Spherical subcategories and new invariants for triangulated categories

Martin Kalck

University of Edinburgh, Scotland, UK

ICRA XVI, Sanya, China August 26, 2014

This is joint work with A. Hochenegger & D. Ploog:

Spherical subcategories in algebraic geometry, arXiv:1208.4046. Spherical subcategories in representation theory, in preparation.

Setup (k algebraically closed field)

 $\mathcal T$ essentially small, k-linear, Hom-finite, $\Delta\text{-category},$ with Serre functor $\mathbb S.$

Setup (k algebraically closed field)

 ${\mathcal T}$ essentially small, k-linear, Hom-finite, $\Delta\text{-category},$ with Serre functor ${\mathbb S}.$

e.g. $\mathcal{D}^b(X)$, X smooth projective variety / k;

Setup (k algebraically closed field)

 ${\mathcal T}$ essentially small, k-linear, Hom-finite, $\Delta\text{-category},$ with Serre functor ${\mathbb S}.$

e.g. $\mathcal{D}^b(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Setup (k algebraically closed field)

 \mathcal{T} essentially small, k-linear, Hom-finite, Δ -category, with Serre functor \mathbb{S} .

e.g. $\mathcal{D}^b(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

Setup (k algebraically closed field)

 \mathcal{T} essentially small, k-linear, Hom-finite, Δ -category, with Serre functor \mathbb{S} .

e.g. $\mathcal{D}^{b}(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i])$$

Setup (k algebraically closed field)

 \mathcal{T} essentially small, k-linear, Hom-finite, Δ -category, with Serre functor \mathbb{S} .

e.g. $\mathcal{D}^{b}(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$$

Setup (k algebraically closed field)

 \mathcal{T} essentially small, k-linear, Hom-finite, Δ -category, with Serre functor \mathbb{S} .

e.g. $\mathcal{D}^{b}(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$$

WHY ??

Setup (k algebraically closed field)

 \mathcal{T} essentially small, k-linear, Hom-finite, Δ -category, with Serre functor \mathbb{S} .

e.g. $\mathcal{D}^b(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$$

Motivation 1: Geometry/Symmetry/Autoequivalences

X d-spherical

Setup (k algebraically closed field)

 ${\mathcal T}$ essentially small, k-linear, Hom-finite, $\Delta\text{-category},$ with Serre functor ${\mathbb S}.$

e.g. $\mathcal{D}^b(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$$

Motivation 1: Geometry/Symmetry/Autoequivalences

X d-spherical (i.e. X d-spherelike and additionally d-CY)

Setup (k algebraically closed field)

 ${\mathcal T}$ essentially small, k-linear, Hom-finite, $\Delta\text{-category},$ with Serre functor ${\mathbb S}.$

e.g. $\mathcal{D}^{b}(X)$, X smooth projective variety / k;

 $\mathcal{D}^b(A)$, A fd. k-algebra with gl.dim $A < \infty$.

Aim

Develop a theory of d-spherelike objects $X \in \mathcal{T}$, i.e.

$$\operatorname{End}_{\mathcal{T}}^{*}(X) := \bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$$

Motivation 1: Geometry/Symmetry/Autoequivalences

X d-spherical (i.e. X d-spherelike and additionally d-CY) and \mathcal{T} 'nice'

 $\implies \textbf{Twist-functor} \quad T_X : \mathcal{T} \xrightarrow{\sim} \mathcal{T} \quad is \textbf{ equivalence (Seidel & Thomas)}$ Martin Kalck (Edinburgh) Spherical subcategories ICRA XVI

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** CY-property!

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry. **Problem:** Δ -embeddings need not preserve CY-property! Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry. **Problem:** Δ -embeddings need not preserve CY-property! Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up. However, images of d-spherical objects yield d-spherelike objects.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Dimension = 1: exceptional objects,

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Dimension = 1: exceptional objects, extensively studied in geometry and repr. theory.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of *d*-spherical objects yield *d*-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Dimension = 1: exceptional objects, extensively studied in geometry and repr. theory. Often: building blocks for T, eg. full exceptional collections bases for T.

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Dimension = 1:

exceptional objects, **extensively studied** in geometry and repr. theory. Often: **building blocks** for T, eg. full exceptional collections **bases** for T.

Dimension = 2: spherelike objects

Motivation 1: Geometry/Symmetry/Autoequivalences

Twist functors: important in geometry & predicted by Mirror Symmetry.

Problem: Δ -embeddings need **not preserve** *CY*-property!

Motivating example: $\pi^* : \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y)$, with $\pi : Y \to X$ blow-up.

However, images of d-spherical objects yield d-spherelike objects.

Motivation 2: Complexity

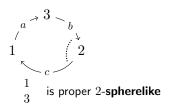
Abstractly: k-dimension of $\operatorname{End}_{\mathcal{T}}^*(X)$ measures complexity of X.

Dimension = 1:

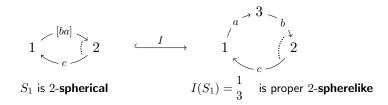
exceptional objects, **extensively studied** in geometry and repr. theory. Often: **building blocks** for T, eg. full exceptional collections **bases** for T.

Dimension = 2: spherelike objects – would like to develop general theory.

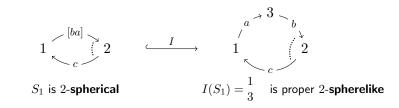
Representation theory:



Representation theory:



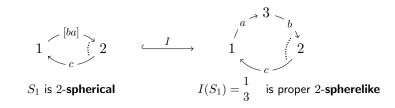
Representation theory:



Geometry:

X K3-surface over \mathbb{C} , e.g. Fermat quartic $V(X^4 + Y^4 + Z^4 + W^4) \subset \mathbb{P}^3$.

Representation theory:

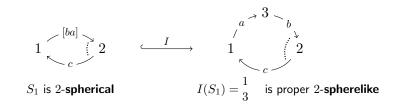


Geometry:

X K3-surface over \mathbb{C} , e.g. Fermat quartic $V(X^4 + Y^4 + Z^4 + W^4) \subset \mathbb{P}^3$. $\pi \colon Y \to X$ blow-up in points, then

$$\pi^* \colon \mathcal{D}^b(X) \longrightarrow \mathcal{D}^b(Y)$$
 embedding.

Representation theory:



Geometry:

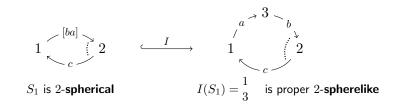
X K3-surface over \mathbb{C} , e.g. Fermat quartic $V(X^4 + Y^4 + Z^4 + W^4) \subset \mathbb{P}^3$. $\pi: Y \to X$ blow-up in points, then

$$\pi^* \colon \mathcal{D}^b(X) \longrightarrow \mathcal{D}^b(Y) \text{ embedding.}$$

$$\mathcal{O}_X$$
 2-spherical

Martin Kalck (Edinburgh)

Representation theory:



Geometry:

X K3-surface over \mathbb{C} , e.g. Fermat quartic $V(X^4 + Y^4 + Z^4 + W^4) \subset \mathbb{P}^3$. $\pi \colon Y \to X$ blow-up in points, then

$$\pi^* \colon \mathcal{D}^b(X) \longleftrightarrow \mathcal{D}^b(Y) \text{ embedding.}$$
$$\mathcal{O}_X \longmapsto \pi^* \mathcal{O}_X = \mathcal{O}_Y$$
2-spherical proper 2-spherelike

Martin Kalck (Edinburgh)

Input: $X \in \mathcal{T}$ *d*-spherelike

Input: $X \in \mathcal{T}$ *d*-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$.

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d].$ Yields non-zero map $X \xrightarrow{\varphi \neq 0} S(X)[-d]$

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d].$ Yields non-zero map $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$.

Yields **non-zero map** $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

 $\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi)$

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d].$

Yields **non-zero map** $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

$$\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi) := \{ T \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(T, \operatorname{cone}(\varphi)[i]) = 0 \quad \forall i \}$$

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d].$

Yields **non-zero map** $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

$$\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi) := \{T \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(T, \operatorname{cone}(\varphi)[i]) = 0 \quad \forall i\}$$

is the unique maximal Δ -subcategory of T satisfying,

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$. Yields non-zero map $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

$$\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi) := \{ T \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(T, \operatorname{cone}(\varphi)[i]) = 0 \quad \forall i \}$$

is the unique maximal Δ -subcategory of T satisfying,

X is d-spherical in \mathcal{T}_X .

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$. Yields non-zero map $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

$$\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi) := \{ T \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(T, \operatorname{cone}(\varphi)[i]) = 0 \quad \forall i \}$$

is the unique maximal Δ -subcategory of T satisfying,

X is d-spherical in \mathcal{T}_X .

Therefore, call T_X spherical subcategory.

Spherical subcategories - the construction

Input: $X \in \mathcal{T}$ d-spherelike, i.e. $\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(X, X[i]) \cong k \oplus k[-d]$. Yields non-zero map $X \xrightarrow{\varphi \neq 0} S(X)[-d]$ (φ isom. $\Leftrightarrow X$ spherical).

Theorem

$$\mathcal{T}_X :=^{\perp} \operatorname{cone}(\varphi) := \{ T \in \mathcal{T} \mid \operatorname{Hom}_{\mathcal{T}}(T, \operatorname{cone}(\varphi)[i]) = 0 \quad \forall i \}$$

is the unique maximal Δ -subcategory of T satisfying,

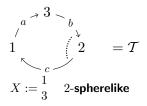
X is d-spherical in \mathcal{T}_X .

Therefore, call T_X spherical subcategory.

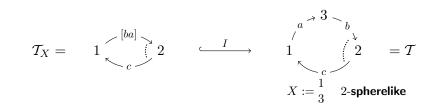
Remark

In general, \mathcal{T}_X much bigger than $\langle X \rangle_{\mathcal{T}}$ – triangulated subcategory generated by X.

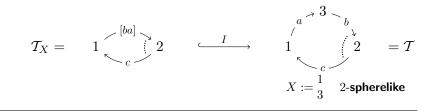
Representation theory:



Representation theory:



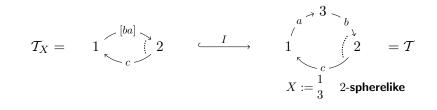
Representation theory:



Geometry:

X K3-surface and $\pi \colon Y \to X$ blow-up in points

Representation theory:

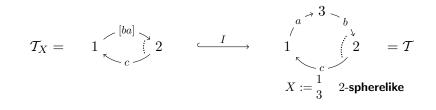


Geometry:

X K3-surface and $\pi: Y \to X$ blow-up in points

 $\Rightarrow \qquad \pi^* \colon \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y) \text{ embedding and } \pi^* \mathcal{O}_X = \mathcal{O}_Y \text{ 2-spherelike.}$

Representation theory:



Geometry:

X K3-surface and $\pi \colon Y \to X$ blow-up in points

 $\Rightarrow \qquad \pi^* \colon \mathcal{D}^b(X) \hookrightarrow \mathcal{D}^b(Y) \text{ embedding and } \pi^* \mathcal{O}_X = \mathcal{O}_Y \text{ 2-spherelike.}$

Can show $\mathcal{D}^b(Y)_{\mathcal{O}_Y} \cong \mathcal{D}^b(X)$

Observation

Spherical subcategories can be non-trivially contained in each other.

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

• $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

- $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$
- $Sp_d(T) := \{T_X \mid X \text{ is } d \text{spherelike}\}$

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

- $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$
- $Sp_d(T) := \{T_X \mid X \text{ is } d \text{spherelike}\}$

Triangle equivalences induce poset isomorphisms.

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

- $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$
- $Sp_d(T) := \{T_X \mid X \text{ is } d \text{spherelike}\}$

Triangle equivalences induce poset isomorphisms.

Taking the quotient w.r.t $Aut(\mathcal{T})$ -action yields further invariants:

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

- $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$
- $Sp_d(T) := \{T_X \mid X \text{ is } d \text{spherelike}\}$

Triangle equivalences induce poset isomorphisms.

Taking the quotient w.r.t $Aut(\mathcal{T})$ -action yields further invariants:

 $\overline{\mathcal{S}p}(\mathcal{T}) := \mathcal{S}p(\mathcal{T})/\operatorname{Aut}(\mathcal{T}) \text{ and } \overline{\mathcal{S}p}_d(\mathcal{T}) := \mathcal{S}p_d(\mathcal{T})/\operatorname{Aut}(\mathcal{T})$

Observation

Spherical subcategories can be non-trivially contained in each other.

Definition

Consider the following **posets** with **partial order** induced by **inclusion** \subseteq :

- $Sp(T) := \{T_X \mid X \text{ spherelike (and indecomposable)} \}$
- $Sp_d(T) := \{T_X \mid X \text{ is } d \text{spherelike}\}$

Triangle equivalences induce poset isomorphisms.

Taking the quotient w.r.t $Aut(\mathcal{T})$ -action yields further invariants:

$$\overline{\mathcal{S}p}(\mathcal{T}) := \mathcal{S}p(\mathcal{T})/\operatorname{Aut}(\mathcal{T}) \text{ and } \overline{\mathcal{S}p}_d(\mathcal{T}) := \mathcal{S}p_d(\mathcal{T})/\operatorname{Aut}(\mathcal{T})$$

Remark

Derive **numerical invariants**, e.g. height, cardinality & width of these posets.

Martin Kalck (Edinburgh)

Example

 $\mathcal{T} d\text{-}\mathbf{CY}$, i.e. $\mathbb{S} \cong [d]$

Example

$$\begin{array}{l} \mathcal{T} \ d\text{-}\mathbf{CY}, \ \text{i.e.} \ \ \mathbb{S}\cong [d], \ \text{then} \\ \mathcal{S}p(\mathcal{T}) = \mathcal{S}p_d(\mathcal{T}) = \overline{\mathcal{S}p}(\mathcal{T}) = \overline{\mathcal{S}p}_d(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if} \ \ \mathcal{T} \ \text{has a spherelike obj.} \\ \\ \emptyset & \text{else.} \end{cases} \end{cases}$$

Example

$$\begin{array}{l} \mathcal{T} \ d\text{-}\mathbf{CY}, \ \text{i.e.} \ \ \mathbb{S}\cong [d], \ \text{then} \\ \mathcal{S}p(\mathcal{T})=\mathcal{S}p_d(\mathcal{T})=\overline{\mathcal{S}p}(\mathcal{T})=\overline{\mathcal{S}p}_d(\mathcal{T})=\begin{cases} \{\mathcal{T}\} & \text{if} \ \mathcal{T} \ \text{has a spherelike obj.} \\ \emptyset & \text{else.} \end{cases} \end{array}$$

Example

Consider \mathcal{T} such that for every $M \in \mathcal{T}$ there is an $s \in \mathbb{Z}$ with $M[s] \cong M$.

Example

$$\begin{array}{l} \mathcal{T} \ d\text{-}\mathbf{CY}, \ \text{i.e.} \ \ \mathbb{S}\cong [d], \ \text{then} \\ \mathcal{S}p(\mathcal{T})=\mathcal{S}p_d(\mathcal{T})=\overline{\mathcal{S}p}(\mathcal{T})=\overline{\mathcal{S}p}_d(\mathcal{T})=\begin{cases} \{\mathcal{T}\} & \text{if} \ \mathcal{T} \ \text{has a spherelike obj.} \\ \emptyset & \text{else.} \end{cases} \end{array}$$

Example

Consider \mathcal{T} such that for every $M \in \mathcal{T}$ there is an $s \in \mathbb{Z}$ with $M[s] \cong M$. Then $Sp(\mathcal{T}) = \emptyset$.

Example

$$\begin{array}{l} \mathcal{T} \ d\text{-}\mathbf{CY}, \ \text{i.e.} \ \ \mathbb{S}\cong [d], \ \text{then} \\ \mathcal{S}p(\mathcal{T})=\mathcal{S}p_d(\mathcal{T})=\overline{\mathcal{S}p}(\mathcal{T})=\overline{\mathcal{S}p}_d(\mathcal{T})=\begin{cases} \{\mathcal{T}\} & \text{if} \ \mathcal{T} \ \text{has a spherelike obj.} \\ \emptyset & \text{else.} \end{cases} \end{array}$$

Example

Consider \mathcal{T} such that for every $M \in \mathcal{T}$ there is an $s \in \mathbb{Z}$ with $M[s] \cong M$.

Then $\mathcal{S}p(\mathcal{T}) = \emptyset$.

For example, this holds for all **representation-finite** \mathcal{T} (eg 'classical' cluster categories) and all $\mathcal{T} = \mathcal{D}_{sg}(R)$, where R is a hypersurface singularity.

Example

$$\begin{array}{l} \mathcal{T} \ d\text{-}\mathbf{CY}, \ \text{i.e.} \ \ \mathbb{S}\cong [d], \ \text{then} \\ \mathcal{S}p(\mathcal{T})=\mathcal{S}p_d(\mathcal{T})=\overline{\mathcal{S}p}(\mathcal{T})=\overline{\mathcal{S}p}_d(\mathcal{T})=\begin{cases} \{\mathcal{T}\} & \text{if} \ \mathcal{T} \ \text{has a spherelike obj.} \\ \emptyset & \text{else.} \end{cases} \end{array}$$

Example

Consider \mathcal{T} such that for every $M \in \mathcal{T}$ there is an $s \in \mathbb{Z}$ with $M[s] \cong M$.

Then $\mathcal{S}p(\mathcal{T}) = \emptyset$.

For example, this holds for all **representation-finite** \mathcal{T} (eg 'classical' cluster categories) and all $\mathcal{T} = \mathcal{D}_{sg}(R)$, where R is a hypersurface singularity.

Example

C smooth projective **curve** over k, then $Sp_1(\mathcal{D}^b(C)) = \{\mathcal{D}^b(C)\}.$

Example

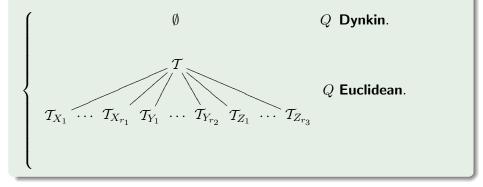
Q acyclic connected quiver, $\mathcal{T} = \mathcal{D}^b(kQ)$.

Example

Q acyclic connected quiver, $\mathcal{T}=\mathcal{D}^b(kQ).$ Then, $\mathcal{S}p(\mathcal{T})$ equals

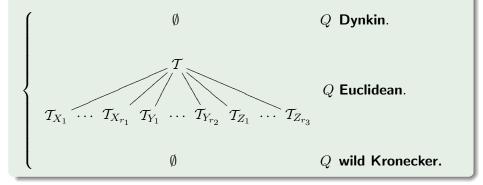
Example

Q acyclic connected quiver, $\mathcal{T} = \mathcal{D}^b(kQ)$. Then, $\mathcal{S}p(\mathcal{T})$ equals



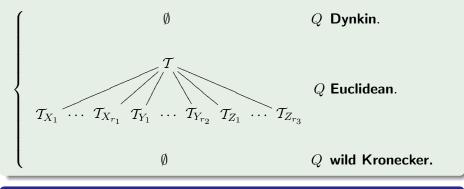
Example

Q acyclic connected quiver, $\mathcal{T} = \mathcal{D}^b(kQ)$. Then, $\mathcal{S}p(\mathcal{T})$ equals



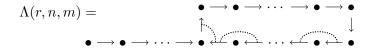
Example

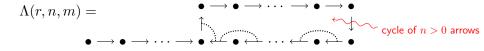
Q acyclic connected quiver, $\mathcal{T} = \mathcal{D}^b(kQ)$. Then, $\mathcal{S}p(\mathcal{T})$ equals

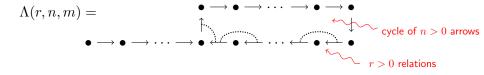


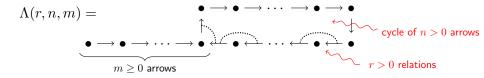
Remark

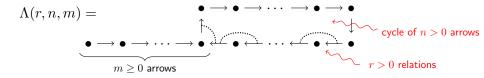
if Q has full Euclidean subquiver $\Rightarrow Sp(T) \neq \emptyset$.

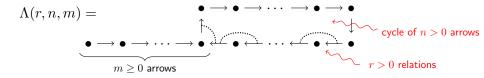


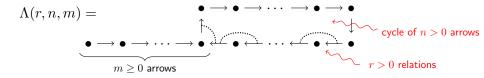


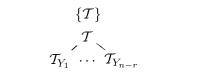






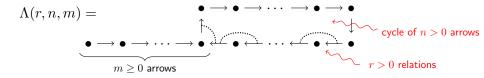


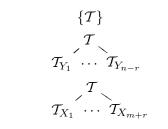




if
$$r = 1, m = 0, n \le 2;$$

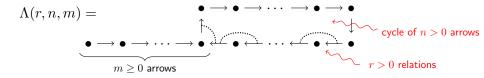
if $r = 1, m = 0, n > 2;$

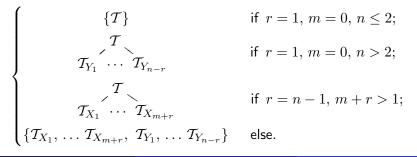




if
$$r = 1, m = 0, n \le 2;$$

if $r = 1, m = 0, n > 2;$
if $r = n - 1, m + r > 1;$





$$Sp(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, m = 0, n \leq 2; \\ \mathcal{T} & \text{if } r = 1, m = 0, n > 2; \\ \mathcal{T}_{Y_1} \cdots \mathcal{T}_{Y_{n-r}} & \text{if } r = 1, m = 0, n > 2; \\ \mathcal{T}_{X_1} \cdots \mathcal{T}_{X_{m+r}} & \text{if } r = n-1, m+r > 1; \\ \{\mathcal{T}_{X_1}, \dots, \mathcal{T}_{X_{m+r}}, \mathcal{T}_{Y_1}, \dots, \mathcal{T}_{Y_{n-r}}\} & \text{else.} \end{cases}$$

$$Remark$$

$$|Sp_d(\mathcal{T})| = \begin{cases} m+r \text{ if } d = 1-r \\ n-r \text{ if } d = 1+r \\ 0 & \text{otherwise.} \end{cases}$$

$$Sp(T) = \begin{cases} \{T\} & \text{if } r = 1, m = 0, n \leq 2; \\ T & \text{if } r = 1, m = 0, n > 2; \\ T_{Y_1} \cdots T_{Y_{n-r}} & \text{if } r = 1, m = 0, n > 2; \\ T_{X_1} \cdots T_{X_{m+r}} & \text{if } r = n-1, m+r > 1; \\ \{T_{X_1}, \dots, T_{X_{m+r}}, T_{Y_1}, \dots, T_{Y_{n-r}}\} & \text{else.} \end{cases}$$
Remark
$$|Sp_d(T)| = \begin{cases} m+r & \text{if } d = 1-r \\ n-r & \text{if } d = 1+r \\ 0 & \text{otherwise.} \end{cases}$$

$$\Rightarrow \text{ the parameters } r, n \text{ and } m \text{ are determined by } \{|Sp_d(T)|\}_{d \in \mathbb{Z}}.\end{cases}$$

In other words, this sequence is a complete derived invariant for Vossieck's discrete derived algebras $\Lambda(r,n,m).$

Martin Kalck (Edinburgh)

Spherical subcategories

$$\mathcal{S}p(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \mathcal{T} & \text{if } r = 1, \, m = 0, \, n > 2; \\ \mathcal{T}_{Y_1} & \cdots & \mathcal{T}_{Y_{n-r}} & \text{if } r = n, \, m = 0, \, n > 2; \\ \mathcal{T}_{X_1} & \cdots & \mathcal{T}_{X_{m+r}} & \text{if } r = n-1, \, m+r > 1; \\ \{\mathcal{T}_{X_1}, \, \dots \, \mathcal{T}_{X_{m+r}}, \, \mathcal{T}_{Y_1}, \, \dots \, \mathcal{T}_{Y_{n-r}}\} & \text{else.} \end{cases}$$

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \end{cases}$$

$$\mathcal{S}p(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \mathcal{T} & \text{if } r = 1, \, m = 0, \, n > 2; \\ \mathcal{T}_{Y_1} & \cdots & \mathcal{T}_{Y_{n-r}} & \text{if } r = n, \, m = 0, \, n > 2; \\ \mathcal{T}_{X_1} & \cdots & \mathcal{T}_{X_{m+r}} & \text{if } r = n-1, \, m+r > 1; \\ \{\mathcal{T}_{X_1}, \, \dots \, \mathcal{T}_{X_{m+r}}, \, \mathcal{T}_{Y_1}, \, \dots \, \mathcal{T}_{Y_{n-r}}\} & \text{else.} \end{cases}$$

$$\overline{\mathcal{S}p}(\mathcal{T}) =$$

$$\begin{aligned} \{\mathcal{T}\}\\ \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \end{aligned}$$

if
$$r = 1, m = 0, n \le 2$$
;
if $r = 1, m = 0, n > 2$;

$$\mathcal{S}p(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \mathcal{T} & \text{if } r = 1, \, m = 0, \, n > 2; \\ \mathcal{T}_{Y_1} & \cdots & \mathcal{T}_{Y_{n-r}} & \text{if } r = n, \, m = 0, \, n > 2; \\ \mathcal{T}_{X_1} & \cdots & \mathcal{T}_{X_{m+r}} & \text{if } r = n-1, \, m+r > 1; \\ \{\mathcal{T}_{X_1}, \, \dots \, \mathcal{T}_{X_{m+r}}, \, \mathcal{T}_{Y_1}, \, \dots \, \mathcal{T}_{Y_{n-r}}\} & \text{else.} \end{cases}$$

$$\overline{\mathcal{S}p}(\mathcal{T}) =$$

$$\{\mathcal{T}\}$$

 $\mathcal{T} > \overline{\mathcal{T}}_{Y_1}$
 $\mathcal{T} > \overline{\mathcal{T}}_{X_1}$

if
$$r = 1, m = 0, n \le 2$$
;
if $r = 1, m = 0, n > 2$;
if $r = n - 1, m + r > 1$;

$$\mathcal{S}p(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \mathcal{T} & \text{if } r = 1, \, m = 0, \, n > 2; \\ \mathcal{T}_{Y_1} & \cdots & \mathcal{T}_{Y_{n-r}} & \text{if } r = n, \, m = 0, \, n > 2; \\ \mathcal{T}_{X_1} & \cdots & \mathcal{T}_{X_{m+r}} & \text{if } r = n-1, \, m+r > 1; \\ \{\mathcal{T}_{X_1}, \, \dots \, \mathcal{T}_{X_{m+r}}, \, \mathcal{T}_{Y_1}, \, \dots \, \mathcal{T}_{Y_{n-r}}\} & \text{else.} \end{cases}$$

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} \{\mathcal{T}\} & \text{if } r = 1, \, m = 0, \, n \leq 2; \\ \mathcal{T} > \overline{\mathcal{T}}_{Y_1} & \text{if } r = 1, \, m = 0, \, n > 2; \\ \mathcal{T} > \overline{\mathcal{T}}_{X_1} & \text{if } r = n - 1, \, m + r > 1; \\ \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} & \text{else.} \end{cases}$$

Remark

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} & \{\mathcal{T}\} \\ & \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \\ & \mathcal{T} > \overline{\mathcal{T}}_{X_1} \\ & \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} \end{cases}$$

if
$$r = 1, m = 0, n \le 2$$
;
if $r = 1, m = 0, n > 2$;
if $r = n - 1, m + r > 1$;
else.

This has the following consequence:

Remark

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} & \{\mathcal{T}\} \\ & \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \\ & \mathcal{T} > \overline{\mathcal{T}}_{X_1} \\ & \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} \end{cases}$$

if
$$r = 1, m = 0, n \le 2;$$

if $r = 1, m = 0, n > 2;$
if $r = n - 1, m + r > 1;$
else.

This has the following consequence: A fd. algebra, $T = D^b(A)$

Remark

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} & \{\mathcal{T}\} \\ & \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \\ & \mathcal{T} > \overline{\mathcal{T}}_{X_1} \\ & \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} \end{cases}$$

if
$$r = 1, m = 0, n \le 2;$$

if $r = 1, m = 0, n > 2;$
if $r = n - 1, m + r > 1;$
else.

This has the following consequence:

A fd. algebra, $\mathcal{T}=\mathcal{D}^b(A)$, then

• $|\overline{\mathcal{S}p}(\mathcal{T})| > 2 \implies \mathcal{T} \text{ is not Vossieck-discrete.}$

Remark

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} & \{\mathcal{T}\} \\ & \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \\ & \mathcal{T} > \overline{\mathcal{T}}_{X_1} \\ & \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} \end{cases}$$

if $r = 1, m = 0, n \le 2;$ if r = 1, m = 0, n > 2;if r = n - 1, m + r > 1;else.

This has the following consequence:

A fd. algebra, $\mathcal{T}=\mathcal{D}^b(A)$, then

- $|\overline{Sp}(\mathcal{T})| > 2 \implies \mathcal{T} \text{ is not Vossieck-discrete.}$
- height $Sp(T) > 2 \Rightarrow T$ is not Vossieck-discrete.

Remark

$$\overline{\mathcal{S}p}(\mathcal{T}) = \begin{cases} & \{\mathcal{T}\} \\ & \mathcal{T} > \overline{\mathcal{T}}_{Y_1} \\ & \mathcal{T} > \overline{\mathcal{T}}_{X_1} \\ & \{\overline{\mathcal{T}}_{X_1}, \overline{\mathcal{T}}_{Y_1}\} \end{cases}$$

if $r = 1, m = 0, n \le 2;$ if r = 1, m = 0, n > 2;if r = n - 1, m + r > 1;else.

This has the following consequence:

A fd. algebra, $\mathcal{T}=\mathcal{D}^b(A)$, then

- $|\overline{Sp}(\mathcal{T})| > 2 \qquad \Rightarrow \quad \mathcal{T} \text{ is not Vossieck-discrete.}$
- height $Sp(T) > 2 \Rightarrow T$ is not Vossieck-discrete.
- height $\overline{Sp}(\mathcal{T}) > 2 \implies \mathcal{T}$ is not Vossieck-discrete.

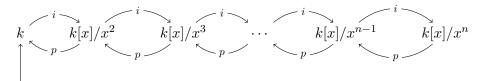
Auslander algebra of $k[x]/(x^n)$:

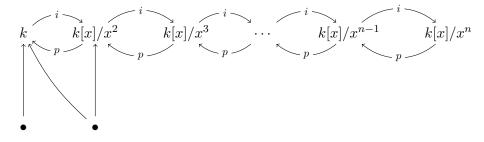
Auslander algebra of $k[x]/(x^n)$:

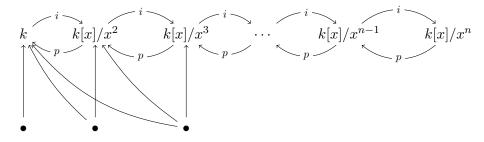


+ Relations

Auslander algebra of $k[x]/(x^n)$:











Fact

The corresponding poset $Sp(\mathcal{T})$ has height $\geq n-1$.

Martin Kalck (Edinburgh)

Spherical subcategories

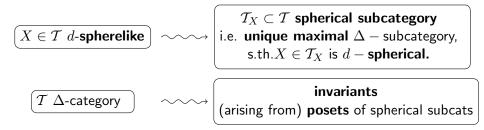
$\mathcal{T} = \mathcal{D}^b(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathcal{D}^b(1 \overset{\flat}{\longrightarrow} 2 \otimes_k 1 \overset{\flat}{\longrightarrow} 2)$

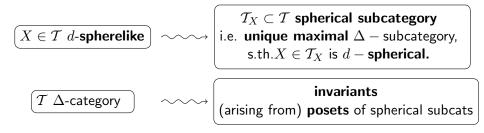
Posets of infinite cardinality and width

$$\mathcal{T} = \mathcal{D}^b(\mathbb{P}^1 \times \mathbb{P}^1) \cong \mathcal{D}^b(1 \underbrace{\longrightarrow}_{k} 2 \otimes_k 1 \underbrace{\longrightarrow}_{k} 2)$$

Fact

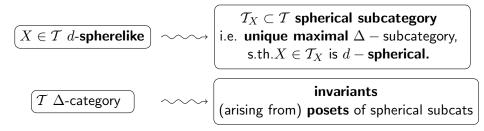
Sp(T) has infinite cardinality and infinite width.





Questions

• Are there relations to other invariants of triangulated categories?



Questions

• Are there relations to other invariants of triangulated categories?

When are height, cardinality or width finite? What are good bounds?

Thank you !