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Basic information: Singular systems
For Hilbert spaces X,Y we call a tuple (σn, un, vn)n∈{1,...,N} or sequence (σn, un, vn)n∈N in
R+ × X × Y a singular system, if σn is monotone decreasing and converging to zero (if
sequence), (un)n and (vn)n orthonormal systems in X and Y respectively. It is well known
(see lectures on Functional Analysis), that T ∈ L(X,Y ) is compact if and only if there exists
a singular system (with index set M ∈ {{1, . . . , N} | N ∈ N} ∪ N) such that

Tx =
∑
n∈M

σn〈un, x〉vn and T ∗y =
∑
n∈M

σn〈vn, y〉un. (1)

In particular, T ∗T is compact and selfadjoint, thus possessing a spectral decomposition with
eigenvalues and orthonormal eigenvectors (λn, un)n∈N with λn → 0, and the singular system is
given via σn =

√
λn, vn = Tun

σn
(and the same un) for n s.t. λn > 0.

Analogously, for a matrix A : Rm → Rk (which is trivially compact), there are matrices
U ∈ Rm×m, V ∈ Rk×k both unitary, and Σ ∈ Rk×m diagonal such that A = V ΣU∗. More
precisely, the columns of U and V are the vectors un and vn of a singular system of A
respectively (filling with an orthonormal basis orthonormal to un or vn respectively if necessary
to generate the necessary dimensions) and Σnn = σn (singular values) for 1 ≤ n ≤ r (r the
rank of A) and Σij = 0 otherwise.

Example 2.1) [Inversion via SVD]
We consider a matrix A : Rm → Rk, and the corresponding inverse problem Ax = y. Find
a matrix representation of A† as well as a sum representation in the form of (1) of A†, and
determine the spectral norm ‖A†‖ (operator norm for euklidean norms on Rk and Rm).

Remark. As this example shows, the pseudo-inverse (in a finite dimensional setting) can be
determined by the singular value decomposition. Also note the connection between the singular
values and the norm of the pseudo inverse implying that the smaller singular values the bigger
the norm. As will be shown in the lecture, these results can be carried over to compact operators
T , hence knowledge of the singular system of T is useful in finding and understanding T †.

Example 2.2) [Quotient spaces]
Let X,Y be Banach spaces and T ∈ L(X,Y ). We define X̂ := X/ ker(T ) the quotient

space of X subject to the kernel of T , i.e., we consider classes according to the equivalence
relation x ≈ y if and only if x− y ∈ ker(T ). It is easy to check, that with [x] + [y] = [x+ y]
and α[x] = [αx] for x, y ∈ X, α ∈ R (or C), X̂ is a vector space. We endow X̂ with
‖[x]‖

X̂
= infm∈ker(T ) ‖x−m‖ for x ∈ X and [x] the associated equivalence class.

a) Show that ‖[·]‖
X̂

is welldefined and constitutes a norm on X̂ such that it is complete

(i.e., a Banach space). Further, show that there is a linear bijective T̂ : X̂ → Rg(T ) with
T̂ [x] = Tx for x ∈ X and in particular ‖T̂‖ = ‖T‖.

b) Show that there is a minimizer to the problem minz∈x0+ker(T ) ‖z‖ for given x0 ∈ X in
case X is reflexive and separable (implying weak sequential compactness of bounded
sets). Find an example (in finite dimensions) where given any x0 the corresponding
minimizer z is unique but the mapping x0 7→ z is not linear.

University of Graz
Institut für Mathematik

und wissenschaft. Rechnen

mailto:richard.huber@uni-graz.at
https://www.uni-graz.at/


Remark. Note that the construction of the Moore Penrose inverse on the previous sheet
was based on using ker(T )⊥ which only works in Hilbert spaces. The quotient space is (one)
natural way to generalize ker(T )⊥, but it is not a native subspace of X, though linear (not
necessarily continuous) embeddings can be found. A natural way of finding such an embedding
might appear to be projection via minimzation as in b) (in particular this would be continuous),
however, this does not yield a (linear) subspace. Note that in Hilbert spaces this projection
by minimization coincides with the orthonormal projection onto ker(T )⊥ and is in particular
linear (thus X̂ can be associated with ker(T )⊥).

Example 2.3) [Singular decomposition of integration operator]
We consider again the operator T ∈ L2([0, 1]) → L2([0, 1]) with [Tx](t) =

∫ t
0 x(s) ds (see

Example 1.2b). In fact, Rg(T ) = {f ∈ H1([0, 1])
∣∣ f(0) = 0 (via trace)}. Show that T is

compact (hint 2.4a), and compute the corresponding singular system.

Example 2.4) [Singular value decomposition of Hilbert-Schmidt operators]
Let Ω, Ω′ be open in Rd and k ∈ L2(Ω× Ω′). Let T : L2(Ω)→ L2(Ω′) be the Hilbert-Schmidt
operator defined according to

[Tx](t) =

∫
Ω
k(s, t)x(s) ds for almost every t ∈ Ω′. (2)

a) Show that the operator T is compact.

b) Conclude that the singular values of T satisfy σn = O(n−
1
2 ).

Hint. For complete orthonormal systems U and V of L2(Ω) and L2(Ω′) respectively, the set

J =
{
u⊗ v

∣∣ u ∈ U, v ∈ V } with [f ⊗ g](s, t) = f(s)g(t) a.e. (3)

is a complete orthonormal system in L2(Ω×Ω′). Also note that L2 spaces are separable, hence
any orthonormal system is at most countable.

Remark. A large class of compact operators can be described as Hilbert-Schmidt operators,
which allows for general considerations. It is said that T possesses degree of ill-posedness p if
σn ≈ n−p and as the name suggests this represents how bad an ill-posedness is. In particular
Hilbert Schmidt operators always possess the degree of ill-posedness 1

2 or worse.


