in V'. Knowing that V' is complete, $R_V(v_n)$ converges to an element, say v', in V'. By surjectivity of R_V , there exists $v \in V$ such that $R_V(v) = v'$ Equivalently, $v = R_V^{-1}(v')$ because R_V is a bijection.

Need to show: $v_n \to v$ Using the properties of R_V , we have

$$||v_n - v||_V = ||R_V(v_n - v)||_{V'}$$

 $= ||R_V(v_n) - R_V(v)||_{V'}$
 $= ||R_V(v_n) - v'||$
 $\to 0 \text{ as } (n \to \infty)$

Therefore $v_n \to v$. Hence V is complete.

13. Show that for f E LP(G), 1 = p < 00, (1.e., the cases other than p=1,2) a mollification f= f * PE satisfies 11 fz 11 (PCG) < 11 f 11 (PCG).

Solution:

Let
$$f \in L^{r}(G)$$
; $| \leq p < \infty$ be often than I and 2; $g = \frac{p}{p-1}$.

 $f_{\Sigma}(x) = (f \star p_{\Sigma})(x) = (p_{\Sigma} \star f)(x) = \int_{\mathbb{R}^{n}} p_{\Sigma}(x-y)f(y) dy$.

 $| f_{\Sigma}(x)| = | \int_{\mathbb{R}^{n}} p_{\Sigma}(x-y)f(y) dy |$
 $\leq \int_{\mathbb{R}^{n}} | q_{\Sigma}(x-y)f(y) dy |$
 $= \int_{\mathbb{R}^{n}} | (q_{\Sigma}(x-y)) \frac{1}{5} (q_{\Sigma}(x-y)) \frac{1}{7} f(y) | dy$
 $\leq (\int_{\mathbb{R}^{n}} (|p_{\Sigma}(x-y)|) \frac{1}{5} p_{\Sigma}^{2} \frac{1}{3} (\int_{\mathbb{R}^{n}} |p_{\Sigma}(x-y)| \frac{1}{7} f(y) |p_{\Sigma}(x-y)| \frac{1}{$

= I |fe(x)| = Spr 4 (x-y) |f(y)| dy

Extending of to 0 in R" - 6 and applying Fubini's theorem, we get 11 f E 11 P = { | f 2 (x) | dx < Spr Spr 4 (x-y) | f (y) | dy dx = Spr If(y) IPdy Spr (x-y) dx = SIfCy) 1 dy = SIfCy) 1 dy (firstended to 0 in 12 6) = 11 f 11 1 (6) : fe satisfus 11 fe 11 (6) = 11 f 11 (6). 2

17. Show that for $u \in L^2(\partial G)$, the norm $\|u\|_{L^2(\partial G)}$ is equivalend to the norm $\begin{bmatrix} \sum_{j=1}^{N} \|B_j u\|_{L^2(\partial G \cap G_j)}^2 \end{bmatrix}^{1/2}$

ii)
$$\begin{bmatrix} \frac{N}{2} & \|\beta_{j}u\|_{L^{2}}^{2} (\partial G \cap G_{j}) \end{bmatrix}^{1/2} = \begin{bmatrix} \frac{N}{2} & |\beta_{j}u|^{2} \end{bmatrix}^{1/2}$$

$$= \begin{bmatrix} \frac{N}{2} & |\beta_{j}u|^{2} |u|^{2} \end{bmatrix}^{1/2}$$

$$\leq \begin{bmatrix} \frac{N}{2} & |\beta_{j}u|^{2} \\ \frac{N}{2} & |\beta_{j}u|^{2} \end{bmatrix}^{1/2} \quad \text{since } 0 \in \beta_{j} \in I$$

$$\leq \begin{bmatrix} \frac{N}{2} & |\beta_{j}u|^{2} \\ \frac{N}{2} & |\beta_{j}u|^{2} \end{bmatrix}^{1/2}$$

$$= \begin{bmatrix} |u|^{2} & \frac{N}{2} & |\beta_{j}u|^{2} \\ \frac{N}{2} & |\beta_{j}u|^{2} \end{bmatrix}^{1/2}$$

$$= \begin{bmatrix} |u|^{2} & \frac{N}{2} & |\beta_{j}u|^{2} \\ \frac{N}{2} & |\beta_{j}u|^{2} \end{bmatrix}^{1/2}$$

= (p(p+1))/2 (|u|2)/2

.:
$$\exists c_2 = (\frac{N(N+1)}{2})^{-1/2}$$
 such that $c_2 [\sum_{j=1}^{N} ||\beta_j u||_{L^2(\partial G \cap G_j)}^2]^{1/2} \leq ||u||_{L^2(\partial G)}$

Therefore, the norm ||u|| 12(06) is equivalent to the norm [] 11 Bjull 2(0606;)] 1/2

18. Show that the mapping $\lambda: f \mapsto ((\beta_i f) \circ f_1, ..., (\beta_N f) \circ f_N)$ from $L^2(\partial G)$ to $[L^2(Q_O)]^N$ is a continuous linear injection mapping onto a closed subspace, its range, where it has a continuous inverse.

Solution:

First, we show that the norm in L'(Qo)" is equivalent to the norm in #17.

$$= \sum_{j=1}^{N} \|\beta_{j} f \circ \varphi_{j}\|_{L^{2}(\Omega_{0})}^{2} \leq C \sum_{j=1}^{N} \|\beta_{j} f \|_{L^{2}(\Omega_{0} \cap G_{j})}^{2}$$

$$= \sum_{j=1}^{N} \|\beta_{j} f \circ \varphi_{j}\|_{L^{2}(\Omega_{0})}^{2} \leq C \left(\sum_{j=1}^{N} \|\beta_{j} f \|_{L^{2}(\Omega_{0} \cap G_{j})}^{2}\right)^{1/2}$$

$$\|\beta_{j}f\|_{L^{2}(\partial G \cap G_{j})}^{2} = \int_{\partial G \cap G_{j}} |\beta_{j}f(\beta)|^{2} ds$$

$$= \int_{\partial G} |\beta_{j}f(\beta)|^{2} ds$$

$$\leq \int_{\partial G} |\beta_{j}f(\beta)|^{2} ds$$

$$\leq \int_{\partial G} |\beta_{j}f(\beta)|^{2} ds$$

$$\leq \int_{\partial G} |\beta_{j}f(\beta)|^{2} ds$$

$$= \int_{J=1}^{\infty} |\beta_{j}f(\beta)|^{2} ds$$

$$= \int_{J=1}$$

$$= 0 \quad \left(\sum_{j=1}^{N} \|\beta_{j}f\|_{L^{2}(26n6j)}^{2} \right)^{1/2} = \left(\sum_{j=1}^{N} \|\beta_{j}f \circ \varphi_{j}\|_{L^{2}(260)}^{2} \right)^{1/2}$$

$$= 0 \quad C_{2} \left(\sum_{j=1}^{N} \|\beta_{j}f\|_{L^{2}(26n6j)}^{2} \right)^{1/2} = \left(\sum_{j=1}^{N} \|\beta_{j}f \circ \varphi_{j}\|_{L^{2}(260)}^{2} \right)^{1/2}$$

Herce, we have shown that the two norms are indeed equivalent. Using the equivalence of these norms, we obtain

$$\| \lambda f \|_{L^{2}(\Omega_{0})^{N}}^{2} = \sum_{j=1}^{N} \| \beta_{j} f \|_{L^{2}(\Omega_{0})^{\infty}}^{2}$$

$$\leq C_{1} \sum_{j=1}^{N} \| \beta_{j} f \|_{L^{2}(\Omega_{0} \cap G_{j})^{\infty}}^{2}$$

< C2 || u||²(26) (using the result in #17)

: the mapping $\lambda: L^2(\partial G) \to [L^2(G_O)]^N$ is continuous onto its range.

ii) for linearity:

$$\lambda (af + bg) = (\beta, (af + bg) \circ P_1, \dots, \beta_N (af + bg) \circ P_N)$$

$$= ((\beta, af + \beta, bg) \circ P_1, \dots, (\beta_N af + \beta_N bg) \circ P_N)$$

$$= (a\beta, f \circ P_1, \dots, a\beta_N f \circ P_N) + (b\beta, g \circ P_1, \dots, b\beta_N g \circ P_N)$$

$$= (a\beta, f \circ P_1, \dots, a\beta_N f \circ P_N) + b(\beta, g \circ P_1, \dots, b\beta_N g \circ P_N)$$

$$= a(\beta, f \circ P_1, \dots, \beta_N f \circ P_N) + b(\beta, g \circ P_1, \dots, \beta_N g \circ P_N)$$

$$= a \lambda f + b \lambda g$$

:. I is linear

for injectivity: $\|f\|_{L^{2}(\partial G)}^{2} \leq C, \quad \sum_{j=1}^{N} \|f_{j}f\|_{L^{2}(\partial G \cap G_{j})}^{2} \quad (\text{gyplying it sult in } + 17)$ $\leq C_{2} \sum_{j=1}^{N} \|f_{j}f \circ q_{j}\|_{L^{2}(\Omega_{0})}^{2} \quad (\text{equivalence of norms} + 17)$ $= C_{2} \|f\|_{L^{2}(\Omega_{0})^{N}}$ $= C_{2} \|f\|_{L^{2}(\partial G)}^{2} \leq C \|f\|_{L^{2}(\Omega_{0})^{N}}^{2} \quad (*)$ $\int_{D} |f|_{L^{2}(\partial G)}^{2} \leq C \|f\|_{L^{2}(\Omega_{0})^{N}}^{2} \quad (*)$

(iv) for continuous inverse:

Need to show: $\lambda^{-1}: \operatorname{Rg}(\lambda) \to L^{2}(\partial G)$ is continuous

Let $g = \lambda f$. $\|\lambda^{-1}g\|_{L^{2}(\partial G)} \subseteq C \|g\|_{L^{2}(\Omega G)^{N}}$ (from *)

Therefore, $\lambda : L^{2}(\partial G) \longrightarrow [L^{2}(Q_{0})]^{N}$ $f \longmapsto ((\beta, f) \circ P_{1}, \dots, (\beta_{N}f) \circ P_{N})$

is a continuous linear injection mapping onto a closed subspace, its range, where it has a continuous inverse.

19. Find all distributions of the form F(t) = H(t) f(t) where fe C2(TR) such that (22+4) F = C, S + C228.

Solution:

$$H(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$

$$[(\partial^2 + 4)F](\varphi) := \partial^2 F(\varphi) + 4F(\varphi) = \partial^2 T_F(\varphi) + 4T_F(\varphi), \varphi \in C_0^{\infty}(G)$$

$$\partial^2 F(\varphi) = (-1)^2 T_F(D^2 \varphi), \quad \varphi \in C_0^{\infty}(G)$$

But
$$S(\phi) = \overline{\psi(0)}$$
; $\partial S(\phi) = -\overline{D}\overline{\psi}(0) = -\overline{D}\overline{\psi}(0)$.

Solving (**) is equivalent to solving the system
$$Df(o) = C,$$

$$f(o) = C_2$$

$$Df(t) + 4f(t) = 0, t > 0$$

$$f''(t) + 4f(t) = 0$$

$$f^{2} + 4f(t) = 0 \Rightarrow r = \pm 2i$$

$$\therefore \text{ the general solution is}$$

$$f(t) = C_{1}e^{2}\cos 2t + C_{2}e^{2}\sin 2t$$

$$= C_{1}\cos 2t + C_{2}\sin 2t$$

$$\Rightarrow f'(t) = -2C_{1}\sin 2t + 2C_{2}\cos 2t$$

$$C_{1} = Df(0) = f'(0) = 2C_{2} = 0 \quad C_{2} = C_{1}$$

$$C_{2} = f(0) = C_{1}$$

.. Choose
$$f \in C^2(\mathbb{R})$$
 and that

$$f(t) = C_2 \cos 2t + C_1 \sin 2t , + 30$$
Then we have
$$f(t) = \int_{\mathbb{R}} C_2 \cos 2t + C_2 \sin 2t + \int_{\mathbb{R}} c_2 \sin 2t + c_3 \sin 2t + c_4 \sin 2t + c_5 \sin 2t$$

D

a. Show that when Ho(6) is equipped with the scalar product

(f, 9) + i(6) = So Vf(x) · Vg(x) dx

it is a Hilbert space. Show that for $f \in L^2(G)$, $T_f \in D^*(G)$ satisfies $T_f \in H_o(G)'$. Show there exists a unique $u \in H_o'(G)$ such that $T_{Du} = T_f$.

Solution:

D*(6) = C*(6)* (algebraic dual of C*(6)

For $f \in L^{2}(6)$, $T_{f}: C^{\infty}(6) \to IK$ defined by $T_{f}(\phi) = \int_{6}^{\pi} \overline{\phi}$

(where $\varphi \in C_0^{\infty}(6)$) shall satisfy $T_f: H_0^{\infty}(6) \rightarrow IK$

| Tf (φ) | = | Sg f φ | ≤ Sg | f φ |

≤ (Sg | f | ²) '/² (Sg | φ | ²) '/² (Cauchy - Schwarz Inequality)

: (Sg | f | ²) '/² (Sg | φ | ²) '/²

= | | f | | L²(G) | | φ | | L²(G) | ≤ | | f | | L²(G) | | | ∇ φ | L²(G) |

= | | f | | L²(G) | | φ | | H_o(G) |

= | | f | | L²(G) | | φ | | H_o(G) | | (Cauchy - Schwarz Inequality)

=> sup [Tp(p)] < 00 0 \$46 Co(0) 11 611 H.0(0)

Hence If is continuous on a dense subset of Ho(6); 1.2. 3 dPn & C (6)
that converges in Ho(6).

To obtain the result we shall be using the following theorem: Theorem 3.1 [Schowalter, p. 11]

Let $T \in \mathcal{L}(D, W)$, where D is a subspace of the seminormed apace (V, P) and (W, q) is a Banach space. Then there exists a unique $T \in \mathcal{L}(\overline{D}, W)$ such that $T|_{D} = T$, and $|T|_{P,q} = |T|_{P,q}$.

In our current work we have

- . D=Co(6), D=V=Ho(6), W=1K,
- · Co (6) is a subspace of the seminormed space (Ho (6), 11.11,
- · (IK, II.II2) is a Banach space
- · TETA

Applying Theorem 3.1, there exists $\bar{T}_f \in \mathcal{A}(H_o(6), IK)$ such that $\bar{T}_f \mid_{C_o^\infty(6)} = T_f$

This means Tf & Ho (6)'.

Now, by Riesz regresentation theorem, there exists only one $\tilde{u} \in H_o'(G)$ for which

$$T_{f}(\varphi) = (\tilde{u}, \varphi)_{H_{o}(G)} \qquad \varphi \in H_{o}(G)$$

Remark: The uniquenes of a follows from the unqueners of i.

B

25. For GCR" and TCDG with IT/2670, let g ∈ L2(T), define T(4) = Spg(s) \(\varphi(s) \) ds and show that T ∈ (H'(G))'.

T(4) =
$$\int_{P} g(s) \bar{\varphi}(s)$$

 $|T(4)| = |\int_{P} g(s) \bar{\varphi}(s)| \leq \int_{P} |g(s)| \bar{\varphi}(s)|$
 $\leq \left(\int_{P} |g(s)|^{2}\right)^{1/2} \left(\int_{P} |\bar{\varphi}(s)|^{2}\right)^{1/2}$
 $= \left(\int_{P} |g(s)|^{2}\right)^{1/2} \left(\int_{Q} |\bar{\varphi}(s)|^{2}\right)^{1/2}$
 $\leq \left(\int_{P} |g(s)|^{2}\right)^{1/2} \left(\int_{Q} |\bar{\varphi}(s)|^{2}\right)^{1/2}$
 $= ||g||_{L^{2}(P)} ||V_{0}(P)||_{L^{2}(Q_{N})} \left(V_{0} \text{ is a trace operator}\right)$
 $\leq ||g||_{L^{2}(P)} ||V_{0}|| ||\varphi||_{H^{1}(\Omega)}$
Since V_{0} is bounded, $g \in L^{2}(P)$, we have
 V_{0} is bounded.

Furthermore, the mapping $P \to S_p g(s) P(s) ds$ is conjugate linear. Therefore, $T \in (H'(6))'$.

26. Show that HM (6): If ELZ (6): Dof ELZ (6), Idlem ?
is a Hilbert space.

Solution:

It is clear that HM (6) is an inner groduct space under the inner product (', ')+M(6) in HM(6) defined a

Now we show that the space is complete.

Let office be a Couchy sequence in $\mathcal{H}^{m}(G)$. This implies that $D^{\alpha}f_{n} \in L^{2}(G)$ that, $|\alpha| \leq m$ But $||D^{\alpha}f_{n} - D^{\alpha}f_{m}|| \leq ||f_{n} - f_{m}||_{H^{m}(G)}$ So $||D^{\alpha}f_{n}||^{2}$ is cauchy sequence in $|L^{2}(G)|$ with limit, say, $g_{\alpha} \in L^{2}(G)$.

Then $||\Psi|| \in C^{\infty}_{o}(G)$,

$$(9d, 9)_{12(6)} = \lim_{n \to \infty} (D^{\alpha}f_{n}, 9)_{12(6)}$$

$$= \lim_{n \to \infty} (-1)^{|\alpha|} (f_{n}, D^{\alpha}9)_{12(6)}$$

$$= (-1)^{|\alpha|} (\lim_{n \to \infty} f_{n}, D^{\alpha}9)_{12(6)}$$

$$= (-1)^{|\alpha|} (f, D^{\alpha}9)_{12(6)}$$

$$= (D^{\alpha}f, 9)_{12(6)}$$

:. 9x is the ofthe distributioned demarture of f and

119x - Dxf. 112(c) = 11 Dxf - Dxf. 112(c) ->0

ve have shown that $g_a \in \mathcal{H}^m(G)$. Hence $\mathcal{H}^m(G)$ is complete.

Therefore, $\mathcal{H}^m(G)$ is a Hilbert space.