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Setup

T ’nice’ triangulated category, for example

Db(A) := Db(A−mod), A fin. dim. k-algebra with gl.dimA <∞ or
Db(X) := Db(coh X), X smooth projective variety / k;

More precisely, today we assume that T is

k-linear (where k is an algebraically closed field);
Hom-finite;
with Serre functor S : T → T , i.e. S autoequivalence and

HomT (A,B) ∼= HomT (B, SA)∗

are binatural isomorphisms). For example
If T = Db(A) (gl.dimA <∞), then S ∼= A∗ ⊗L

A − (Nakayama functor)
If T = Db(X) (X smooth proj), then S ∼= ωX ⊗L

X −[dimX]

Aim

Study d-spherelike objects X ∈ T , i.e.

End∗T (X) :=
⊕
i∈Z

HomT (X,X[i]) ∼= k ⊕ k[−d]

Motivation 1: Geometry/Symmetry/Autoequivalences

X d-spherical (i.e. X d-spherelike and additionally d-CY)

;

T algebraic

=⇒ Twist-functor TX : T ∼−→ T is equivalence (Seidel & Thomas)
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Motivation: Why study spherelike objects?

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: ∆-embeddings need not preserve CY-property!

Motivating example: π∗ : Db(X) ↪→ Db(Y ), with π : Y → X blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of End∗T (X) measures complexity of X.

Dimension = 1:
exceptional objects, extensively studied in geometry and repr. theory.
Often: building blocks for T , eg. full exceptional collections bases for T .

Dimension = 2: spherelike objects – would like to develop general theory.
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