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Context
Simulations of the heart: Requires tetrahedral mesh.

Mesh quality: Very flat tetrahedra cause errors in simulation.

Oscillations: Artifacts occur on surface, in particular oscillations.

Initial setting: Triangulation is given. Coordinates of vertices, edge
information and masking of surface points.
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Introduction

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and
preservation of high mesh quality.

Graph-Laplacian minimisation: Adjusting coordinates of nodes of
surface tetrahedra, by solving

u+ ∈ argmin
u∈U

1

2
‖∆u‖2

2, subject to u ∈ Ω.

Constraints: Control effect of smoothing.

Primal-dual algorithm: Solution of resulting optimisation problem.
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1 Preliminaries

2 The optimisation problem

3 Numerical solution

4 Discussion of results
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Mesh quality: Non-degenerate tetrahedra, no very flat tetrahedra.

Quality metrics:

Skewness: Ratio of tetrahedron’s volume to its circumscribed ball’s
volume.

Maximal and minimal angle in a tetrahedron.

Ratio of maximal and minimal edge length in a tetrahedron.

Initial mesh: Assumed to have sufficiently high mesh quality.
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Notation:

The surface triangulation induces a graph G = (V ,E ) with vertices
v0 . . . vN and Edges E .
u0, . . . , uN ∈ R3 denotes position of surface nodes v0 . . . vN and
(u0, . . . , uN) = u ∈ U = R3(N+1).
The graph-Laplacian operator is defined as component-wise
matrix-multiplication with the matrix ∆̂ ∈ RN×N , given as

(
∆̂
)
i,j

:=


Deg(vi ) if i = j ,

−1 if {vi , vj} ∈ E ,

0 else,

∆u :=

∆̂u1

∆̂u2

∆̂u3

 ,

where u1, u2, u3 ∈ RN represents x,y and z coordinates of u.

Mean value and curvature: (∆u)0 = 4u0 − u1 − u2 − u3 − u4.

v0

v1 v2

v3v4

e1 = {v0, v1}

u0

u1 = (3.2, 2.56)T
u2

u3u4
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Energy reduction of graph-Laplacian

Local, vertex wise gradient descent

(1) ui ← ui − α(∆T∆u)i which reduces
1

2
|(∆u)i |2.

Aim at adapting idea of reducing Laplacian energy in global method.

(2) u+ ∈ argmin
u∈U

1

2
‖∆u‖2

2.

Issue: Solutions are concentrated points. Mesh quality is not considered.

Constraints: Consider problem (2) under constraints with feasible set Ω
guaranteeing:

Fit to data.

Maintenance of mesh quality.

Convex, vertex wise independent representation of Ω.
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Update surface points by solving

(3) u+ ∈ argmin
u∈U

1

2
‖∆u‖2

2, subject to u ∈ Ω,

for suitable feasible set Ω that incorporates the above posed properties:

Fit to data.

Maintenance of mesh quality.

Convex, vertex wise independent representation of Ω.

Pointwise constraints: Fixing radii ri for vi . Allow ui move in ball with
radius ri around original location.

v0

v1 v2

v3v4

v0

v1

v2

v3v4

v0
v1

v2

v3v4

v0
v1

v2

v3v4
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Adaptive constraints:

Incorporating topology into constraints.
Maintain high mesh quality.

Considerations:
Heights determine maximal range of movement.
Synchronous movement, further reduction of radius.
v0 contained in many tetrahedra.

hT = min{h : h height of T} for tetrahedron T

,

ri = α for 0 < α < 1/2 with ĥi = min{hT : vi ∈ T},
Ω = {u ∈ U : ‖ui − u0i‖ ≤ ri for i = 1, . . . ,N}.

Note that also interior points are considered in the construction of
constraints.
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Restrictive constraints:

Little movement allowed.

Reiteration of method: Start again with updated constraints.

More flexibility and movement.

Constraints ensure mesh quality.

Many iterations affect quality.

2-5 outer iteration.

Improves results.
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Primal-dual algorithm: Global solution via iterative method.

General saddle-point problem for linear A and G:

min
u∈Ω

G (Au) ⇐⇒ min
u∈U

G (Au) + IΩ(u)

⇐⇒ min
u∈U

max
w∈U

〈w ,Au〉 − G∗(w) + IΩ(u).

Specific saddle-point problem for A = ∆ and G = 1
2‖ · ‖

2
2

(5) min
u∈U

max
w∈U

〈w ,∆u〉 − 1

2
‖w‖2

2 + IΩ(u).

Proposition

1 The original optimisation problem (3), minu∈Ω F (u) = 1
2‖∆u‖2

2, has
a solution which however is not unique.

2 Also, the saddle-point problem (5) with feasible set Ω defined as in
(4) admits at least one solution.

3 Further, for any saddle-point (u+,w+) of (5), u+ is a solution of
the original minimisation problem (3).
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2 Also, the saddle-point problem (5) with feasible set Ω defined as in
(4) admits at least one solution.

3 Further, for any saddle-point (u+,w+) of (5), u+ is a solution of
the original minimisation problem (3).
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Specific iteration directives:

Simplicity of constraints leads to

(6)



w ← (w+σ∆ū)
(1+σ)

ū ← PΩ(u − τ∆w)

u ← 2ū − u

(u, ū)← (ū, u)

Matrix-vector multiplication.

With PΩ(u) pointwise projection.

Simple operations, vectorisation, fast execution.
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Quantitative results

Example 2: Outer iterations 2, inner iterations 200, α = 1/3.

Skewness P: Volume ratio to circumscribed ball.

Percentiles of P 1% 5% 10%
Original mesh 0.0900 0.2350 0.3348
First iteration 0.1136 0.2360 0.3195
Second iteration 0.0907 0.1999 0.2761

Determinant ratio Θ: Measures change of size and orientation.

Percentiles of Θ 1% 5%
1. Iteration 0.6486 0.7407
2. Iteration 0.5280 0.6470
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Thank you for your attention!
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