

Graph-Laplacian minimisation for surface smoothing in 3D finite element tetrahedral meshes

Richard Huber, Martin Holler and Kristian Bredies

University of Graz, Austria

Wels, May 11, 2016.

Simulations of the heart: Requires tetrahedral mesh.

Simulations of the heart: Requires tetrahedral mesh.

Mesh quality: Very flat tetrahedra cause errors in simulation.

Simulations of the heart: Requires tetrahedral mesh.

Mesh quality: Very flat tetrahedra cause errors in simulation.

Oscillations: Artifacts occur on surface, in particular oscillations.

Simulations of the heart: Requires tetrahedral mesh.

Mesh quality: Very flat tetrahedra cause errors in simulation.

Oscillations: Artifacts occur on surface, in particular oscillations.

Initial setting: Triangulation is given. Coordinates of vertices, edge information and masking of surface points.

Goal: Mesh improvement for subsequent simulations.

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and preservation of high mesh quality.

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and preservation of high mesh quality.

Graph-Laplacian minimisation: Adjusting coordinates of nodes of surface tetrahedra, by solving

$$u^+ \in \operatorname*{argmin}_{u \in U} rac{1}{2} \|\Delta u\|_2^2, \quad ext{ subject to } u \in \Omega$$

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and preservation of high mesh quality.

Graph-Laplacian minimisation: Adjusting coordinates of nodes of surface tetrahedra, by solving

$$u^+ \in \operatorname*{argmin}_{u \in U} rac{1}{2} \|\Delta u\|_2^2, \quad ext{ subject to } u \in \Omega.$$

Constraints: Control effect of smoothing.

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and preservation of high mesh quality.

Graph-Laplacian minimisation: Adjusting coordinates of nodes of surface tetrahedra, by solving

$$u^+ \in \operatorname*{argmin}_{u \in U} rac{1}{2} \|\Delta u\|_2^2, \quad ext{ subject to } u \in \Omega.$$

Constraints: Control effect of smoothing.

Primal-dual algorithm: Solution of resulting optimisation problem.

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

1 Preliminaries

2 The optimisation problem

- 3 Numerical solution
- 4 Discussion of results

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Quality metrics:

Quality metrics:

Skewness: Ratio of tetrahedron's volume to its circumscribed ball's volume.

Quality metrics:

Skewness: Ratio of tetrahedron's volume to its circumscribed ball's volume.

Quality metrics:

- Skewness: Ratio of tetrahedron's volume to its circumscribed ball's volume.
- Maximal and minimal angle in a tetrahedron.

Quality metrics:

- Skewness: Ratio of tetrahedron's volume to its circumscribed ball's volume.
- Maximal and minimal angle in a tetrahedron.
- Ratio of maximal and minimal edge length in a tetrahedron.

Quality metrics:

- Skewness: Ratio of tetrahedron's volume to its circumscribed ball's volume.
- Maximal and minimal angle in a tetrahedron.
- Ratio of maximal and minimal edge length in a tetrahedron.

Initial mesh: Assumed to have sufficiently high mesh quality.

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Notation:

• The surface triangulation induces a graph G = (V, E) with vertices $v_0 \dots v_N$ and Edges E.

- The surface triangulation induces a graph G = (V, E) with vertices $v_0 \dots v_N$ and Edges E.
- $u_0, \ldots, u_N \in \mathbb{R}^3$ denotes position of surface nodes $v_0 \ldots v_N$ and $(u_0, \ldots, u_N) = u \in U = \mathbb{R}^{3(N+1)}$.

- The surface triangulation induces a graph G = (V, E) with vertices $v_0 \dots v_N$ and Edges E.
- $u_0, \ldots, u_N \in \mathbb{R}^3$ denotes position of surface nodes $v_0 \ldots v_N$ and $(u_0, \ldots, u_N) = u \in U = \mathbb{R}^{3(N+1)}$.
- The graph-Laplacian operator is defined as component-wise matrix-multiplication with the matrix $\hat{\Delta} \in \mathbb{R}^{N \times N}$, given as

$$(\hat{\Delta})_{i,j} := \begin{cases} \mathsf{Deg}(v_i) & \text{if } i = j, \\ -1 & \text{if } \{v_i, v_j\} \in E, \\ 0 & \text{else,} \end{cases}$$

- The surface triangulation induces a graph G = (V, E) with vertices $v_0 \dots v_N$ and Edges E.
- $u_0, \ldots, u_N \in \mathbb{R}^3$ denotes position of surface nodes $v_0 \ldots v_N$ and $(u_0, \ldots, u_N) = u \in U = \mathbb{R}^{3(N+1)}$.
- The graph-Laplacian operator is defined as component-wise matrix-multiplication with the matrix $\hat{\Delta} \in \mathbb{R}^{N \times N}$, given as

$$(\hat{\Delta})_{i,j} := \begin{cases} \mathsf{Deg}(v_i) & \text{if } i = j, \\ -1 & \text{if } \{v_i, v_j\} \in E, \quad \Delta u := \begin{pmatrix} \hat{\Delta} u^1 \\ \hat{\Delta} u^2 \\ \hat{\Delta} u^3 \end{pmatrix}, \\ 0 & \text{else,} \end{cases}$$

where $u^1, u^2, u^3 \in \mathbb{R}^N$ represents x,y and z coordinates of u.

- The surface triangulation induces a graph G = (V, E) with vertices $v_0 \dots v_N$ and Edges E.
- $u_0, \ldots, u_N \in \mathbb{R}^3$ denotes position of surface nodes $v_0 \ldots v_N$ and $(u_0, \ldots, u_N) = u \in U = \mathbb{R}^{3(N+1)}$.
- The graph-Laplacian operator is defined as component-wise matrix-multiplication with the matrix $\hat{\Delta} \in \mathbb{R}^{N \times N}$, given as

$$(\hat{\Delta})_{i,j} := \begin{cases} \mathsf{Deg}(v_i) & \text{if } i = j, \\ -1 & \text{if } \{v_i, v_j\} \in E, \quad \Delta u := \begin{pmatrix} \hat{\Delta} u^1 \\ \hat{\Delta} u^2 \\ \hat{\Delta} u^3 \end{pmatrix}, \\ 0 & \text{else,} \end{cases}$$

where $u^1, u^2, u^3 \in \mathbb{R}^N$ represents x,y and z coordinates of u.

• Mean value and curvature: $(\Delta u)_0 = 4u_0 - u_1 - u_2 - u_3 - u_4$.

1 Preliminaries

2 The optimisation problem

- 3 Numerical solution
- 4 Discussion of results

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Issue: Solutions are concentrated points. Mesh quality is not considered.

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Issue: Solutions are concentrated points. Mesh quality is not considered.

Constraints: Consider problem (2) under constraints with feasible set Ω guaranteeing:

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Issue: Solutions are concentrated points. Mesh quality is not considered.

Constraints: Consider problem (2) under constraints with feasible set Ω guaranteeing:

Fit to data.

Energy reduction of graph-Laplacian

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Issue: Solutions are concentrated points. Mesh quality is not considered.

Constraints: Consider problem (2) under constraints with feasible set Ω guaranteeing:

- Fit to data.
- Maintenance of mesh quality.

Energy reduction of graph-Laplacian

Local, vertex wise gradient descent

(1)
$$u_i \leftarrow u_i - \alpha (\Delta^T \Delta u)_i$$
 which reduces $\frac{1}{2} |(\Delta u)_i|^2$.

Aim at adapting idea of reducing Laplacian energy in global method.

(2)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2.$$

Issue: Solutions are concentrated points. Mesh quality is not considered.

Constraints: Consider problem (2) under constraints with feasible set Ω guaranteeing:

- Fit to data.
- Maintenance of mesh quality.
- **C**onvex, vertex wise independent representation of Ω.

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

Fit to data.

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set Ω that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

(3)
$$u^+ \in \operatorname*{argmin}_{u \in U} \frac{1}{2} \|\Delta u\|_2^2$$
, subject to $u \in \Omega$,

for suitable feasible set $\boldsymbol{\Omega}$ that incorporates the above posed properties:

- Fit to data.
- Maintenance of mesh quality.
- Convex, vertex wise independent representation of Ω .

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Adaptive constraints:

,

Incorporating topology into constraints.

,

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

• Heights determine maximal range of movement.

UNI GRAZ

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.

UNI GRAZ

Adaptive constraints:

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.

$$h_T = \min\{h: h \text{ height of } T\}$$
 for tetrahedron T_T
 $r_i = \alpha h_T$ for $0 < \alpha < 1/2$

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.
- *v*₀ contained in many tetrahedra.

 $h_T = \min\{h: h \text{ height of } T\}$ for tetrahedron T,

$$r_i = \alpha h_T$$
 for $0 < \alpha < 1/2$

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.
- *v*₀ contained in many tetrahedra.

 $h_T = \min\{h: h \text{ height of } T\}$ for tetrahedron T,

$$r_i = \alpha h_T$$
 for $0 < \alpha < 1/2$

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.
- *v*₀ contained in many tetrahedra.

$$h_{T} = \min\{h: h \text{ height of } T\} \text{ for tetrahedron } T,$$

$$r_{i} = \alpha \hat{h}_{i} \text{ for } 0 < \alpha < 1/2 \text{ with } \hat{h}_{i} = \min\{h_{T}: v_{i} \in T\},$$

(4)
$$\Omega = \{u \in U: ||u_{i} - u_{0i}|| \le r_{i} \text{ for } i = 1, \dots, N\}.$$

- Incorporating topology into constraints.
- Maintain high mesh quality.

Considerations:

- Heights determine maximal range of movement.
- Synchronous movement, further reduction of radius.
- *v*₀ contained in many tetrahedra.

$$h_{T} = \min\{h: h \text{ height of } T\} \text{ for tetrahedron } T,$$

$$r_{i} = \alpha \hat{h}_{i} \quad \text{for } 0 < \alpha < 1/2 \text{ with } \hat{h}_{i} = \min\{h_{T}: v_{i} \in T\},$$

(4)
$$\Omega = \{u \in U: ||u_{i} - u_{0i}|| \leq r_{i} \text{ for } i = 1, \dots, N\}.$$

Note that also interior points are considered in the construction of constraints.

Restrictive constraints:

Reiteration of method: Start again with updated constraints.

More flexibility and movement.

- More flexibility and movement.
- Constraints ensure mesh quality.

- More flexibility and movement.
- Constraints ensure mesh quality.
- Many iterations affect quality.

- More flexibility and movement.
- Constraints ensure mesh quality.
- Many iterations affect quality.
- 2-5 outer iteration.

- More flexibility and movement.
- Constraints ensure mesh quality.
- Many iterations affect quality.
- 2-5 outer iteration.
- Improves results.

Outline

1 Preliminaries

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

INSTITUTE OF MATHEMATICS AND SCIENTIFIC COMPUTING

Primal-dual algorithm: Global solution via iterative method.

General saddle-point problem for linear A and G:

$$\min_{u\in\Omega} G(Au) \quad \Longleftrightarrow \quad \min_{u\in U} G(Au) + I_{\Omega}(u)$$

General saddle-point problem for linear A and G:

$$\min_{u \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u) \iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^*(w) + I_{\Omega}(u).$$

General saddle-point problem for linear *A* **and G**:

$$\min_{u \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u) \iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^{*}(w) + I_{\Omega}(u).$$

Specific saddle-point problem for $A = \Delta$ and $G = \frac{1}{2} \| \cdot \|_2^2$

(5)
$$\min_{u \in U} \max_{w \in U} \langle w, \Delta u \rangle - \frac{1}{2} \|w\|_2^2 + I_{\Omega}(u).$$

General saddle-point problem for linear A and G:

$$\min_{u \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u) \iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^{*}(w) + I_{\Omega}(u).$$

Specific saddle-point problem for $A = \Delta$ and $G = \frac{1}{2} \| \cdot \|_2^2$

(5)
$$\min_{u \in U} \max_{w \in U} \langle w, \Delta u \rangle - \frac{1}{2} \|w\|_2^2 + I_{\Omega}(u).$$

Proposition

General saddle-point problem for linear A and G:

$$\min_{v \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u) \\ \iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^*(w) + I_{\Omega}(u).$$

Specific saddle-point problem for $A = \Delta$ and $G = \frac{1}{2} \| \cdot \|_2^2$

(5)
$$\min_{u \in U} \max_{w \in U} \langle w, \Delta u \rangle - \frac{1}{2} \|w\|_2^2 + I_{\Omega}(u).$$

Proposition

r

1 The original optimisation problem (3), $\min_{u \in \Omega} F(u) = \frac{1}{2} ||\Delta u||_2^2$, has a solution which however is not unique.

General saddle-point problem for linear A and G:

$$\min_{u \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u)$$
$$\iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^{*}(w) + I_{\Omega}(u).$$

Specific saddle-point problem for $A = \Delta$ and $G = \frac{1}{2} \| \cdot \|_2^2$

(5)
$$\min_{u \in U} \max_{w \in U} \langle w, \Delta u \rangle - \frac{1}{2} \|w\|_2^2 + I_{\Omega}(u).$$

Proposition

r

- 1 The original optimisation problem (3), $\min_{u \in \Omega} F(u) = \frac{1}{2} ||\Delta u||_2^2$, has a solution which however is not unique.
- 2 Also, the saddle-point problem (5) with feasible set Ω defined as in
 (4) admits at least one solution.

General saddle-point problem for linear A and G:

$$\min_{v \in \Omega} G(Au) \iff \min_{u \in U} G(Au) + I_{\Omega}(u) \\ \iff \min_{u \in U} \max_{w \in U} \langle w, Au \rangle - G^*(w) + I_{\Omega}(u).$$

Specific saddle-point problem for $A = \Delta$ and $G = \frac{1}{2} \| \cdot \|_2^2$

(5)
$$\min_{u \in U} \max_{w \in U} \langle w, \Delta u \rangle - \frac{1}{2} \|w\|_2^2 + I_{\Omega}(u).$$

Proposition

r

- 1 The original optimisation problem (3), $\min_{u \in \Omega} F(u) = \frac{1}{2} ||\Delta u||_2^2$, has a solution which however is not unique.
- 2 Also, the saddle-point problem (5) with feasible set Ω defined as in
 (4) admits at least one solution.
- 3 Further, for any saddle-point (u⁺, w⁺) of (5), u⁺ is a solution of the original minimisation problem (3).

Specific iteration directives:

(6)

$$\begin{cases} w \leftarrow \frac{(w + \sigma \Delta \bar{u})}{(1 + \sigma)} \end{cases}$$

(6)

Matrix-vector multiplication.

(6)
$$\begin{cases} w \leftarrow \frac{(w + \sigma \Delta \bar{u})}{(1 + \sigma)} \\ \bar{u} \leftarrow P_{\Omega}(u - \tau \Delta w) \end{cases}$$

- Matrix-vector multiplication.
- With $P_{\Omega}(u)$ pointwise projection.

(6)
$$\begin{cases} w \leftarrow \frac{(w + \sigma \Delta \bar{u})}{(1 + \sigma)} \\ \bar{u} \leftarrow P_{\Omega}(u - \tau \Delta w) \\ u \leftarrow 2\bar{u} - u \\ (u, \bar{u}) \leftarrow (\bar{u}, u) \end{cases}$$

- Matrix-vector multiplication.
- With $P_{\Omega}(u)$ pointwise projection.
- Simple operations, vectorisation, fast execution.

Outline

1 Preliminaries

- 2 The optimisation problem
- 3 Numerical solution
- 4 Discussion of results

Visual results Example 1:

original

smoothed

overlay

Oscillations:

Visual results Example 1:

Visual results Example 1:

original

smoothed

overlay

Overlay:

Visual results Example 1:

overlay

Oscillations:

Visual results Example 1:

original

smoothed

Smoothed:

overlay

Visual results Example 1:

overlay

Overlay:

Example 2: Outer iterations 2, inner iterations 200, $\alpha = 1/3$.

Example 2: Outer iterations 2, inner iterations 200, $\alpha = 1/3$.

Skewness P: Volume ratio to circumscribed ball.

Example 2: Outer iterations 2, inner iterations 200, $\alpha = 1/3$.

Skewness *P*: Volume ratio to circumscribed ball.

Percentiles of P	1%	5%	10%
Original mesh	0.0900	0.2350	0.3348
First iteration	0.1136	0.2360	0.3195
Second iteration	0.0907	0.1999	0.2761

Example 2: Outer iterations 2, inner iterations 200, $\alpha = 1/3$.

Skewness *P*: Volume ratio to circumscribed ball.

Percentiles of P	1%	5%	10%
Original mesh	0.0900	0.2350	0.3348
First iteration	0.1136	0.2360	0.3195
Second iteration	0.0907	0.1999	0.2761

Determinant ratio Θ : Measures change of size and orientation.

Example 2: Outer iterations 2, inner iterations 200, $\alpha = 1/3$.

Skewness *P*: Volume ratio to circumscribed ball.

Percentiles of P	1%	5%	10%
Original mesh	0.0900	0.2350	0.3348
First iteration	0.1136	0.2360	0.3195
Second iteration	0.0907	0.1999	0.2761

Determinant ratio Θ : Measures change of size and orientation.

Percentiles of Θ	1%	5%
1. Iteration	0.6486	0.7407
2. Iteration	0.5280	0.6470

More general constraints.

More general constraints.

More general constraints.

Thank you for your attention!

Thank you for your attention!

M. Botsch and L. Kobbelt and M. Pauly and L. Alliez and B. Lévy, *Polygon mesh processing*, CRC press, Taylor and Francis, 2010

- A. Chambolle and T. Pock , *A first-order primal-dual algorithm for convex problems with applications to imaging*, Journal of Mathematical Imaging and Vision, 40(1):120-145, 2010.
- A. Crozier, C. M. Augustin, A. Neic, A. J. Prassl, M. Holler, T. E. Fastl, A. Hennenmuth, K. Bredies, T. Kuehne, M. J. Bishop, S. A. Niederer, and G. Plank, *Image-based personalization of cardiac anatomy for coupled electromechanical modeling*, Annals of Biomedical Engineering, 44(1):58-70, 2016.

- B. M. Klingne and J. R. Shewchuk, *Aggressive tetrahedral mesh improvement*, Proceedings of the 16th International Meshing Roundtable: 3-23, 2008, Springer
- X. Lu and Z.Deng and W. Chen, *A Robust Scheme for Feature-Preserving Mesh Denoising*, IEEE Transactions on Visualization and Computer Graphics, 22 (3): 1181- 1194, 2016
- H. Zhang and C. Wu and J. Zhang and J. Deng, *Variational mesh denoising using total variation and piecewise constant function space*,IEEE Transactions on Visualization and Computer Graphics 21 (7): 873 886, 2015