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5. Exercise Sheet– 8th December, 2021

Basic information: Weak topologies and distributions
Let X be a vector space and Y a subspace of L(X,K) (the space of linear functions from X
onto K). Then we denote with σ(X,Y ) the coarsest topology on X for which each y ∈ Y is
continuous, i.e., the topology is induced by P = {py}y∈Y with py(x) := |〈y, x〉| = |y(x)|. This
topology indeed exists, is locally convex, and is Hausdorff if and only if Y is seperating. Note
that in normed spaces the special cases σ(X,X∗) and σ(X∗, X) coincide with the classical
definitions of weak and weak* (weak-star) topologies, respectively. Conversely, given a locally
convex topology τ on X, the dual space is X ′ = X ′τ := {ξ ∈ L(X,K) | ξ continuous w.r.t. τ}.
Indeed, X ′σ(X,Y ) = Y , i.e., the dual space of the topology induced by Y is Y itself. For clarity,

for a normed space X the classical dual space (i.e., linear functions which are continuous with
respect to the norm) is referred to as X∗.
The theorem of Hahn-Banach remains true for locally convex spaces, i.e., for U subspace of X
and l ∈ U ′τ∩U (this is a slight abuse of notation for the relative topology, τ ∩U := {U ∩O | O ∈
τ}), there is l̃ ∈ X ′τ with l̃|U = l. This yields so-called separation theorems, one of which
states: If X locally convex, V ⊂ X closed, convex and non-empty, x 6∈ V , then there is ξ ∈ X ′
and ε > 0 such that Re(ξ(x)) + ε ≤ Re(ξ(v)) for all v ∈ V .

Example 5.1) [Metrification of locally convex spaces]
Let (X, τ) be a locally convex Hausdorff space.

a) Show that there is a countable family of seminorms P = {p1, p2, . . . } creating τ if and
only if τ is metrizable (i.e., there is a metric inducing the same topology).

b) Given Y subspace of L(X,K), conclude that the weak topology σ(X,Y ) is metrizable if
and only if the space of Y possesses a countable generating system (i.e., B ⊂ Y such
that every y ∈ Y can be represented by a (finite) linear combination of elements in B).

Hint. For a), show that d(x, y) :=
∑

n∈N 2−n pn(x−y)
1+pn(x−y) is a metric. You may assume this

metric to induce a vector space topology on X. Two topologies (of topological vector spaces)
with respective neighborhood basis of the origin A and B are equivalent if and only if for
each A ∈ A there is B ∈ B with B ⊂ A and conversely. A neighborhood basis of the
origin in a metric space is given by all open balls with rational radius and center zero, i.e.,
U =

{
{x ∈ X | d(0, x) < r} | 0 < r ∈ Q

}
. For b), recall from the lecture that there is c > 0

such that |〈y, x〉| ≤ cmaxi=1,...,N |〈ei, x〉| for all x ∈ X if and only if y ∈ span{ei}Ni=1. Also,
continuity of f : X → K in x in a metric space X can be rephrased as: for any ε ∈ Q there is
δ ∈ Q such that d(x, y) ≤ δ implies |f(y)− f(x)| ≤ ε.

Remark. Note that a topology being represented by a metric (or more generally possessing
countable neighborhood bases) has the advantage that sequential definitions of topologic prop-
erties are equivalent, i.e., continuity, compactness, closedness can be defined by sequences.
Note that any vector space possesses a (vector space) basis (generating system with unique
representations) by the axiom of choice and the statement of b) could also be rephrased as
‘countable vector space basis’ instead of ‘generating system’.
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Example 5.2) [Lemma of Farkas]
Let X be a real locally convex space and ξ, ξ1, . . . ξn ∈ X ′, such that if x ∈ X with ξi(x) ≥ 0
for all i = 1, . . . , n, then ξ(x) ≥ 0. Show the existence of ai ≥ 0 such that ξ =

∑n
i=1 aiξi.

Hint. Use the separation theorem on {
∑n

i=1 aiξi | ai ≥ 0 for i = 1, . . . , n}. Also, recall the
results from Exercise 4.2 that finite-dimensional subspaces of locally convex Hausdorff spaces
are closed, the same statement holds for norm-closed subsets (in the sense of any norm on the
finite-dimensional subspace) of finite-dimensional subspaces (with identical proof). Be careful
which topology you use and whether it is Hausdorff.

Example 5.3) [Sequential vs topological closedness]
We consider X = l2(N) with the (standard) weak topology σ(l2(N), l2(N)) (where 〈f, g〉 =∑

i∈N figi). We consider the set V = {xn}n∈N ⊂ X according to xn =
√
nen for en(k) = 1 if

k = n and zero otherwise. Show that there is no sequence in V which converges to zero in the
weak topology, but still zero is in the (weak) closure of V .

Hint. By the theorem of Banach-Steinhaus, weakly convergent sequences (in the classical weak
topology) are norm-bounded. Recall, topologically speaking x is in the closure of V if and only
if there is no neighborhood of x which is disjoint from V .

Remark. This shows, as was eluded to before, that sequential closedness and topological
closedness are not equivalent in locally convex spaces. Hence checking whether limits of
sequences in a set is not sufficient for confirming closedness, while the reverse statement is
true (in any topology). When considering nets (generalization of sequences as functions on U
instead of N with a suitable notion of convergence) instead of sequences, the statement would
be true. In particular, in view of 5.1), l2(N) does not possess a countable vector space basis.

Example 5.4) [Operator topologies]
Let X and Y be normed spaces, and L(X,Y ) denotes the space of (norm-norm) continuous
linear functions between the two. It is well known, that L(X,Y ) is again a normed space

when equipped with the operator norm ‖T‖ = supx∈X\{0}
‖Tx‖Y
‖x‖X . Alternatively, one may

consider the strong operator topology induced by the seminorms P = {px}x∈X according to
px(T ) = ‖Tx‖Y and the weak operator topology induced by P = {px,y∗}x∈X,y∗∈Y ∗ according
to px,y∗(T ) = |〈y∗, Tx〉|. We consider on X = L2(R) the translation operator Tt : X → X
according to [Ttf ](·) := f(t+ ·) in a Lebesgue almost everywhere sense and a real sequence
tn →∞.

a) Show that there is no T ∈ L(X,X) such that Ttn converges to T in the strong operator
topology, and conclude that neither does a limit in the operator norm topology exist.

b) Show that in the weak operator topology Ttn converges towards zero.

Hint. For L2(R) functions there exist compact sets, such that in an L2 sense outside these
sets the function possesses very little mass.

Remark. Note that convergence in the operator norm can be understood as locally uni-
form convergence, while in the strong operator topology convergence means pointwise (norm)
convergence and in the weak operator topology pointwise weak convergence.


