Inverse Problems - Exercise Sheet 7

Exercise 1 - Defining semi-norms via operators

Let X, Z be Banach spaces with X being reflexive and Z being the dual of a separable space. Further, let $A: \operatorname{dom}(A) \subset X \rightarrow Z$ be a densely defined, linear operator (not necessarily bounded!) with finite dimensional kernel. Further, assume that A is weak-to-weak* closed, which means that for each sequence $\left(x_{n}\right)_{n}, x \in X$, $z \in Z$ such that $x_{n} \rightharpoonup x, A x_{n} \stackrel{*}{\rightharpoonup} z$ it follows that $x \in \operatorname{dom}(A)$ and $A x=z$. Define $R: X \rightarrow[0, \infty]$ as

$$
R(u)= \begin{cases}\|A u\|_{Z} & \text { if } u \in \operatorname{dom}(A) \\ \infty & \text { else }\end{cases}
$$

Show that R is convex and lower semi-continuous. Further, with $P: X \rightarrow \operatorname{ker}(A)$ a linear and continuous projection, show that $\operatorname{rg}(A)$ is closed if and only if there exists $C>0$ such that

$$
\|u-P u\|_{X} \leq C R(u)
$$

for all $u \in X$. In particular, if $\operatorname{rg}(A)$ is closed, R fulfills the assumptions ($\operatorname{Ass}_{\mathrm{R}}$) of the lecture.
Hint: You can use the open mapping theorem for bounded operators, but if you want to use any extension of it you should provide a proof.

Exercise 2-Huber-Total-Variation Regularization

Consider $X=\mathbb{R}^{n \times n}$ and $T: X \rightarrow X$ the convolution operator of Exercise 1.4. Define a discrete gradient operator $\nabla: X \rightarrow \mathbb{R}^{n \times n \times 2}$ via

$$
(\nabla u)_{i, j, 1}=\left\{\begin{array}{ll}
u_{i+1, j}-u_{i, j} & \text { if } i<n, \\
0 & \text { else },
\end{array} \quad(\nabla u)_{i, j, 2}= \begin{cases}u_{i, j+1}-u_{i, j} & \text { if } j<n, \\
0 & \text { else }\end{cases}\right.
$$

Further, for $\epsilon>0$, define,

$$
h_{\epsilon}(t)= \begin{cases}\frac{t^{2}}{2 \epsilon} & \text { if }|t| \leq \epsilon \\ |t|-\frac{\epsilon}{2} & \text { else }\end{cases}
$$

and $H_{\epsilon}(p)=\sum_{i, j=1}^{n, n} h_{\epsilon}\left(\sqrt{p_{i, j, 1}^{2}+p_{i, j, 2}^{2}}\right)$. For given $y \in X$, consider the minimiziation problem

$$
\begin{equation*}
\min _{u \in X} \frac{1}{2}\|T u-y\|_{2}^{2}+\alpha H_{\epsilon}(\nabla u) \tag{1}
\end{equation*}
$$

where $\|y\|_{2}^{2}=\sum_{i, j=1}^{n, n} y_{i, j}^{2}$.

- Noting that the energy in (1) is C^{1}, compute its gradient.
- Using the test script huber_tv.m, implement the gradient descent method to solve (1) numerically.
- Using the values of the testscript as starting point, try different values of ϵ and α. What do you observe?

