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Setup and Motivation

Setup (k algebraically closed field)

T essentially small, k-linear, Hom-finite, ∆-category, with Serre functor S.

e.g. Db(X), X smooth projective variety / k;

Db(A), A fd. k-algebra with gl.dimA <∞.

Aim

Develop a theory of d-spherelike objects X ∈ T , i.e.

End∗T (X) :=
⊕
i∈Z

HomT (X,X[i]) ∼= k ⊕ k[−d]

Motivation 1: Geometry/Symmetry/Autoequivalences

X d-spherical (i.e. X d-spherelike and additionally d-CY) and T ‘nice’

=⇒ Twist-functor TX : T ∼−→ T is equivalence (Seidel & Thomas)
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Motivation: Why study spherelike objects?

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: ∆-embeddings need not preserve CY-property!

Motivating example: π∗ : Db(X) ↪→ Db(Y ), with π : Y → X blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of End∗T (X) measures complexity of X.

Dimension = 1:
exceptional objects, extensively studied in geometry and repr. theory.
Often: building blocks for T , eg. full exceptional collections bases for T .

Dimension = 2: spherelike objects – would like to develop general theory.
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Motivation: examples

Representation theory:

3

1 2

[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =

1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.
π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX 7−→ π∗OX = OY

2-spherical proper 2-spherelike

Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Motivation: examples

Representation theory:

3

1 2 1 2
[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =
1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.
π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX 7−→ π∗OX = OY

2-spherical proper 2-spherelike

Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Motivation: examples

Representation theory:

3

1 2 1 2
[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =
1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.

π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX 7−→ π∗OX = OY

2-spherical proper 2-spherelike

Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Motivation: examples

Representation theory:

3

1 2 1 2
[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =
1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.
π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX 7−→ π∗OX = OY

2-spherical proper 2-spherelike

Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Motivation: examples

Representation theory:

3

1 2 1 2
[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =
1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.
π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX

7−→ π∗OX = OY

2-spherical

proper 2-spherelike

Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Motivation: examples

Representation theory:

3

1 2 1 2
[ba]

c

S1 is 2-spherical

I

a b

c

I(S1) =
1
3

is proper 2-spherelike

Geometry:

X K3-surface over C, e.g. Fermat quartic V (X4 + Y 4 +Z4 +W 4) ⊂ P3.
π : Y → X blow-up in points, then

π∗ : Db(X) ↪−→ Db(Y ) embedding.

OX 7−→ π∗OX = OY

2-spherical proper 2-spherelike
Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI 4



Spherical subcategories – the construction

Input: X ∈ T d-spherelike

, i.e.
⊕

i∈Z HomT (X,X[i]) ∼= k ⊕ k[−d].

Yields non-zero map X
ϕ 6=0−−→ S(X)[−d] ( ϕ isom. ⇔ X spherical).

Theorem

TX :=⊥ cone(ϕ) := {T ∈ T | HomT (T, cone(ϕ)[i]) = 0 ∀ i}

is the unique maximal ∆-subcategory of T satisfying,

X is d-spherical in TX .

Therefore, call TX spherical subcategory.

Remark

In general, TX much bigger than 〈X〉T – triangulated subcategory
generated by X.
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Spherical subcategories: examples

Representation theory:

3

1 2 = T

[ba]

c

I

a b

c

X :=
1
3

2-spherelike

Geometry:

X K3-surface and π : Y → X blow-up in points

⇒ π∗ : Db(X) ↪−→ Db(Y ) embedding and π∗OX = OY 2-spherelike.

Can show Db(Y )OY
∼= Db(X)
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Posets of spherical subcategories

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following posets with partial order induced by inclusion ⊆:

Sp(T ) := {TX | X spherelike (and indecomposable) }
Spd(T ) := {TX | X is d− spherelike}

Triangle equivalences induce poset isomorphisms.

Taking the quotient w.r.t Aut(T )-action yields further invariants:

Sp(T ) := Sp(T )/Aut(T ) and Spd(T ) := Spd(T )/Aut(T )

Remark

Derive numerical invariants, e.g. height, cardinality & width of these
posets.
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Basic examples of spherical posets

Example

T d-CY, i.e. S ∼= [d]

, then

Sp(T ) = Spd(T ) = Sp(T ) = Spd(T ) =

{
{T } if T has a spherelike obj.

∅ else.

Example

Consider T such that for every M ∈ T there is an s ∈ Z with M [s] ∼= M .

Then Sp(T ) = ∅.

For example, this holds for all representation-finite T (eg ‘classical’
cluster categories) and all T = Dsg(R), where R is a hypersurface
singularity.

Example

C smooth projective curve over k, then Sp1(Db(C)) = {Db(C)}.
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Hereditary examples

Example

Q acyclic connected quiver, T = Db(kQ).

Then, Sp(T ) equals

∅ Q Dynkin.

T

mmmmmmmmmmmmmmmm

{{{{{{{{

������

111111

DDDDDDDD

QQQQQQQQQQQQQQQQ

TX1 · · · TXr1
TY1 · · · TYr2

TZ1 · · · TZr3

Q Euclidean.

∅ Q wild Kronecker.

Remark

if Q has full Euclidean subquiver ⇒ Sp(T ) 6= ∅.
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Derived discrete examples

• • · · · • •

• • · · · • • · · · • •

m ≥ 0 arrows r > 0 relations

cycle of n > 0 arrows

Λ(r, n,m) =

T = Db(Λ(r, n,m)). Then Sp(T ) equals:

{T } if r = 1, m = 0, n ≤ 2;

T
{{ HH

TY1 · · · TYn−r

if r = 1, m = 0, n > 2;

T
zz JJ

TX1 · · · TXm+r

if r = n− 1, m+ r > 1;

{TX1 , . . . TXm+r , TY1 , . . . TYn−r} else.
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Derived discrete examples

Sp(T ) =



{T } if r = 1, m = 0, n ≤ 2;

T
{{ HH

TY1 · · · TYn−r

if r = 1, m = 0, n > 2;

T
zz JJ

TX1 · · · TXm+r

if r = n− 1, m+ r > 1;

{TX1 , . . . TXm+r , TY1 , . . . TYn−r} else.

Remark

|Spd(T ) |=


m+ r if d = 1− r
n− r if d = 1 + r

0 otherwise.

⇒ the parameters r, n and m are determined by {|Spd(T ) |}d∈Z.

In other words, this sequence is a complete derived invariant for
Vossieck’s discrete derived algebras Λ(r, n,m).
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Remark

Sp(T ) =


{T } if r = 1, m = 0, n ≤ 2;

T > T Y1
if r = 1, m = 0, n > 2;

T > T X1
if r = n− 1, m+ r > 1;

{T X1 , T Y1} else.
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Derived discrete examples

Remark

Sp(T ) =


{T } if r = 1, m = 0, n ≤ 2;

T > T Y1
if r = 1, m = 0, n > 2;

T > T X1
if r = n− 1, m+ r > 1;

{T X1 , T Y1} else.

This has the following consequence:

A fd. algebra, T = Db(A) , then

| Sp(T ) |> 2 ⇒ T is not Vossieck-discrete.

heightSp(T ) > 2 ⇒ T is not Vossieck-discrete.

heightSp(T ) > 2 ⇒ T is not Vossieck-discrete.
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Posets of arbitrary height

Auslander algebra of k[x]/(xn):

k k[x]/x2 k[x]/x3 · · · k[x]/xn−1 k[x]/xn

i

p

i

p

i

p

i

p

i

p

+ Relations

Fact

The corresponding poset Sp(T ) has height ≥ n− 1.
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Posets of infinite cardinality and width

T = Db(P1 × P1) ∼= Db( 1
((
66 2 ⊗k 1

((
66 2 )

Fact

Sp(T ) has infinite cardinality and infinite width.
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Summary and questions

X ∈ T d-spherelike
TX ⊂ T spherical subcategory

i.e. unique maximal ∆− subcategory,
s.th.X ∈ TX is d− spherical.

T ∆-category
invariants

(arising from) posets of spherical subcats

Questions

Are there relations to other invariants of triangulated categories?

When are height, cardinality or width finite? What are good bounds?
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Thank you !
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