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Advanced Functional Analysis
4. Exercise Sheet– 24th November, 2021

Basic information: Locally convex vector spaces
A vector space X with a topology τ is called topological vector space, if {x} is closed (i.e.,
{x}c ∈ τ) for any x ∈ X and for x, y ∈ X and λ ∈ K the functions (x, y) 7→ x + y and
(λ, x) 7→ λx are continuous. Given an x ∈ X, we call a set A ⊂ X a neighborhood of x if there
is O ∈ τ with x ∈ O ⊂ A; the set of neighborhoods of x is denoted by Nx.
The topology on a topological vector space is uniquely determined by the neighborhoods N0

of the origin (O ∈ τ if and only if λO + x0 ∈ τ for arbitrary x0, λ 6= 0). We call a set U ⊂ N0

a neighborhood basis of the origin, if given arbitrary O ∈ N0, there is U ∈ U such that U ⊂ O.
Equivalently, O ∈ τ if and only if for any x ∈ O there is U ∈ U with x+ U ⊂ O.
A set A is called absolutely convex (= convex + balanced) if x, y ∈ A and λ, µ ∈ K with
|λ|+ |µ| ≤ 1 implies λx+ µy ∈ A. A set A is called absorbent if given x ∈ X, there is r > 0
such that x ∈ rA := {rx | x ∈ A}.
A topological vector space (X, τ) is called locally convex if there is an absolutely convex,
absorbent neighborhood basis of the origin (in fact, this is equivalent to having a convex
neighborhood basis). Equivalently, (X, τ) is locally convex if there is a family of seminorms
P = (pi)i∈I , and τ is generated by the neighborhood basis U := {UF,ε | F ⊂ P finite and
ε > 0}, where we set

UF,ε := {x ∈ X | p(x) ≤ ε ∀p ∈ F}. (1)

These two definitions are indeed equivalent, as given P , the corresponding U satisfies the
requested properties, while given U , one can define a family of seminorms P = {pU}U∈U
according to pU := inf{r ∈ [0,∞) | x ∈ rU}.
It can be shown, that a locally convex topology is Hausdorff if and only if the associated
family of seminorms P is separating (i.e., for each x ∈ X there is a p ∈ P with p(x) > 0).

Example 4.1) [Weak topology]
Let X be a Banach space and X∗ the corresponding dual space. The weak topology σ(X,X∗)
is generated by the family of seminorms P = {pξ}ξ∈X∗ with pξ(x) := |ξ(x)|. Show that

a) for ξ ∈ X∗, pξ is indeed a seminorm and that the corresponding UF,ε are absorbent and
absolutely convex,

b) a sequence (xn)n converges to x in σ(X,X∗) if and only if ξ(xn)→ ξ(x) for all ξ ∈ X∗.
Hint. Recall that a sequence xn converges to x in τ , if for any N ∈ Nx there is n0 ∈ N such
that xn ∈ N for n > n0.

Remark. You might have learned about weak convergence without a deeper insight into its
topology, but in fact, the weak convergence is associated with a locally convex topology.

Example 4.2) [Finite-dimensional locally convex spaces]

a) Show that a locally convex Hausdorff topology τ on Rd coincides with any norm topology
(it is well-known that on finite-dimensional spaces, all norm topologies coincide).

b) Conclude that any finite-dimensional subspace M of a locally convex Hausdorff space
(X, τ) is closed. (Be aware that in general, closedness is not equivalent to containing
limits of convergent sequences, but rather being the complement of an open set).
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Hint. For a), iteratively consider pn =
∑n

i=1 pi for suitable pi ∈ P to construct a norm out
of P . For b), consider finite-dimensional subspaces Kx+M for given x ∈M c.

Remark. Since locally convex topologies are a generalization of normed spaces, some properties
can be extended to locally convex spaces. However, there are also some classical properties in
normed spaces which do not hold on locally convex spaces (such as topological properties – e.g.,
closedness, continuity, etc – being characterized by sequential properties).

Example 4.3) [Continuous operators between locally convex spaces]
Let X and Y be vector spaces and T : X → Y linear.

a) Let τX and τY be locally convex topologies on X and Y , respectively, with associated
families of seminorms P and Q. Show that the following are equivalent:

• The operator T is continuous with respect to τX and τY ,

• For any q ∈ Q, there is c > 0 and F ⊂ P finite such that q(Tx) ≤ cmaxp∈F p(x)
for all x ∈ X.

b) Assume X and Y are Banach spaces. Show that T is norm-norm continuous if and only
if T is weak-weak continuous.

Hint. Be aware, that a function is continuous if the preimages of open sets are open (and not
characterized by sequences). For b) use the Banach Steinhaus theorem (uniform boundedness
principle).

Remark. Similar to linear functions between Banach spaces, linear functions between locally
convex spaces are of interest. The lecture will go into more detail concerning linear continuous
functions onto K, the resulting weak topologies, and their properties.

Example 4.4) [Equivalence of locally convex toplogies]
Let X be a vector space with either of the two topologies τ1 or τ2 being locally convex.
The topology τ1 is said to be finer than τ2 if τ2 ⊂ τ1 (i.e., any τ2 open set is also τ1 open).
Equivalently, τ1 is finer than τ2 if the identity id : (X, τ1)→ (X, τ2) is continuous. Trivially
τ1 ⊂ τ2 and τ2 ⊂ τ1 implies τ1 = τ2. We say families of seminorms or neighborhood bases are
equivalent if they generate the same topology. Let X = C∞(K) for K ⊂ R compact. Show
that the following three families of seminorms are equivalent:

• P = {p0, p1, . . . } with pn(f) := supx∈K |f (n)(x)|, where f (n) denotes the nth derivative,

• Q = {q0, q1, . . . } with qn(f) :=
∫
K |f

(n)(x)|dx,

• R = {r0, r1, . . . } with rn(f) :=
√∫

K |f (n)(x)|2 dx.

Remark. Note that for a locally convex topology, neither the neighborhood basis nor the
corresponding family of seminorms are unique. Naturally, some properties (such as convergence)
can be transferred from a finer topology onto a coarser one.


