Basic information: Distributions

Let $\Omega \subset \mathbb{R}^d$ be open and non-empty. For $K \subset \subset \Omega$ we denote with $\mathcal{D}_K(\Omega) := \{\varphi \in \mathcal{C}^{\infty}(\Omega) \mid \operatorname{supp}(\varphi) \subset K\}$ endowed with the locally convex topology τ_K generated by the seminorms $p_K^{\alpha}(\varphi) := \operatorname{sup}_{x \in K} |\partial^{\alpha} \varphi(x)|$ for multiindices $\alpha \in \mathbb{N}_0^d$. We denote with $\mathcal{D}(\Omega) = \mathcal{C}_c^{\infty}(\Omega)$ the space of tests functions endowed with the topology τ , created by all norms p, such that the restriction $p_{|\mathcal{D}_K}$ is continuous on (\mathcal{D}_K, τ_K) for each $K \subset \subset \Omega$. In particular, a sequence $(\varphi_n)_n$ converges to zero in τ if and only if $\bigcup_{n \in \mathbb{N}} \operatorname{supp}(\varphi_n) \subset K$ for some compact $K \subset \Omega$ and $\lim_{n \to \infty} p_K^{\alpha}(\varphi_n) = 0$ for all $\alpha \in \mathbb{N}_0^d$.

The space of distributions is $\mathcal{D}'(\Omega) := \mathcal{D}(\Omega)'$ (the dual space with respect to τ). Note that linear $T : \mathcal{D}(\Omega) \to \mathbb{K}$ is a distribution if and only if $T_{|\mathcal{D}_K} : \mathcal{D}_K(\Omega) \to \mathbb{K}$ is τ_K continuous for any $K \subset \subset \Omega$ (which is equivalent to the existence of c = c(K) > 0 and finite $F = F(K) \subset \mathbb{N}_0^d$ such that $|T\varphi| \leq c \max_{\alpha \in F} p_K^{\alpha}(\varphi)$ for all $\varphi \in \mathcal{D}_K(\Omega)$). Due to the construction of τ , continuity is also equivalent to sequential continuity. A distribution T is called regular if there is a function $g \in L^1_{\text{loc}}(\Omega)$ with $T\varphi = \int_{\Omega} \varphi g \, dx$ for all $\varphi \in \mathcal{D}(\Omega)$.

A distribution $u \in \mathcal{D}'(\Omega)$ has compact support, if there is $K \subset \subset \Omega$ such that $u(\varphi) = 0$ for all $\varphi \in \mathcal{D}(\Omega)$ with $\operatorname{supp}(\varphi) \cap K = \emptyset$ (the support $\operatorname{supp}(u)$ is the smallest closed set satisfying this property). Distributions with compact support have the special property

$$|\varphi| \le c \max_{|\alpha| \le N} p_K^{\alpha}(\varphi) \quad \text{for all } \varphi \in \mathcal{D}(\Omega)$$
(1)

for some constant c > 0 some $K \subset \subset \Omega$ and some $N \in \mathbb{N}$.

Example 6.1) [Distributions for different domains]

We consider for $\Omega :=]0,1[\subset \mathbb{R}$ the operation $T: \mathcal{C}_c^{\infty}(\Omega) \to \mathbb{C}$ according to $T\varphi = \sum_{k=2}^{\infty} \varphi^{(k)}(\frac{1}{k}).$

- a) Show that $T \in \mathcal{D}'(\Omega)$ (and in particular is well defined).
- **b)** Let $\widetilde{\Omega} \supset [0,1[$ be open. Show that there is no $\widetilde{T} \in \mathcal{D}'(\widetilde{\Omega})$ such that $\widetilde{T}_{|\mathcal{C}_{c}^{\infty}(\Omega)} = T$ (i.e., T cannot be continuously extended onto $\mathcal{D}(\widetilde{\Omega})$). Why does this not contradict the Hahn-Banach theorem? **Hint:** Be aware, \widetilde{T} does not necessarily satisfy the sum representation for all $\mathcal{D}(\widetilde{\Omega})$. Consider functions $g_{n,k}(x) = \psi_{\frac{1}{n}}(x \frac{1}{k}) = n\psi(n(x \frac{1}{k}))$ a (rescaled and shifted) mollifier function to show that \widetilde{T} cannot be continuous.

Remark. This exemplifies that the choice of domain can have a significant impact on the resulting topologies of \mathcal{D} and \mathcal{D}' . Hence one has to be careful when extending results from one domain to others.

Example 6.2) [Cauchy principal value]

We consider the functional $T: \mathcal{C}_c^{\infty}(\mathbb{R}) \to \mathbb{C}$ according to $T\varphi = \lim_{\varepsilon \to 0} \int_{\mathbb{R} \setminus [-\varepsilon,\varepsilon]} \frac{\varphi(x)}{x} dx$ (the Cauchy principal value of $\frac{\varphi(x)}{x}$). Show that T is well-defined and $T \in \mathcal{D}'(\mathbb{R})$. Moreover, show that T is not regular.

Hint. Use Taylor expansion of φ close to zero to control the term $\frac{1}{r}$.

University of Graz

Institut für Mathematik und wissenschaft. Rechnen

Remark. Note that (as the nonregularity implies) the function $f(x) = \frac{\varphi(x)}{x}$ is not integrable in the sense of Lebesgue measure theory as both the positive and negative part of f possess mass infinity, nonetheless, due to a kind of symmetry the terms cancel out allowing the limit to exist. This principle can be applied to a larger class of functions with singularities.

Example 6.3) $[\mathcal{E}' \text{ distributions}]$

For $\Omega \subset \mathbb{R}^d$ open, we consider the (locally convex) space $\mathcal{C}^{\infty}(\Omega)$ generated by seminorms p_K^{α} (as in the 'basic information') denoted by $\mathcal{E}(\Omega)$.

- a) Show that given $\nu \in \mathcal{E}(\Omega)$, there is a sequence φ_n in $\mathcal{C}_c^{\infty}(\Omega)$ such that for any $K \subset \subset \Omega$ $\varphi_n = \nu$ on K for n sufficiently large and in particular $\varphi_n \xrightarrow{\mathcal{E}} \nu$. (Note that this also implies density of \mathcal{D} in \mathcal{E} in a topological sense).
- **b)** For $M := \{ u \in \mathcal{D}'(\Omega) : \operatorname{supp}(u) \subset C \Omega \}$, show that each $u \in M$ is continuous w.r.t. the $\mathcal{E}(\Omega)$ topology (and hence can be uniquely extended to a function in $\mathcal{E}'(\Omega)$), and conversely, each $v \in \mathcal{E}'(\Omega)$ restricted to $\mathcal{C}_c^{\infty}(\Omega)$ possesses compact support.

Remark. Sometimes one wishes constructions similar to distributions which however need to be applicable also to functions without compact support. As can be seen, the construction is analogous and such \mathcal{E}' distributions have a relation with compactly supported distributions. Roughly speaking, for a compactly supported distribution u it does not matter what the test function does outside the support of u and in particular whether it is vanishes.

Example 6.4) [Tensor products and convolution]

a) Let $\Omega_1 \subset \mathbb{R}^{d_1}$ and $\Omega_2 \subset \mathbb{R}^{d_2}$ be open. Given $u \in \mathcal{D}'(\Omega_1)$ and $v \in \mathcal{D}'(\Omega_2)$, show that

$$[u \otimes v](\varphi) := \langle v(y), \langle u(x), \varphi(x, y) \rangle_x \rangle_y \qquad \text{for all } \varphi \in \mathcal{D}(\Omega_1 \times \Omega_2) \tag{2}$$

(i.e., for fixed y one applies u to $\varphi(\cdot, y)$ and v to the resulting function w.r.t. y) is well defined and $u \otimes v \in \mathcal{D}'(\Omega_1 \times \Omega_2)$.

b) Given $u \in \mathcal{E}'(\mathbb{R}^d)$ and $v \in \mathcal{D}'(\mathbb{R}^d)$, we define the convolution

$$[u * v](\varphi) := [u \otimes v](\rho(\cdot_x)\varphi(\cdot_x + \cdot_y)) \qquad \text{for all } \varphi \in \mathcal{D}(\mathbb{R}^d), \tag{3}$$

where $\rho \in \mathcal{C}_c^{\infty}(\mathbb{R}^d)$ with $\rho = 1$ on a neighborhood of the support of u (which is compact according to 6.3 b). Show that u * v defines a distribution on \mathbb{R}^d which does not depend on the choice of ρ . Further, for u and v additionally being regular (with functions f and g), show that u * v is regular and the corresponding L^1_{loc} function coincides with the (classical) convolution f * g.

Remark. This construction of the convolution coincides with the considerations of the lecture but allows for a wider and more structured analysis.