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Basic information: Lipschitz boundary and trace
A bounded domain (i.e., non-empty, open, connected and bounded) Ω ⊂ Rd is said to
possess Lipschitz boundary (or be a bounded Lipschitz domain), if there is N ∈ N, open sets
(Ui)i∈{1,...,N} such that ∂Ω ⊂

⋃N
i=1 Ui, associated orthonormal systems (e1

i , . . . , e
d
i ) = Ei ∈ Rd×d

and Lipschitz continuous functions gi : Rd−1 → R such that for x ∈ Ui with (x1
i , . . . x

d
i ) := E∗i x

(the parameter representation):
x ∈ ∂Ω if and only if xdi = gi(xi),

x ∈ Ω if and only if xdi < gi(xi),

x 6∈ Ω if and only if xdi > gi(xi),

(1)

where xi = (x1
i , . . . , x

d−1
i ). Without loss of generality, it can always be assumed that the

Ui are hypercubes, i.e., Ui = {x ∈ Rd | xji ∈ ]αj
i , β

j
i [ for j ∈ {1, . . . , d}} for some constants

αj
i , β

j
i ∈ R and restrict gi to U ′i = {z ∈ Rd−1 | zj ∈ ]αj

i , β
j
i [ for j ∈ {1, . . . , d−1}}. Recall, that

(by the Rademacher theorem) a Lipschitz continuous function is almost everywhere (totally)
differentiable.

Setting g̃i(x) = xdi − g(xi) and ν̃i := Ei∇g̃i = Ei

(
− ∂gi

∂x1 , . . . ,− ∂gi
∂xd−1 , 1

)T
, the outer normal is

(almost everywhere) given via ν = ν̃i/‖ν̃i‖. In particular, ν does depend only on x, and not
on Ui, gi and Ei (altough this construction does).
Given (x1, . . . , xd−1) ∈ U ′i we set xi =

∑
xjeji + gi(x

1, . . . , xd−1)edi = Ei(x
1, . . . , xd−1, gi)

T ∈
∂Ω ∩ Ui (the associated boundary point). For a function f : Ui ∩ ∂Ω → R such that
(x1, . . . , xd−1) 7→ f(xi) is measurable on U ′i , one can define the integral∫

∂Ω∩Ui

f ds :=

∫
U ′i

f(xi)‖ν̃i(xi)‖ d(x1, . . . , xd−1). (2)

Note that for a smooth boundary, this formula coincides with the classical formula for surface
integrals. For measurable functions f : ∂Ω→ R (such that each f|∂Ωi

is measurable as above),

the integral
∫
∂Ω f ds :=

∑N
i=1

∫
∂Ω∩Ui

ξif ds, where (ξi)
N
i=1 is a suitable partition of unity of ∂Ω

with respect to Ui. So we can now define spaces Lp(∂Ω) in the classical way with respect to
aforementioned integral formulation (with measure S(A) =

∫
∂Ω χA ds). Note that alternatively,

one could construct these spaces via Hausdorff measures, whose construction is however quite
technical.
On a Lipschitz domain Ω, the subspace C∞(Ω) is dense in W 1,p(Ω) for p <∞, and there is a
(unique) linear continuous operator (called the trace operator) γ : W 1,p(Ω) → Lp(∂Ω) such
that γu = u|∂Ω almost everywhere when u ∈ C∞(Ω).

Example 3.1) [No trace for Lp]
Let Ω be a domain with Lipschitz boundary, and p ∈ [1,∞[. Show that there is no linear
continuous operator T : Lp(Ω)→ Lp(∂Ω) such that Tu = u|∂Ω for C∞(Ω).

Hint. Show that the boundary measure S is finite and not trivial (not the zero measure),
concluding that Lp(∂Ω) is not trivial (Lp(∂Ω) 6= {0}).

Remark. This result illustrates that it is not possible to define a trace operator from Lp(Ω),
meaning there is no reasonable way to define boundary values for all Lp functions.
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Example 3.2) [Integration by parts]
Let Ω ⊂ Rd be a bounded Lipschitz domain, p, p∗ ∈ ]1,∞[ with 1

p + 1
p∗ = 1.

a) Show for f ∈W 1,p(Ω), g ∈W 1,p∗(Ω) and i ∈ {1, . . . , d} that∫
Ω
f∂eig dx =

∫
∂Ω
γ(g)νiγ(f) ds−

∫
Ω
g∂eif dx, (3)

where νi is the i th component of ν.

b) Conclude for f ∈W 2,p(Ω) and g ∈W 1,p∗(Ω), that∫
Ω
g∆f +∇g · ∇f dx =

∫
∂Ω
gγ(∇f) · ν ds. (4)

Here γ(∇f) is understood to be applied componentwise.

Hint. You may assume that (3) holds if f, g ∈ C∞(Ω).

Remark. These results are can be understood as generalizations of integration by parts, (4)
is known as the Green identity. They find much application in the study of second order linear
PDEs.

Example 3.3) [Decomposition of Lipschitz domains]
Let Ω ⊂ Rd be a bounded Lipschitz domain and {Ωi}ni=1 a tuple of bounded Lipschitz domains
such that Ω =

⋃n
i=1 Ωi, with Ωi ∩ Ωj = ∅ if i 6= j.

a) Show that for S almost every x ∈
⋃n

i=1 ∂Ωi, if x ∈ ∂Ωi1 ∩ ∂Ωi2 for i1 6= i2, then
νΩi1

(x) = −νΩi2
(x) (the respective outer normal vectors). Conclude that S almost

everywhere x 6∈
⋃

i∈{1,...n}\{i1,i2} ∂Ωi, i.e., almost every point is in at most two boundaries.

b) Conclude that a function f ∈ C(Ω) with f|Ωi
∈ C1(Ωi), is weakly differentiable and

compute the derivative.

Hint. A sketch is certainly helpful, but also prove the result rigorously.

Remark. Such results are for example of relevance for numerical schemes regarding PDEs
which consider smooth ansatz functions on suitable subsets (triangulation) and need to under-
stand the corresponding Sobolev properties.

Example 3.4) [Functions with zero derivative are constant]
Let Ω ⊂ Rd be a bounded domain (open and connected) with Lipschitz boundary. It is well
known, that ‘the function is constant’ and ‘∇f = 0 on Ω’ are equivalent when f is smooth.
Show that this still holds when f ∈ L1(Ω) and ∇ is the weak gradient.


