Numerische Mathematik 2, Übungen, WS15/16, Blatt 8

Bearbeitung: Hausaufgaben bis 26.11.2015

Hausaufgaben

1. Sei die Matrix $A \in \mathbb{C}^{n \times n}$ diagonalisierbar mit Eigenwerten $\lambda_1 = \cdots = \lambda_r$, $|\lambda_1| > |\lambda_{r+1}| \ge \cdots \ge |\lambda_n|$ und mit Eigenvektoren \boldsymbol{x}_i , $A\boldsymbol{x}_i = \lambda_i \boldsymbol{x}_i$, die eine Basis für \mathbb{C}^n bilden. Der Anfangsvektor für eine Vektoriteration \boldsymbol{t}_0 läßt sich in der Form $\boldsymbol{t}_0 = \rho_1 \boldsymbol{x}_1 + \cdots + \rho_n \boldsymbol{x}_n$ schreiben, wobei $\rho_1 \boldsymbol{x}_1 + \cdots + \rho_r \boldsymbol{x}_r \ne 0$. Für $\boldsymbol{t}_i = A^i \boldsymbol{t}_0$ gilt

$$\lim_{i \to \infty} \frac{t_i}{\lambda_1^i} = \rho_1 x_1 + \dots + \rho_r x_r$$

Sei das Index j_i definiert durch

$$t_i = (\tau_1^{(i)}, \dots, \tau_n^{(i)})^{\top}, \quad |\tau_{j_i}^i| = \max_s |\tau_s^{(i)}|.$$

Mit $z_i = t_i/\tau_{j_i}^{(i)}$ zeigen Sie,

$$\lim_{i \to \infty} \frac{ au_{j_i}^{(i+1)}}{ au_{j_i}^{(i)}} = \lambda_1, \quad \lim_{i \to \infty} oldsymbol{z}_i = lpha(
ho_1 oldsymbol{x}_1 + \dots +
ho_r oldsymbol{x}_r)$$

wobei $\alpha \neq 0$ eine Normierungskonstante ist.

2. Sei die Matrix $A \in \mathbb{C}^{n \times n}$ zerlegt in ihre Jordan kanonische Form $A = XJX^{-1}$, wobei die erste Spalte x_1 von $X = (x_1, \dots, x_n)$ ein Eigenvektor von A ist, der dem betragsmäßig streng größten einfachen Eigenwert λ_1 entspricht, d.h. das erste Jordan Block von J ist die 1×1 Matrix mit dem Werte λ_1 . Der Anfangsvektor für eine Vektoriteration z_0 läßt sich in der Form $z_0 = \rho_1 x_1 + \dots + \rho_n x_n$ schreiben, wobei $\rho_1 \neq 0$. Sei die Vektoriteration gegeben durch

$$m{t}_i = Am{z}_{i-1}, \quad m{z}_i = m{t}_i/ au_{j_i}^{(i)}, \quad \mu_i = au_{j_{i-1}}^{(i)},$$

wobei das Index j_i so definiert sei:

$$t_i = (\tau_1^{(i)}, \dots, \tau_n^{(i)}), \quad |\tau_{j_i}^{(i)}| = \max_s |\tau_s^{(i)}|.$$

Zeigen Sie,

$$\lim_{i\to\infty}\mu_i\to\lambda_1$$

und $\exists \{\phi_i\}$ mit $|\phi_i| = ||\boldsymbol{x}_1||_{\infty}$ wobei

$$\lim_{i\to\infty}\phi_i\boldsymbol{z}_i=\boldsymbol{x}_1.$$

3. Für eine Matrix $A \in \mathbb{C}^{n \times n}$ sei $\lambda \in \mathbb{C}$ ein Eigenwert mit dem Eigenvektor $\boldsymbol{x} \in \mathbb{C}^n$, $A\boldsymbol{x} = \lambda \boldsymbol{x}$. Zeigen Sie, $\exists \boldsymbol{y} \in \mathbb{C}^n$, wobei $A^*\boldsymbol{y} = \lambda^*\boldsymbol{y}$ gilt. Falls A normal ist und λ ein einfacher Eigenwert für A ist, zeigen Sie, \boldsymbol{x} und \boldsymbol{y} sind parallel.

1