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7. Exercise Sheet– 26th January, 2022

Basic information: Spectral theory
For X a Banach space and an operator T : X → X linear and continuous (we say T ∈ L(X)),
the resolvent set is defined as

ρ(T ) =
{
λ ∈ K | (λ− T ) is bijective

}
. (1)

The set σ(T ) := K \ ρ(T ) is called the spectrum of T and can further be partitioned into the
point spectrum σp, the continuous spectrum σc, and the residual spectrum σr:

σp(T ) =
{
λ ∈ σ(T ) | (λ− T ) is not injective

}
, (2)

σc(T ) =
{
λ ∈ (σ(T ) \ σp(T )) | (λ− T ) has dense range

}
, (3)

σr(T ) = σ(T ) \ (σp(T ) ∪ σc(T )). (4)

Note that the spectrum is a compact set contained in B(0, ‖T‖), and λ ∈ σ(T ) if and only if
λ ∈ σ(T ∗).
On a Hilbert space H, we say T ∈ L(H) is selfadjoint if T ∗ = T and normal if T ∗T = TT ∗

(with the identification H
∧
= H∗). For selfadjoint operators σ(T ) ⊂W (T ) ⊂ R with W (T ) :={

〈Tx, x〉
∣∣ ‖x‖ = 1

}
, and for a normal operator T , x is an eigenvector to T w.r.t. λ implies

that x is also eigenvector of T ∗ w.r.t. λ. For normal T , the eigenspaces ker(λ−T ) ⊥ ker(µ−T )
for λ, µ ∈ σp(T ) with λ 6= µ, i.e., eigenspaces are orthogonal to each other.
When K ∈ L(X) is compact (i.e., the image of bounded sets are precompact), σ(K) = σp(K),
i.e., λ−K not being bijective implies non-injectivity. Moreover, σ(K) is countable, bounded
and the only accumulation point can be 0. For λ ∈ σ(K) \ {0} the eigenspace ker(λ −K)
is finite-dimensional. For T ∈ L(H) being compact and normal, we denote by Eλ the
orthogonal projection onto the eigenspace of λ, and by orthogonality ‖

∑
λ∈σ(T ) c(λ)Eλx‖2 =∑

λ∈σ(T ) |c(λ)|2‖Eλx‖2 for any (bounded) function c : σ(T ) 7→ K. A compact and selfadjoint
operator T ∈ L(H) possesses the representation (eigenvalue decomposition)

T =
∑

λ∈σ(T )

λEλ. (5)

Example 7.1) [Spectrum of shift operators]
We consider the R-Hilbert space H = l2(N,R) :=

{
(xn)n∈N

∣∣ xn ∈ R ∀n ∈ N, ‖x‖2l2 :=∑
n∈N |xn|2 <∞

}
. We define the left and right shift operators Sl, Sr : H → H according to

Srx = (0, x1, x2, · · · ), and Slx = (x2, x3, . . . ). (6)

It is trivial to show that Sr = S∗l and ‖Sr‖ = 1.

a) Let T ∈ L(X) for a Banach space X. Show that λ ∈ σr(T ) implies λ ∈ σp(T ∗). Further,
show that λ ∈ σc(T ) if and only if λ ∈ σc(T ∗).
Also, check whether Sr and Sl are compact and/or normal?

b) Compute σp(Sl), σc(Sl), σr(Sl) and determine the eigenspaces associated with λ ∈ σp(Sl).

c) Compute σp(Sr), σc(Sr), σr(Sr) and identify the eigenspaces associated with λ ∈ σp(Sr).
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Hint. For a), recall the connections between Rg(T ) and ker(T ∗). Problems b) and c) are
connected via a) and must be solved simultaneously.

Remark. The identification of the different spectrum types can sometimes be quite difficult,
in particular showing that the range of an operator is (or is not) dense is often hard (without
explicitly constructing a suitable sequence). It can help to consider the spectrum of the adjoint
operator to gain further insight.

Example 7.2) [Approximate eigenvalue]
Let H be a Hilbert space and T ∈ L(H). We call λ ∈ K an approximate eigenvalue if there is
a sequence of (xn)n in H such that ‖xn‖ = 1 and ‖λxn − Txn‖ → 0. Show that for normal T ,
every λ ∈ σ(T ) is an approximate eigenvalue.

Hint. For λ ∈ σ(T ), consider the selfadjoint operator V = λT ∗ + λT − TT ∗ and show
|λ|2 ∈ σ(V ).

Remark. Sometimes it is convenient to know that something is an approximate eigenvalue,
in order to find a sequence with certain properties. Moreover, note that the definition of
approximate eigenvalue for λ ∈ σ(T ) \ σp(T ) means that the inversion operator (λ − T )−1

cannot be continuous.

Example 7.3) [Continuous functional calculus for compact operators]
Let H be a Hilbert space and T ∈ L(H) be compact and selfadjoint. We define (with Eλ as
in the ‘Basic Information’) the operator φ : C(σ(T ))→ L(H) according to

φ(f) =
∑

λ∈σ(T )

f(λ)Eλ. (7)

a) Show that φ is well defined, linear and that ‖φ(f)‖L(H) = ‖f‖∞ and consequently, φ
is continuous with respect to the supremum norm on C(σ(T )) and the operator norm
on L(H). Further, show for (fn)n a sequence in C(σ(T )) such that supn |fn| <∞ and
fn → f ∈ C(σ(T )) pointwise, then also [φ(fn)](x)→ [φ(f)](x) in H for each x ∈ X.

b) Show for f, g ∈ C(σ(T ))

φ(t 7→ 1) = idH , φ(t 7→ t) = T, φ(fg) = φ(f)φ(g), φ(f) = φ(f)∗, (8)

where fg denotes the pointwise multiplication while φ(f)φ(g) denotes composition of
linear functionals and f refers to pointwise complex conjugation.

Remark. The function φ is known as the (continuous) functional calculus (often also used
with the notation f(T ) := φ(f)), which is an important tool in analysis as it allows to apply
functions onto linear operators in a reasonable way, in particular transferring many properties
from f onto f(T ). Note that one can extend this construction to bounded measurable functions
and even unbounded measurable functions (but then also φ(f) is not continuous nor defined
everywhere). Moreover, one can extend this concept to bounded selfadjoint operators T and
even to unbounded selfadjoint operators T . Then the sum in (7) must be replaced by an integral
(as the spectrum is not necessarily countable) with a vector-valued measure (the so-called
spectral measure of T ).


