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T 'nice’ triangulated category, for example
o D’(A) := D’(A —mod), A fin. dim. k-algebra with gl.dimA < oo or
e D’(X) := D’(coh X), X smooth projective variety / k;
More precisely, today we assume that 7 is
@ k-linear (where k is an algebraically closed field);
@ Hom-finite;
@ with Serre functor S: 7 — 7, i.e. S autoequivalence and

Homy (A, B) 2 Homy(B,SA)*

are binatural isomorphisms). For example
o If T =DA) (gl.dimA < ), then S = A* ®@; — (Nakayama functor)
o If T =D"X) (X smooth proj), then S = wy ®% —[dim X]
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Abstractly: k-dimension of End’-(X) measures complexity of X.

Dimension = 1:
exceptional objects, extensively studied in geometry and repr. theory.
Often: building blocks for T, eg. full exceptional collections bases for T .

Dimension = 2: spherelike objects — would like to develop general theory.
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