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Context
Simulations of the heart: Requires tetrahedral mesh.

Mesh quality: Very flat tetrahedra cause errors in simulation.

Oscillations: Artifacts occur on surface, in particular oscillations.

Initial setting: Triangulation is given. Coordinates of vertices, edge
information and masking of surface points.
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Introduction

Goal: Mesh improvement for subsequent simulations.

Denoising & quality maintenance: Reduction of oscillations and
preservation of high mesh quality.

Graph-Laplacian minimisation: Adjusting coordinates of nodes of
surface tetrahedra, by solving

1
ut € argmin || Aul|3,  subject to u € Q.
uel 2

Constraints: Control effect of smoothing.

Primal-dual algorithm: Solution of resulting optimisation problem.
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Mesh quality: Non-degenerate tetrahedra, no very flat tetrahedra.

Quality metrics:

m Skewness: Ratio of tetrahedron’s volume to its circumscribed ball’s
volume.

m Maximal and minimal angle in a tetrahedron.

m Ratio of maximal and minimal edge length in a tetrahedron.

Initial mesh: Assumed to have sufficiently high mesh quality.



http://math.uni-graz.at/
http://www.uni-graz.at

Notation:

INSTITUTE OF MATHEMATICS
AND SCIENTIFIC COMPUTING


http://math.uni-graz.at/
http://www.uni-graz.at

INSTITUTE OF MATHEMATICS
AND SCIENTIFIC COMPUTING

Notation: GHAZ
m The surface triangulation induces a graph G = (V/, E) with vertices
Vo...vy and Edges E.

Va V3

)

Vi V2
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Notation: GHAZ
m The surface triangulation induces a graph G = (V/, E) with vertices
Vo...vy and Edges E.
m up,...,uy € R3 denotes position of surface nodes vy ... vy and
(ug,...,uy) =u € U=R3N+D),
m The graph-Laplacian operator is defined as component-wise
matrix-multiplication with the matrix Ac RVXN " given as

X Deg(v;) ifi=/, Aut
(A)ij =< -1 if {vi,v;} €E, Au:=|Ads],
0 else, A

where ut, u?, u® € RN represents x,y and z coordinates of u.

m Mean value and curvature: (Au)g = 4ug — 1y — up — uz — Uy,
Uy us

2}

us

up = (3.2,2.56)7
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Issue: Solutions are concentrated points. Mesh quality is not considered.
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1
(1) ui + u; — a(AT Au); which reduces §|(Au),-|2.
Aim at adapting idea of reducing Laplacian energy in global method.

1
(2) u™ € argmin = || Aul3.
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Issue: Solutions are concentrated points. Mesh quality is not considered.
Constraints: Consider problem (2) under constraints with feasible set Q
guaranteeing:

m Fit to data.

m Maintenance of mesh quality.
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Energy reduction of graph-Laplacian

Local, vertex wise gradient descent
1
(1) ui + u; — a(AT Au); which reduces §|(Au),-|2.
Aim at adapting idea of reducing Laplacian energy in global method.

1
(2) u™ € argmin = || Aul3.
veu 2

Issue: Solutions are concentrated points. Mesh quality is not considered.
Constraints: Consider problem (2) under constraints with feasible set Q
guaranteeing:

m Fit to data.

m Maintenance of mesh quality.

m Convex, vertex wise independent representation of .
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m Convex, vertex wise independent representation of Q.
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radius r; around original location.
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® Incorporating topology into constraints.
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m Heights determine maximal range of movement.
m Synchronous movement, further reduction of radius.

ht = min{h: h height of T} for tetrahedron T,
rr = ahrt for0<a<1/2
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® Incorporating topology into constraints.
m Maintain high mesh quality.
Considerations:
m Heights determine maximal range of movement.
m Synchronous movement, further reduction of radius.
® y contained in many tetrahedra.

ht = min{h: h height of T} for tetrahedron T,
rr = ahrt for0<a<1/2
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Adaptive constraints: GRAZ
® Incorporating topology into constraints.
m Maintain high mesh quality.
Considerations:
m Heights determine maximal range of movement.
m Synchronous movement, further reduction of radius.
® y contained in many tetrahedra.

ht = min{h: h height of T} for tetrahedron T,
ri=ah; for 0 <a < 1/2with by = min{hr: v € T},
4) Q={veU:|lui—uyl <rfori=1,...,N}.
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Adaptive constraints: GRAZ
® Incorporating topology into constraints.
m Maintain high mesh quality.
Considerations:
m Heights determine maximal range of movement.
m Synchronous movement, further reduction of radius.
® y contained in many tetrahedra.

ht = min{h: h height of T} for tetrahedron T,
ri=ah; for 0 <a < 1/2with by = min{hr: v € T},
4) Q={veU:|lui—uyl <rfori=1,...,N}.

m Note that also interior points are considered in the construction of
constraints. Vs V3

Vi V2
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Restrictive constraints: Little movement allowed.

Reiteration of method: Start again with updated constraints.

More flexibility and movement.
m Constraints ensure mesh quality.
m Many iterations affect quality.

m 2-5 outer iteration.
[

Improves results.
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in G(A in G(A I
min (Av) — min (Au) + Io(u)
< minmax (w, Au) — G*(w) + Io(u).

Specific saddle-point problem for A=A and G = || - |3

1
(5) minmax (w, Au) — §||WH§ + la(u).

velU wel

Proposition

2
5, has

1 The original optimisation problem (3), min,cq F(u) = 3| Au
a solution which however is not unique.
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Primal-dual algorithm: Global solution via iterative method.

General saddle-point problem for linear A and G:
in G(A in G(A I
min (Av) — min (Au) + Io(u)

< minmax (w, Au) — G*(w) + Io(u).

2

Specific saddle-point problem for A=A and G = || - |3

. 1, 0
(5) minmax (w, Au) — 5 ||wl)z + la(u).

Proposition
2
5, has

1 The original optimisation problem (3), min,cq F(u) = 3| Au
a solution which however is not unique.
2 Also, the saddle-point problem (5) with feasible set Q defined as in

(4) admits at least one solution.
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Primal-dual algorithm: Global solution via iterative method. EmCRAZI
General saddle-point problem for linear A and G:
in G(A in G(A I
min (Av) — min (Au) + Io(u)
< minmax (w, Au) — G*(w) + lo(u).

uelU wel

Specific saddle-point problem for A=A and G = || - |3

. 1
(5) minmax  (w, Au) — S [[w|fz + lo(u).

Proposition

2
5, has

1 The original optimisation problem (3), min,cq F(u) = 3| Au
a solution which however is not unique.

2 Also, the saddle-point problem (5) with feasible set Q defined as in
(4) admits at least one solution.

3 Further, for any saddle-point (u™, w™) of (5), u™ is a solution of
the original minimisation problem (3).
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W (140)

(6)

m Matrix-vector multiplication.
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0+ Po(u—T1Aw)

W <

(6)

m Matrix-vector multiplication.

m With Pq(u) pointwise projection.
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Specific iteration directives: Simplicity of constraints leads to

w+oAd
W ( (140) )

(6) 0+ Po(u—T1Aw)

u<+2i—u
(u, @) < (&,u)

m Matrix-vector multiplication.
m With Pq(u) pointwise projection.
m Simple operations, vectorisation, fast execution.
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Example 2: Outer iterations 2, inner iterations 200, oo = 1/3.

Skewness P: Volume ratio to circumscribed ball.

Percentiles of P | 1% 5% 10%

Original mesh 0.0900 | 0.2350 | 0.3348
First iteration 0.1136 | 0.2360 | 0.3195
Second iteration | 0.0907 | 0.1999 | 0.2761
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Example 2: Outer iterations 2, inner iterations 200, oo = 1/3.

Skewness P: Volume ratio to circumscribed ball.

Percentiles of P | 1% 5% 10%

Original mesh 0.0900 | 0.2350 | 0.3348
First iteration 0.1136 | 0.2360 | 0.3195
Second iteration | 0.0907 | 0.1999 | 0.2761

Determinant ratio ©: Measures change of size and orientation.
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Quantitative results

Example 2: Outer iterations 2, inner iterations 200, oo = 1/3.
Skewness P: Volume ratio to circumscribed ball.

Percentiles of P | 1% 5% 10%

Original mesh 0.0900 | 0.2350 | 0.3348
First iteration 0.1136 | 0.2360 | 0.3195
Second iteration | 0.0907 | 0.1999 | 0.2761

Determinant ratio ©: Measures change of size and orientation.

Percentiles of © | 1% 5%
1. lteration 0.6486 | 0.7407
2. lteration 0.5280 | 0.6470
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