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Basic information: Parameter choice and iterative regularization methods
Even though there are theoretic results for a suitable a-priori parameter choice rule via

α ≈
(
δ
ρ

) 2
2µ+1

for x† ∈ Xµ,ρ using spectral filtering, since x† is unknown, also µ and ρ

are, making this parameter choice infeasible. To remedy this, one can consider a-posteriori
parameter choice rules:
The discrepancy principle works as follows: Choose some τ > sup

{
|rα(λ)|

∣∣ α ∈ ]0, α0[, λ ∈
[0, ‖T‖2]

}
. For Mτ,δ := {α̃ > 0 | ‖Txδα̃ − yδ‖ ≤ τδ}, choose α(δ, yδ) = supMτ,δ which is

possible if y ∈ Rg(T ). In fact, choosing α not the supremum, but α ∈Mτ,δ such that there
is k ∈]1,K] (some fixed K > 1) with kα 6∈ Mτ,δ is more manageable (while maintaining its
theoretical properties). Note that using an (up to µ0) order optimal linear regularization
together with the discrepancy method yields order-optimality up to µ0 − 1

2 .
The improved a-posteriori rule consists in solving the equation f(α, yδ) = cδ2 for α, where

f(α,w) = 2〈Fα(TT ∗)Qw,Qw〉, with Fα(λ) :=
(
∂Gα
∂α (λ)

)−1 ∂gα
∂α (λ)rα(λ), the orthogonal pro-

jection Q onto the closure of the range of T , and c = supλ,α |λgα(λ)|. Naturally, we
must assume α 7→ Gα and α 7→ gα(λ) to be continuously differentiable (w.r.t. α, for

each λ) and such that ∂gα
∂α

(
∂Gα
∂α

)−1
is bounded (for all α, λ). Moreover, we assume Fα(λ)

is strictly increasing w.r.t. α (for all λ) and Qyδ 6= 0. One weakens this to solving
f(α, yδ) = τδ2 for some τ > 0, in fact there is a unique solution α if τ ∈ ]0, h(yδ)δ−2[
with h(w) = 2

∫
σ(TT ∗) limα→∞ Fα(λ) d‖EλQw‖2 (E the spectral measure of TT ∗). Setting

L := 2 supα,λ Fα(λ) and τ ∈]L, h(y
δ)

δ2
[, the improved a-posteriori choice yields a quasi-optimal

estimate, i.e., this choice yields ‖xδα − x†‖ ≤ ν inf{‖xα̃ − x†‖ + δ
√
cGα̃ | α̃ > 0}, for some

constant ν > 0.
Similarly to the matrix-free approaches discussed in the previous sheet, one might want to
consider iterative regularization methods, often representing cut-off power series. It is conve-
nient if these iterative methods can be again understood as spectral filtering (understanding
1
α as the stopping time), since then previously discussed techniques for determining properties
such as regularization or order optimality are applicable. One such regularization method is
the Landweber iteration, which for x0 = 0 consists in xk+1 = xk + wT ∗(yδ − Txk) for some
w > 0, w ≤ 1

‖T‖2 and yields a regularization without saturation.

Example 5.1) [Chebyshev regularization]
We consider T ∈ L(X,Y ) between Hilbert spaces with ‖T‖ ≤ 1. For yδ ∈ Y we consider the
iteration{

x0 = 0, x1 = x0 + 4
3T
∗(yδ − Tx0),

xk = 22k−1
2k+1xk−1 −

2k−3
2k+1xk−2 + 42k−1

2k+1T
∗(yδ − Txk−1) for k = 2, 3, . . . .

(1)

a) Show that xk = gk(T
∗T )T ∗yδ for some polynomials gk and conclude their recursive

construction.

b) Show that the residual rk := 1 − λgk for k ≥ 0 is again a polynomial that satisfies

rk = (−1)k
T2k+1(

√
λ)

(2k+1)
√
λ

, where Tm(λ) := cos(m arccos(λ)) = 2λTm−1(λ) − Tm−2(λ) the

Chebyshev polynomials (it is easy to see that T0(λ) = 1, T1(λ) = λ).

c) When setting Rα = gb 1
α
c(T
∗T )T ∗, show that (Rα)α is a continuous regularization.
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Remark. This illustrates an iterative reconstruction method, which, unlike the Landweber
iteration is not represented by a cut-off power series, and in fact is not given in a convenient
explicit form, nonetheless, previously discussed techniques can be applied using induction and
recursive properties.

Example 5.2) [Improved a-posteriori choice for Showalter]

We again consider the Showalter regularization induced by gα(λ) = 1−e−
λ
α

λ (see Example 3.3),
and want to apply the improved a-posteriori choice.

a) Compute Gα, ∂αgα and ∂αGα. Conclude the equivalence

f(α, yδ) = τδ2 ⇔ ‖ exp

(
−TT

∗

α

)
Qyδ‖2 = τδ2 ⇔ ‖Txαδ −Qyδ‖ =

√
τ

2
δ. (2)

Hint: for the computation of Gα, show that λ 7→ gα(λ) is monotone, 1 + z ≤ ez for
z ≥ 0.

b) Show that for τ ∈ ]0, 2‖Qy
δ‖2

δ2
[ there is a unique solution of (2). Further, show that when

choosing α(δ, yδ) according to (2) for some τ ∈ ]2, 2‖Qy
δ‖2

δ2
[, then (Rα, α(δ, yδ)) yields an

order optimal regularization method for any µ > 0. Hint: First, show that Rα with the
a-priori rule is order optimal.

Remark. Note that, as the name suggests, these types of parameter choices potentially require
many evaluations of Rα for different α, but f(α, yδ) being monotone invites simple solution
algorithms. Also note the similarity of (2) to the discrepancy principle.

Example 5.3) [Implementation of Landweber with discrepancy principle]
We consider the Landweber regularization to a linear problem Tx = y.

• Explain how the discrepancy principle for such a method can be implemented practically,
and determine suitable τ . Why is the improved a-posteriori rule not feasible for iterative
methods?

• Implement a Matlab function ‘[rec,iter]=Landweber(A, ν, yδ, δ, τ)’, which given a matrix
A with estimate of the norm ν, and data yδ with noise level δ applies the Landweber
method with discrepancy principle (with τ), and returns the reconstruction as well, as
the amount of iterations applied.

• Test your program with the dataset walnut data1 with Data328.mat (see documentation)
with δ ∈ {3, 9, 15} and τ = 1.1 and visualize the solutions and the number of iterations.
You may use the poweriteration.m file to estimate the norm of the operator (10 iterations
or so should suffice, look whether the value stabilizes).

1Dataset courtesy of Keijo Hämäläienen et al, Tomographic X-ray data of a walnut. ArXiv eprint 1502.04064,
2015.

https://zenodo.org/record/1254206#.Ya4BvJHMK-o
https://zenodo.org/record/1254206/files/Data328.mat?download=1
https://zenodo.org/record/1254206/files/Documentation_v1.pdf?download=1
https://imsc.uni-graz.at/huber/Teaching_pages/2021_blatter_Inverse_Problems/poweriteration.m

